Properties

Label 197.2.a.c.1.8
Level $197$
Weight $2$
Character 197.1
Self dual yes
Analytic conductor $1.573$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [197,2,Mod(1,197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("197.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(197, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.57305291982\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 15x^{8} - x^{7} + 78x^{6} + 7x^{5} - 165x^{4} - 15x^{3} + 123x^{2} + 9x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.82964\) of defining polynomial
Character \(\chi\) \(=\) 197.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.82964 q^{2} +0.661864 q^{3} +1.34760 q^{4} +2.39480 q^{5} +1.21098 q^{6} -2.47846 q^{7} -1.19366 q^{8} -2.56194 q^{9} +4.38163 q^{10} +2.44912 q^{11} +0.891928 q^{12} +0.427303 q^{13} -4.53471 q^{14} +1.58503 q^{15} -4.87917 q^{16} -3.61425 q^{17} -4.68743 q^{18} -0.675704 q^{19} +3.22723 q^{20} -1.64041 q^{21} +4.48103 q^{22} +8.55393 q^{23} -0.790040 q^{24} +0.735052 q^{25} +0.781813 q^{26} -3.68124 q^{27} -3.33998 q^{28} +4.41033 q^{29} +2.90004 q^{30} +0.899928 q^{31} -6.53984 q^{32} +1.62099 q^{33} -6.61279 q^{34} -5.93542 q^{35} -3.45247 q^{36} -9.25303 q^{37} -1.23630 q^{38} +0.282816 q^{39} -2.85857 q^{40} -3.48904 q^{41} -3.00136 q^{42} +4.73199 q^{43} +3.30044 q^{44} -6.13532 q^{45} +15.6507 q^{46} +9.87379 q^{47} -3.22935 q^{48} -0.857212 q^{49} +1.34488 q^{50} -2.39214 q^{51} +0.575834 q^{52} +0.432240 q^{53} -6.73537 q^{54} +5.86515 q^{55} +2.95844 q^{56} -0.447224 q^{57} +8.06933 q^{58} -0.232893 q^{59} +2.13599 q^{60} -8.06257 q^{61} +1.64655 q^{62} +6.34967 q^{63} -2.20723 q^{64} +1.02330 q^{65} +2.96583 q^{66} +12.2707 q^{67} -4.87056 q^{68} +5.66154 q^{69} -10.8597 q^{70} -14.4805 q^{71} +3.05808 q^{72} +10.8630 q^{73} -16.9298 q^{74} +0.486504 q^{75} -0.910579 q^{76} -6.07007 q^{77} +0.517454 q^{78} +8.35190 q^{79} -11.6846 q^{80} +5.24933 q^{81} -6.38370 q^{82} -0.446491 q^{83} -2.21061 q^{84} -8.65538 q^{85} +8.65785 q^{86} +2.91904 q^{87} -2.92342 q^{88} +16.9275 q^{89} -11.2255 q^{90} -1.05906 q^{91} +11.5273 q^{92} +0.595630 q^{93} +18.0655 q^{94} -1.61817 q^{95} -4.32848 q^{96} +6.50799 q^{97} -1.56839 q^{98} -6.27450 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{3} + 10 q^{4} + 2 q^{5} - 4 q^{6} + 11 q^{7} - 3 q^{8} + 12 q^{9} - 2 q^{10} + 2 q^{11} + 4 q^{12} + 8 q^{13} - 9 q^{14} - q^{15} - 2 q^{16} - 3 q^{17} - 9 q^{18} + 17 q^{19} - 2 q^{20} - 2 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.82964 1.29375 0.646877 0.762594i \(-0.276075\pi\)
0.646877 + 0.762594i \(0.276075\pi\)
\(3\) 0.661864 0.382127 0.191064 0.981578i \(-0.438806\pi\)
0.191064 + 0.981578i \(0.438806\pi\)
\(4\) 1.34760 0.673800
\(5\) 2.39480 1.07099 0.535493 0.844540i \(-0.320126\pi\)
0.535493 + 0.844540i \(0.320126\pi\)
\(6\) 1.21098 0.494379
\(7\) −2.47846 −0.936772 −0.468386 0.883524i \(-0.655164\pi\)
−0.468386 + 0.883524i \(0.655164\pi\)
\(8\) −1.19366 −0.422022
\(9\) −2.56194 −0.853979
\(10\) 4.38163 1.38559
\(11\) 2.44912 0.738438 0.369219 0.929342i \(-0.379625\pi\)
0.369219 + 0.929342i \(0.379625\pi\)
\(12\) 0.891928 0.257477
\(13\) 0.427303 0.118513 0.0592563 0.998243i \(-0.481127\pi\)
0.0592563 + 0.998243i \(0.481127\pi\)
\(14\) −4.53471 −1.21195
\(15\) 1.58503 0.409253
\(16\) −4.87917 −1.21979
\(17\) −3.61425 −0.876583 −0.438292 0.898833i \(-0.644416\pi\)
−0.438292 + 0.898833i \(0.644416\pi\)
\(18\) −4.68743 −1.10484
\(19\) −0.675704 −0.155017 −0.0775085 0.996992i \(-0.524697\pi\)
−0.0775085 + 0.996992i \(0.524697\pi\)
\(20\) 3.22723 0.721630
\(21\) −1.64041 −0.357966
\(22\) 4.48103 0.955358
\(23\) 8.55393 1.78362 0.891809 0.452412i \(-0.149436\pi\)
0.891809 + 0.452412i \(0.149436\pi\)
\(24\) −0.790040 −0.161266
\(25\) 0.735052 0.147010
\(26\) 0.781813 0.153326
\(27\) −3.68124 −0.708456
\(28\) −3.33998 −0.631197
\(29\) 4.41033 0.818977 0.409489 0.912315i \(-0.365707\pi\)
0.409489 + 0.912315i \(0.365707\pi\)
\(30\) 2.90004 0.529473
\(31\) 0.899928 0.161632 0.0808159 0.996729i \(-0.474247\pi\)
0.0808159 + 0.996729i \(0.474247\pi\)
\(32\) −6.53984 −1.15609
\(33\) 1.62099 0.282177
\(34\) −6.61279 −1.13408
\(35\) −5.93542 −1.00327
\(36\) −3.45247 −0.575411
\(37\) −9.25303 −1.52119 −0.760594 0.649227i \(-0.775092\pi\)
−0.760594 + 0.649227i \(0.775092\pi\)
\(38\) −1.23630 −0.200554
\(39\) 0.282816 0.0452869
\(40\) −2.85857 −0.451980
\(41\) −3.48904 −0.544896 −0.272448 0.962171i \(-0.587833\pi\)
−0.272448 + 0.962171i \(0.587833\pi\)
\(42\) −3.00136 −0.463120
\(43\) 4.73199 0.721621 0.360811 0.932639i \(-0.382500\pi\)
0.360811 + 0.932639i \(0.382500\pi\)
\(44\) 3.30044 0.497560
\(45\) −6.13532 −0.914599
\(46\) 15.6507 2.30756
\(47\) 9.87379 1.44024 0.720120 0.693850i \(-0.244087\pi\)
0.720120 + 0.693850i \(0.244087\pi\)
\(48\) −3.22935 −0.466116
\(49\) −0.857212 −0.122459
\(50\) 1.34488 0.190195
\(51\) −2.39214 −0.334966
\(52\) 0.575834 0.0798538
\(53\) 0.432240 0.0593728 0.0296864 0.999559i \(-0.490549\pi\)
0.0296864 + 0.999559i \(0.490549\pi\)
\(54\) −6.73537 −0.916568
\(55\) 5.86515 0.790857
\(56\) 2.95844 0.395339
\(57\) −0.447224 −0.0592362
\(58\) 8.06933 1.05956
\(59\) −0.232893 −0.0303201 −0.0151600 0.999885i \(-0.504826\pi\)
−0.0151600 + 0.999885i \(0.504826\pi\)
\(60\) 2.13599 0.275755
\(61\) −8.06257 −1.03231 −0.516153 0.856496i \(-0.672637\pi\)
−0.516153 + 0.856496i \(0.672637\pi\)
\(62\) 1.64655 0.209112
\(63\) 6.34967 0.799983
\(64\) −2.20723 −0.275904
\(65\) 1.02330 0.126925
\(66\) 2.96583 0.365068
\(67\) 12.2707 1.49911 0.749554 0.661944i \(-0.230268\pi\)
0.749554 + 0.661944i \(0.230268\pi\)
\(68\) −4.87056 −0.590642
\(69\) 5.66154 0.681569
\(70\) −10.8597 −1.29798
\(71\) −14.4805 −1.71852 −0.859259 0.511540i \(-0.829075\pi\)
−0.859259 + 0.511540i \(0.829075\pi\)
\(72\) 3.05808 0.360398
\(73\) 10.8630 1.27142 0.635708 0.771930i \(-0.280708\pi\)
0.635708 + 0.771930i \(0.280708\pi\)
\(74\) −16.9298 −1.96804
\(75\) 0.486504 0.0561767
\(76\) −0.910579 −0.104451
\(77\) −6.07007 −0.691748
\(78\) 0.517454 0.0585901
\(79\) 8.35190 0.939663 0.469831 0.882756i \(-0.344315\pi\)
0.469831 + 0.882756i \(0.344315\pi\)
\(80\) −11.6846 −1.30638
\(81\) 5.24933 0.583259
\(82\) −6.38370 −0.704961
\(83\) −0.446491 −0.0490087 −0.0245044 0.999700i \(-0.507801\pi\)
−0.0245044 + 0.999700i \(0.507801\pi\)
\(84\) −2.21061 −0.241198
\(85\) −8.65538 −0.938808
\(86\) 8.65785 0.933600
\(87\) 2.91904 0.312954
\(88\) −2.92342 −0.311637
\(89\) 16.9275 1.79431 0.897157 0.441711i \(-0.145628\pi\)
0.897157 + 0.441711i \(0.145628\pi\)
\(90\) −11.2255 −1.18327
\(91\) −1.05906 −0.111019
\(92\) 11.5273 1.20180
\(93\) 0.595630 0.0617639
\(94\) 18.0655 1.86332
\(95\) −1.61817 −0.166021
\(96\) −4.32848 −0.441774
\(97\) 6.50799 0.660786 0.330393 0.943843i \(-0.392819\pi\)
0.330393 + 0.943843i \(0.392819\pi\)
\(98\) −1.56839 −0.158432
\(99\) −6.27450 −0.630611
\(100\) 0.990556 0.0990556
\(101\) 7.81122 0.777245 0.388623 0.921397i \(-0.372951\pi\)
0.388623 + 0.921397i \(0.372951\pi\)
\(102\) −4.37676 −0.433364
\(103\) 0.291943 0.0287660 0.0143830 0.999897i \(-0.495422\pi\)
0.0143830 + 0.999897i \(0.495422\pi\)
\(104\) −0.510054 −0.0500150
\(105\) −3.92844 −0.383376
\(106\) 0.790846 0.0768138
\(107\) −15.2591 −1.47515 −0.737574 0.675266i \(-0.764029\pi\)
−0.737574 + 0.675266i \(0.764029\pi\)
\(108\) −4.96085 −0.477358
\(109\) −4.64110 −0.444536 −0.222268 0.974986i \(-0.571346\pi\)
−0.222268 + 0.974986i \(0.571346\pi\)
\(110\) 10.7311 1.02317
\(111\) −6.12425 −0.581288
\(112\) 12.0929 1.14267
\(113\) 3.00447 0.282637 0.141318 0.989964i \(-0.454866\pi\)
0.141318 + 0.989964i \(0.454866\pi\)
\(114\) −0.818261 −0.0766371
\(115\) 20.4849 1.91023
\(116\) 5.94336 0.551827
\(117\) −1.09472 −0.101207
\(118\) −0.426111 −0.0392267
\(119\) 8.95778 0.821158
\(120\) −1.89198 −0.172714
\(121\) −5.00180 −0.454709
\(122\) −14.7516 −1.33555
\(123\) −2.30927 −0.208220
\(124\) 1.21274 0.108908
\(125\) −10.2137 −0.913540
\(126\) 11.6176 1.03498
\(127\) −5.47730 −0.486031 −0.243016 0.970022i \(-0.578137\pi\)
−0.243016 + 0.970022i \(0.578137\pi\)
\(128\) 9.04122 0.799139
\(129\) 3.13193 0.275751
\(130\) 1.87228 0.164210
\(131\) −9.82962 −0.858818 −0.429409 0.903110i \(-0.641278\pi\)
−0.429409 + 0.903110i \(0.641278\pi\)
\(132\) 2.18444 0.190131
\(133\) 1.67471 0.145216
\(134\) 22.4511 1.93948
\(135\) −8.81583 −0.758746
\(136\) 4.31418 0.369938
\(137\) −5.13739 −0.438917 −0.219458 0.975622i \(-0.570429\pi\)
−0.219458 + 0.975622i \(0.570429\pi\)
\(138\) 10.3586 0.881783
\(139\) 12.0692 1.02369 0.511847 0.859076i \(-0.328961\pi\)
0.511847 + 0.859076i \(0.328961\pi\)
\(140\) −7.99857 −0.676003
\(141\) 6.53510 0.550355
\(142\) −26.4942 −2.22334
\(143\) 1.04652 0.0875142
\(144\) 12.5001 1.04168
\(145\) 10.5618 0.877113
\(146\) 19.8754 1.64490
\(147\) −0.567358 −0.0467949
\(148\) −12.4694 −1.02498
\(149\) −21.8887 −1.79319 −0.896597 0.442847i \(-0.853968\pi\)
−0.896597 + 0.442847i \(0.853968\pi\)
\(150\) 0.890130 0.0726788
\(151\) 4.21008 0.342611 0.171306 0.985218i \(-0.445201\pi\)
0.171306 + 0.985218i \(0.445201\pi\)
\(152\) 0.806560 0.0654207
\(153\) 9.25947 0.748584
\(154\) −11.1061 −0.894952
\(155\) 2.15514 0.173105
\(156\) 0.381124 0.0305143
\(157\) −9.05645 −0.722783 −0.361392 0.932414i \(-0.617698\pi\)
−0.361392 + 0.932414i \(0.617698\pi\)
\(158\) 15.2810 1.21569
\(159\) 0.286084 0.0226879
\(160\) −15.6616 −1.23816
\(161\) −21.2006 −1.67084
\(162\) 9.60440 0.754593
\(163\) 7.80210 0.611108 0.305554 0.952175i \(-0.401158\pi\)
0.305554 + 0.952175i \(0.401158\pi\)
\(164\) −4.70183 −0.367151
\(165\) 3.88193 0.302208
\(166\) −0.816920 −0.0634053
\(167\) 2.46900 0.191057 0.0955286 0.995427i \(-0.469546\pi\)
0.0955286 + 0.995427i \(0.469546\pi\)
\(168\) 1.95809 0.151070
\(169\) −12.8174 −0.985955
\(170\) −15.8363 −1.21459
\(171\) 1.73111 0.132381
\(172\) 6.37683 0.486228
\(173\) −14.5901 −1.10926 −0.554632 0.832096i \(-0.687141\pi\)
−0.554632 + 0.832096i \(0.687141\pi\)
\(174\) 5.34080 0.404885
\(175\) −1.82180 −0.137715
\(176\) −11.9497 −0.900742
\(177\) −0.154143 −0.0115861
\(178\) 30.9714 2.32140
\(179\) 1.85653 0.138764 0.0693820 0.997590i \(-0.477897\pi\)
0.0693820 + 0.997590i \(0.477897\pi\)
\(180\) −8.26796 −0.616257
\(181\) 21.8401 1.62336 0.811680 0.584103i \(-0.198553\pi\)
0.811680 + 0.584103i \(0.198553\pi\)
\(182\) −1.93770 −0.143632
\(183\) −5.33633 −0.394473
\(184\) −10.2105 −0.752727
\(185\) −22.1591 −1.62917
\(186\) 1.08979 0.0799073
\(187\) −8.85173 −0.647303
\(188\) 13.3059 0.970434
\(189\) 9.12383 0.663661
\(190\) −2.96068 −0.214790
\(191\) −6.86482 −0.496721 −0.248361 0.968668i \(-0.579892\pi\)
−0.248361 + 0.968668i \(0.579892\pi\)
\(192\) −1.46089 −0.105430
\(193\) −9.21587 −0.663373 −0.331687 0.943390i \(-0.607618\pi\)
−0.331687 + 0.943390i \(0.607618\pi\)
\(194\) 11.9073 0.854895
\(195\) 0.677288 0.0485016
\(196\) −1.15518 −0.0825129
\(197\) 1.00000 0.0712470
\(198\) −11.4801 −0.815855
\(199\) −20.7712 −1.47243 −0.736216 0.676746i \(-0.763389\pi\)
−0.736216 + 0.676746i \(0.763389\pi\)
\(200\) −0.877402 −0.0620417
\(201\) 8.12155 0.572850
\(202\) 14.2918 1.00556
\(203\) −10.9308 −0.767195
\(204\) −3.22365 −0.225700
\(205\) −8.35553 −0.583576
\(206\) 0.534151 0.0372161
\(207\) −21.9146 −1.52317
\(208\) −2.08489 −0.144561
\(209\) −1.65488 −0.114471
\(210\) −7.18765 −0.495995
\(211\) 7.15252 0.492400 0.246200 0.969219i \(-0.420818\pi\)
0.246200 + 0.969219i \(0.420818\pi\)
\(212\) 0.582487 0.0400054
\(213\) −9.58411 −0.656693
\(214\) −27.9187 −1.90848
\(215\) 11.3321 0.772846
\(216\) 4.39415 0.298984
\(217\) −2.23044 −0.151412
\(218\) −8.49156 −0.575121
\(219\) 7.18982 0.485843
\(220\) 7.90388 0.532880
\(221\) −1.54438 −0.103886
\(222\) −11.2052 −0.752043
\(223\) 15.1364 1.01361 0.506803 0.862062i \(-0.330827\pi\)
0.506803 + 0.862062i \(0.330827\pi\)
\(224\) 16.2088 1.08299
\(225\) −1.88316 −0.125544
\(226\) 5.49711 0.365663
\(227\) −23.7864 −1.57876 −0.789380 0.613905i \(-0.789598\pi\)
−0.789380 + 0.613905i \(0.789598\pi\)
\(228\) −0.602679 −0.0399134
\(229\) −19.8173 −1.30956 −0.654781 0.755819i \(-0.727239\pi\)
−0.654781 + 0.755819i \(0.727239\pi\)
\(230\) 37.4802 2.47137
\(231\) −4.01756 −0.264336
\(232\) −5.26443 −0.345627
\(233\) −29.0910 −1.90581 −0.952907 0.303261i \(-0.901925\pi\)
−0.952907 + 0.303261i \(0.901925\pi\)
\(234\) −2.00296 −0.130937
\(235\) 23.6457 1.54248
\(236\) −0.313847 −0.0204297
\(237\) 5.52782 0.359071
\(238\) 16.3896 1.06238
\(239\) −17.2766 −1.11753 −0.558765 0.829326i \(-0.688725\pi\)
−0.558765 + 0.829326i \(0.688725\pi\)
\(240\) −7.73363 −0.499204
\(241\) 4.48258 0.288749 0.144374 0.989523i \(-0.453883\pi\)
0.144374 + 0.989523i \(0.453883\pi\)
\(242\) −9.15151 −0.588281
\(243\) 14.5181 0.931335
\(244\) −10.8651 −0.695569
\(245\) −2.05285 −0.131152
\(246\) −4.22514 −0.269385
\(247\) −0.288730 −0.0183715
\(248\) −1.07421 −0.0682122
\(249\) −0.295516 −0.0187276
\(250\) −18.6874 −1.18190
\(251\) 7.48094 0.472193 0.236097 0.971730i \(-0.424132\pi\)
0.236097 + 0.971730i \(0.424132\pi\)
\(252\) 8.55682 0.539029
\(253\) 20.9496 1.31709
\(254\) −10.0215 −0.628805
\(255\) −5.72869 −0.358744
\(256\) 20.9567 1.30979
\(257\) 26.1724 1.63259 0.816296 0.577634i \(-0.196024\pi\)
0.816296 + 0.577634i \(0.196024\pi\)
\(258\) 5.73032 0.356754
\(259\) 22.9333 1.42501
\(260\) 1.37901 0.0855223
\(261\) −11.2990 −0.699389
\(262\) −17.9847 −1.11110
\(263\) −2.11510 −0.130422 −0.0652112 0.997871i \(-0.520772\pi\)
−0.0652112 + 0.997871i \(0.520772\pi\)
\(264\) −1.93490 −0.119085
\(265\) 1.03513 0.0635874
\(266\) 3.06412 0.187873
\(267\) 11.2037 0.685656
\(268\) 16.5360 1.01010
\(269\) 5.43243 0.331221 0.165611 0.986191i \(-0.447041\pi\)
0.165611 + 0.986191i \(0.447041\pi\)
\(270\) −16.1298 −0.981631
\(271\) 8.88131 0.539501 0.269751 0.962930i \(-0.413059\pi\)
0.269751 + 0.962930i \(0.413059\pi\)
\(272\) 17.6345 1.06925
\(273\) −0.700951 −0.0424235
\(274\) −9.39960 −0.567850
\(275\) 1.80023 0.108558
\(276\) 7.62949 0.459241
\(277\) 3.85160 0.231420 0.115710 0.993283i \(-0.463086\pi\)
0.115710 + 0.993283i \(0.463086\pi\)
\(278\) 22.0823 1.32441
\(279\) −2.30556 −0.138030
\(280\) 7.08487 0.423402
\(281\) −16.6051 −0.990575 −0.495288 0.868729i \(-0.664937\pi\)
−0.495288 + 0.868729i \(0.664937\pi\)
\(282\) 11.9569 0.712024
\(283\) 19.9449 1.18560 0.592801 0.805349i \(-0.298022\pi\)
0.592801 + 0.805349i \(0.298022\pi\)
\(284\) −19.5139 −1.15794
\(285\) −1.07101 −0.0634412
\(286\) 1.91476 0.113222
\(287\) 8.64745 0.510443
\(288\) 16.7546 0.987277
\(289\) −3.93723 −0.231602
\(290\) 19.3244 1.13477
\(291\) 4.30740 0.252504
\(292\) 14.6390 0.856680
\(293\) 14.7094 0.859331 0.429665 0.902988i \(-0.358631\pi\)
0.429665 + 0.902988i \(0.358631\pi\)
\(294\) −1.03806 −0.0605411
\(295\) −0.557731 −0.0324724
\(296\) 11.0450 0.641976
\(297\) −9.01582 −0.523151
\(298\) −40.0486 −2.31995
\(299\) 3.65512 0.211381
\(300\) 0.655613 0.0378519
\(301\) −11.7281 −0.675994
\(302\) 7.70295 0.443255
\(303\) 5.16996 0.297006
\(304\) 3.29688 0.189089
\(305\) −19.3082 −1.10559
\(306\) 16.9415 0.968483
\(307\) −4.72211 −0.269505 −0.134753 0.990879i \(-0.543024\pi\)
−0.134753 + 0.990879i \(0.543024\pi\)
\(308\) −8.18002 −0.466100
\(309\) 0.193226 0.0109923
\(310\) 3.94315 0.223956
\(311\) 17.5323 0.994168 0.497084 0.867702i \(-0.334404\pi\)
0.497084 + 0.867702i \(0.334404\pi\)
\(312\) −0.337587 −0.0191121
\(313\) 12.1697 0.687873 0.343937 0.938993i \(-0.388239\pi\)
0.343937 + 0.938993i \(0.388239\pi\)
\(314\) −16.5701 −0.935104
\(315\) 15.2062 0.856770
\(316\) 11.2550 0.633145
\(317\) −16.4965 −0.926535 −0.463268 0.886218i \(-0.653323\pi\)
−0.463268 + 0.886218i \(0.653323\pi\)
\(318\) 0.523432 0.0293526
\(319\) 10.8014 0.604764
\(320\) −5.28587 −0.295489
\(321\) −10.0994 −0.563695
\(322\) −38.7896 −2.16166
\(323\) 2.44216 0.135885
\(324\) 7.07400 0.393000
\(325\) 0.314090 0.0174226
\(326\) 14.2751 0.790623
\(327\) −3.07177 −0.169869
\(328\) 4.16472 0.229958
\(329\) −24.4718 −1.34918
\(330\) 7.10256 0.390983
\(331\) 3.14512 0.172872 0.0864358 0.996257i \(-0.472452\pi\)
0.0864358 + 0.996257i \(0.472452\pi\)
\(332\) −0.601691 −0.0330221
\(333\) 23.7057 1.29906
\(334\) 4.51740 0.247181
\(335\) 29.3859 1.60552
\(336\) 8.00383 0.436645
\(337\) 28.8759 1.57297 0.786486 0.617608i \(-0.211898\pi\)
0.786486 + 0.617608i \(0.211898\pi\)
\(338\) −23.4513 −1.27558
\(339\) 1.98855 0.108003
\(340\) −11.6640 −0.632569
\(341\) 2.20403 0.119355
\(342\) 3.16732 0.171269
\(343\) 19.4738 1.05149
\(344\) −5.64838 −0.304540
\(345\) 13.5582 0.729951
\(346\) −26.6947 −1.43511
\(347\) 31.5438 1.69336 0.846681 0.532101i \(-0.178597\pi\)
0.846681 + 0.532101i \(0.178597\pi\)
\(348\) 3.93369 0.210868
\(349\) −6.54560 −0.350378 −0.175189 0.984535i \(-0.556054\pi\)
−0.175189 + 0.984535i \(0.556054\pi\)
\(350\) −3.33325 −0.178170
\(351\) −1.57301 −0.0839609
\(352\) −16.0169 −0.853702
\(353\) −2.38253 −0.126809 −0.0634047 0.997988i \(-0.520196\pi\)
−0.0634047 + 0.997988i \(0.520196\pi\)
\(354\) −0.282028 −0.0149896
\(355\) −34.6778 −1.84051
\(356\) 22.8115 1.20901
\(357\) 5.92883 0.313787
\(358\) 3.39680 0.179526
\(359\) −15.0342 −0.793473 −0.396737 0.917932i \(-0.629857\pi\)
−0.396737 + 0.917932i \(0.629857\pi\)
\(360\) 7.32348 0.385981
\(361\) −18.5434 −0.975970
\(362\) 39.9596 2.10023
\(363\) −3.31051 −0.173757
\(364\) −1.42718 −0.0748048
\(365\) 26.0146 1.36167
\(366\) −9.76358 −0.510351
\(367\) −29.0871 −1.51833 −0.759167 0.650896i \(-0.774393\pi\)
−0.759167 + 0.650896i \(0.774393\pi\)
\(368\) −41.7361 −2.17565
\(369\) 8.93869 0.465330
\(370\) −40.5433 −2.10775
\(371\) −1.07129 −0.0556187
\(372\) 0.802671 0.0416165
\(373\) −3.41639 −0.176894 −0.0884469 0.996081i \(-0.528190\pi\)
−0.0884469 + 0.996081i \(0.528190\pi\)
\(374\) −16.1955 −0.837451
\(375\) −6.76007 −0.349088
\(376\) −11.7859 −0.607813
\(377\) 1.88455 0.0970591
\(378\) 16.6934 0.858615
\(379\) −10.8111 −0.555331 −0.277666 0.960678i \(-0.589561\pi\)
−0.277666 + 0.960678i \(0.589561\pi\)
\(380\) −2.18065 −0.111865
\(381\) −3.62522 −0.185726
\(382\) −12.5602 −0.642635
\(383\) −20.0610 −1.02507 −0.512534 0.858667i \(-0.671293\pi\)
−0.512534 + 0.858667i \(0.671293\pi\)
\(384\) 5.98406 0.305373
\(385\) −14.5366 −0.740852
\(386\) −16.8618 −0.858242
\(387\) −12.1230 −0.616249
\(388\) 8.77017 0.445238
\(389\) 15.1626 0.768773 0.384387 0.923172i \(-0.374413\pi\)
0.384387 + 0.923172i \(0.374413\pi\)
\(390\) 1.23920 0.0627492
\(391\) −30.9160 −1.56349
\(392\) 1.02322 0.0516804
\(393\) −6.50587 −0.328178
\(394\) 1.82964 0.0921762
\(395\) 20.0011 1.00637
\(396\) −8.45552 −0.424906
\(397\) 33.7992 1.69633 0.848167 0.529729i \(-0.177706\pi\)
0.848167 + 0.529729i \(0.177706\pi\)
\(398\) −38.0040 −1.90497
\(399\) 1.10843 0.0554908
\(400\) −3.58645 −0.179322
\(401\) 18.8451 0.941080 0.470540 0.882379i \(-0.344059\pi\)
0.470540 + 0.882379i \(0.344059\pi\)
\(402\) 14.8595 0.741127
\(403\) 0.384542 0.0191554
\(404\) 10.5264 0.523708
\(405\) 12.5711 0.624662
\(406\) −19.9996 −0.992561
\(407\) −22.6618 −1.12330
\(408\) 2.85540 0.141363
\(409\) −27.1293 −1.34146 −0.670728 0.741704i \(-0.734018\pi\)
−0.670728 + 0.741704i \(0.734018\pi\)
\(410\) −15.2877 −0.755004
\(411\) −3.40025 −0.167722
\(412\) 0.393422 0.0193825
\(413\) 0.577217 0.0284030
\(414\) −40.0960 −1.97061
\(415\) −1.06925 −0.0524876
\(416\) −2.79449 −0.137011
\(417\) 7.98815 0.391182
\(418\) −3.02785 −0.148097
\(419\) 18.7712 0.917035 0.458518 0.888685i \(-0.348381\pi\)
0.458518 + 0.888685i \(0.348381\pi\)
\(420\) −5.29397 −0.258319
\(421\) −30.2422 −1.47392 −0.736958 0.675938i \(-0.763739\pi\)
−0.736958 + 0.675938i \(0.763739\pi\)
\(422\) 13.0866 0.637045
\(423\) −25.2960 −1.22993
\(424\) −0.515948 −0.0250566
\(425\) −2.65666 −0.128867
\(426\) −17.5355 −0.849599
\(427\) 19.9828 0.967036
\(428\) −20.5631 −0.993956
\(429\) 0.692652 0.0334416
\(430\) 20.7338 0.999873
\(431\) 39.4571 1.90058 0.950292 0.311361i \(-0.100785\pi\)
0.950292 + 0.311361i \(0.100785\pi\)
\(432\) 17.9614 0.864170
\(433\) 26.0606 1.25239 0.626197 0.779665i \(-0.284611\pi\)
0.626197 + 0.779665i \(0.284611\pi\)
\(434\) −4.08091 −0.195890
\(435\) 6.99050 0.335169
\(436\) −6.25434 −0.299529
\(437\) −5.77992 −0.276491
\(438\) 13.1548 0.628561
\(439\) −38.8850 −1.85588 −0.927940 0.372730i \(-0.878422\pi\)
−0.927940 + 0.372730i \(0.878422\pi\)
\(440\) −7.00099 −0.333759
\(441\) 2.19612 0.104577
\(442\) −2.82566 −0.134403
\(443\) 30.5988 1.45379 0.726896 0.686747i \(-0.240962\pi\)
0.726896 + 0.686747i \(0.240962\pi\)
\(444\) −8.25304 −0.391672
\(445\) 40.5380 1.92169
\(446\) 27.6942 1.31136
\(447\) −14.4874 −0.685228
\(448\) 5.47055 0.258459
\(449\) 34.6750 1.63641 0.818207 0.574924i \(-0.194968\pi\)
0.818207 + 0.574924i \(0.194968\pi\)
\(450\) −3.44551 −0.162423
\(451\) −8.54508 −0.402372
\(452\) 4.04883 0.190441
\(453\) 2.78650 0.130921
\(454\) −43.5207 −2.04253
\(455\) −2.53622 −0.118900
\(456\) 0.533833 0.0249990
\(457\) −8.62517 −0.403468 −0.201734 0.979440i \(-0.564658\pi\)
−0.201734 + 0.979440i \(0.564658\pi\)
\(458\) −36.2586 −1.69425
\(459\) 13.3049 0.621021
\(460\) 27.6055 1.28711
\(461\) 17.2908 0.805315 0.402657 0.915351i \(-0.368087\pi\)
0.402657 + 0.915351i \(0.368087\pi\)
\(462\) −7.35070 −0.341986
\(463\) 17.1023 0.794814 0.397407 0.917643i \(-0.369910\pi\)
0.397407 + 0.917643i \(0.369910\pi\)
\(464\) −21.5188 −0.998983
\(465\) 1.42641 0.0661483
\(466\) −53.2262 −2.46566
\(467\) 20.0251 0.926650 0.463325 0.886188i \(-0.346656\pi\)
0.463325 + 0.886188i \(0.346656\pi\)
\(468\) −1.47525 −0.0681935
\(469\) −30.4125 −1.40432
\(470\) 43.2633 1.99559
\(471\) −5.99413 −0.276195
\(472\) 0.277995 0.0127958
\(473\) 11.5892 0.532873
\(474\) 10.1140 0.464549
\(475\) −0.496677 −0.0227891
\(476\) 12.0715 0.553297
\(477\) −1.10737 −0.0507031
\(478\) −31.6101 −1.44581
\(479\) −27.6009 −1.26112 −0.630559 0.776141i \(-0.717175\pi\)
−0.630559 + 0.776141i \(0.717175\pi\)
\(480\) −10.3658 −0.473133
\(481\) −3.95385 −0.180280
\(482\) 8.20154 0.373570
\(483\) −14.0319 −0.638475
\(484\) −6.74042 −0.306383
\(485\) 15.5853 0.707693
\(486\) 26.5629 1.20492
\(487\) 10.3523 0.469109 0.234554 0.972103i \(-0.424637\pi\)
0.234554 + 0.972103i \(0.424637\pi\)
\(488\) 9.62397 0.435657
\(489\) 5.16393 0.233521
\(490\) −3.75599 −0.169678
\(491\) −36.6785 −1.65528 −0.827638 0.561262i \(-0.810316\pi\)
−0.827638 + 0.561262i \(0.810316\pi\)
\(492\) −3.11197 −0.140298
\(493\) −15.9400 −0.717902
\(494\) −0.528274 −0.0237682
\(495\) −15.0261 −0.675375
\(496\) −4.39091 −0.197157
\(497\) 35.8894 1.60986
\(498\) −0.540689 −0.0242289
\(499\) 14.0562 0.629243 0.314622 0.949217i \(-0.398122\pi\)
0.314622 + 0.949217i \(0.398122\pi\)
\(500\) −13.7640 −0.615543
\(501\) 1.63414 0.0730082
\(502\) 13.6875 0.610902
\(503\) 25.4260 1.13369 0.566844 0.823825i \(-0.308164\pi\)
0.566844 + 0.823825i \(0.308164\pi\)
\(504\) −7.57934 −0.337611
\(505\) 18.7063 0.832418
\(506\) 38.3304 1.70399
\(507\) −8.48338 −0.376760
\(508\) −7.38121 −0.327488
\(509\) −15.1509 −0.671551 −0.335775 0.941942i \(-0.608998\pi\)
−0.335775 + 0.941942i \(0.608998\pi\)
\(510\) −10.4815 −0.464127
\(511\) −26.9235 −1.19103
\(512\) 20.2609 0.895412
\(513\) 2.48743 0.109823
\(514\) 47.8863 2.11217
\(515\) 0.699143 0.0308079
\(516\) 4.22059 0.185801
\(517\) 24.1821 1.06353
\(518\) 41.9598 1.84361
\(519\) −9.65664 −0.423880
\(520\) −1.22148 −0.0535653
\(521\) 23.8145 1.04333 0.521666 0.853150i \(-0.325311\pi\)
0.521666 + 0.853150i \(0.325311\pi\)
\(522\) −20.6731 −0.904838
\(523\) 38.0421 1.66346 0.831732 0.555177i \(-0.187350\pi\)
0.831732 + 0.555177i \(0.187350\pi\)
\(524\) −13.2464 −0.578672
\(525\) −1.20578 −0.0526247
\(526\) −3.86988 −0.168735
\(527\) −3.25256 −0.141684
\(528\) −7.90907 −0.344198
\(529\) 50.1698 2.18129
\(530\) 1.89392 0.0822664
\(531\) 0.596657 0.0258927
\(532\) 2.25684 0.0978463
\(533\) −1.49088 −0.0645770
\(534\) 20.4988 0.887071
\(535\) −36.5423 −1.57986
\(536\) −14.6471 −0.632657
\(537\) 1.22877 0.0530255
\(538\) 9.93942 0.428519
\(539\) −2.09942 −0.0904284
\(540\) −11.8802 −0.511243
\(541\) −23.8834 −1.02683 −0.513413 0.858141i \(-0.671619\pi\)
−0.513413 + 0.858141i \(0.671619\pi\)
\(542\) 16.2496 0.697982
\(543\) 14.4552 0.620330
\(544\) 23.6366 1.01341
\(545\) −11.1145 −0.476092
\(546\) −1.28249 −0.0548855
\(547\) −10.8990 −0.466006 −0.233003 0.972476i \(-0.574855\pi\)
−0.233003 + 0.972476i \(0.574855\pi\)
\(548\) −6.92315 −0.295742
\(549\) 20.6558 0.881568
\(550\) 3.29379 0.140448
\(551\) −2.98007 −0.126955
\(552\) −6.75795 −0.287637
\(553\) −20.6999 −0.880249
\(554\) 7.04707 0.299401
\(555\) −14.6663 −0.622551
\(556\) 16.2644 0.689766
\(557\) −13.5365 −0.573559 −0.286779 0.957997i \(-0.592585\pi\)
−0.286779 + 0.957997i \(0.592585\pi\)
\(558\) −4.21835 −0.178577
\(559\) 2.02199 0.0855212
\(560\) 28.9599 1.22378
\(561\) −5.85864 −0.247352
\(562\) −30.3814 −1.28156
\(563\) −43.2131 −1.82121 −0.910607 0.413274i \(-0.864385\pi\)
−0.910607 + 0.413274i \(0.864385\pi\)
\(564\) 8.80671 0.370829
\(565\) 7.19510 0.302700
\(566\) 36.4921 1.53388
\(567\) −13.0103 −0.546380
\(568\) 17.2848 0.725253
\(569\) −19.9320 −0.835594 −0.417797 0.908540i \(-0.637198\pi\)
−0.417797 + 0.908540i \(0.637198\pi\)
\(570\) −1.95957 −0.0820773
\(571\) −24.7452 −1.03556 −0.517778 0.855515i \(-0.673241\pi\)
−0.517778 + 0.855515i \(0.673241\pi\)
\(572\) 1.41029 0.0589671
\(573\) −4.54358 −0.189811
\(574\) 15.8218 0.660388
\(575\) 6.28758 0.262210
\(576\) 5.65479 0.235616
\(577\) 33.3646 1.38899 0.694493 0.719499i \(-0.255629\pi\)
0.694493 + 0.719499i \(0.255629\pi\)
\(578\) −7.20373 −0.299636
\(579\) −6.09965 −0.253493
\(580\) 14.2331 0.590999
\(581\) 1.10661 0.0459100
\(582\) 7.88102 0.326679
\(583\) 1.05861 0.0438431
\(584\) −12.9667 −0.536566
\(585\) −2.62164 −0.108391
\(586\) 26.9129 1.11176
\(587\) 39.7834 1.64204 0.821019 0.570901i \(-0.193406\pi\)
0.821019 + 0.570901i \(0.193406\pi\)
\(588\) −0.764572 −0.0315304
\(589\) −0.608085 −0.0250557
\(590\) −1.02045 −0.0420113
\(591\) 0.661864 0.0272254
\(592\) 45.1471 1.85554
\(593\) −3.83642 −0.157543 −0.0787715 0.996893i \(-0.525100\pi\)
−0.0787715 + 0.996893i \(0.525100\pi\)
\(594\) −16.4957 −0.676829
\(595\) 21.4521 0.879449
\(596\) −29.4973 −1.20825
\(597\) −13.7477 −0.562657
\(598\) 6.68758 0.273475
\(599\) −41.3503 −1.68953 −0.844763 0.535140i \(-0.820259\pi\)
−0.844763 + 0.535140i \(0.820259\pi\)
\(600\) −0.580720 −0.0237078
\(601\) −39.5659 −1.61393 −0.806963 0.590602i \(-0.798890\pi\)
−0.806963 + 0.590602i \(0.798890\pi\)
\(602\) −21.4582 −0.874570
\(603\) −31.4368 −1.28021
\(604\) 5.67351 0.230852
\(605\) −11.9783 −0.486987
\(606\) 9.45919 0.384253
\(607\) −20.6997 −0.840174 −0.420087 0.907484i \(-0.638000\pi\)
−0.420087 + 0.907484i \(0.638000\pi\)
\(608\) 4.41899 0.179214
\(609\) −7.23473 −0.293166
\(610\) −35.3272 −1.43036
\(611\) 4.21910 0.170687
\(612\) 12.4781 0.504396
\(613\) −1.30007 −0.0525092 −0.0262546 0.999655i \(-0.508358\pi\)
−0.0262546 + 0.999655i \(0.508358\pi\)
\(614\) −8.63979 −0.348674
\(615\) −5.53022 −0.223000
\(616\) 7.24559 0.291933
\(617\) 3.57289 0.143839 0.0719196 0.997410i \(-0.477087\pi\)
0.0719196 + 0.997410i \(0.477087\pi\)
\(618\) 0.353535 0.0142213
\(619\) −9.76477 −0.392479 −0.196240 0.980556i \(-0.562873\pi\)
−0.196240 + 0.980556i \(0.562873\pi\)
\(620\) 2.90427 0.116638
\(621\) −31.4891 −1.26361
\(622\) 32.0780 1.28621
\(623\) −41.9543 −1.68086
\(624\) −1.37991 −0.0552406
\(625\) −28.1350 −1.12540
\(626\) 22.2663 0.889939
\(627\) −1.09531 −0.0437423
\(628\) −12.2045 −0.487012
\(629\) 33.4427 1.33345
\(630\) 27.8219 1.10845
\(631\) 13.9942 0.557102 0.278551 0.960421i \(-0.410146\pi\)
0.278551 + 0.960421i \(0.410146\pi\)
\(632\) −9.96933 −0.396559
\(633\) 4.73400 0.188159
\(634\) −30.1827 −1.19871
\(635\) −13.1170 −0.520533
\(636\) 0.385527 0.0152871
\(637\) −0.366290 −0.0145129
\(638\) 19.7628 0.782416
\(639\) 37.0981 1.46758
\(640\) 21.6519 0.855866
\(641\) 9.77562 0.386114 0.193057 0.981188i \(-0.438160\pi\)
0.193057 + 0.981188i \(0.438160\pi\)
\(642\) −18.4783 −0.729282
\(643\) −7.28129 −0.287146 −0.143573 0.989640i \(-0.545859\pi\)
−0.143573 + 0.989640i \(0.545859\pi\)
\(644\) −28.5700 −1.12581
\(645\) 7.50034 0.295325
\(646\) 4.46828 0.175802
\(647\) −23.9804 −0.942767 −0.471384 0.881928i \(-0.656245\pi\)
−0.471384 + 0.881928i \(0.656245\pi\)
\(648\) −6.26591 −0.246148
\(649\) −0.570384 −0.0223895
\(650\) 0.574673 0.0225405
\(651\) −1.47625 −0.0578587
\(652\) 10.5141 0.411765
\(653\) −38.0906 −1.49060 −0.745299 0.666730i \(-0.767693\pi\)
−0.745299 + 0.666730i \(0.767693\pi\)
\(654\) −5.62025 −0.219769
\(655\) −23.5399 −0.919782
\(656\) 17.0236 0.664660
\(657\) −27.8303 −1.08576
\(658\) −44.7748 −1.74550
\(659\) 14.7028 0.572739 0.286370 0.958119i \(-0.407551\pi\)
0.286370 + 0.958119i \(0.407551\pi\)
\(660\) 5.23129 0.203628
\(661\) 25.4067 0.988208 0.494104 0.869403i \(-0.335496\pi\)
0.494104 + 0.869403i \(0.335496\pi\)
\(662\) 5.75446 0.223653
\(663\) −1.02217 −0.0396977
\(664\) 0.532958 0.0206828
\(665\) 4.01059 0.155524
\(666\) 43.3730 1.68067
\(667\) 37.7256 1.46074
\(668\) 3.32723 0.128734
\(669\) 10.0182 0.387327
\(670\) 53.7657 2.07715
\(671\) −19.7462 −0.762295
\(672\) 10.7280 0.413841
\(673\) 30.5437 1.17737 0.588687 0.808361i \(-0.299645\pi\)
0.588687 + 0.808361i \(0.299645\pi\)
\(674\) 52.8327 2.03504
\(675\) −2.70591 −0.104150
\(676\) −17.2728 −0.664337
\(677\) 14.2822 0.548908 0.274454 0.961600i \(-0.411503\pi\)
0.274454 + 0.961600i \(0.411503\pi\)
\(678\) 3.63834 0.139730
\(679\) −16.1298 −0.619006
\(680\) 10.3316 0.396198
\(681\) −15.7434 −0.603287
\(682\) 4.03260 0.154416
\(683\) −25.9111 −0.991461 −0.495731 0.868476i \(-0.665100\pi\)
−0.495731 + 0.868476i \(0.665100\pi\)
\(684\) 2.33284 0.0891985
\(685\) −12.3030 −0.470074
\(686\) 35.6302 1.36037
\(687\) −13.1163 −0.500419
\(688\) −23.0882 −0.880229
\(689\) 0.184698 0.00703642
\(690\) 24.8068 0.944377
\(691\) 24.8832 0.946603 0.473302 0.880900i \(-0.343062\pi\)
0.473302 + 0.880900i \(0.343062\pi\)
\(692\) −19.6616 −0.747422
\(693\) 15.5511 0.590738
\(694\) 57.7140 2.19079
\(695\) 28.9032 1.09636
\(696\) −3.48433 −0.132073
\(697\) 12.6102 0.477647
\(698\) −11.9761 −0.453303
\(699\) −19.2543 −0.728264
\(700\) −2.45506 −0.0927925
\(701\) 21.1982 0.800644 0.400322 0.916375i \(-0.368898\pi\)
0.400322 + 0.916375i \(0.368898\pi\)
\(702\) −2.87804 −0.108625
\(703\) 6.25231 0.235810
\(704\) −5.40578 −0.203738
\(705\) 15.6502 0.589422
\(706\) −4.35919 −0.164060
\(707\) −19.3598 −0.728101
\(708\) −0.207724 −0.00780674
\(709\) 25.8806 0.971964 0.485982 0.873969i \(-0.338462\pi\)
0.485982 + 0.873969i \(0.338462\pi\)
\(710\) −63.4481 −2.38117
\(711\) −21.3970 −0.802452
\(712\) −20.2057 −0.757241
\(713\) 7.69792 0.288290
\(714\) 10.8477 0.405963
\(715\) 2.50620 0.0937265
\(716\) 2.50187 0.0934992
\(717\) −11.4348 −0.427039
\(718\) −27.5072 −1.02656
\(719\) −33.5697 −1.25194 −0.625968 0.779848i \(-0.715296\pi\)
−0.625968 + 0.779848i \(0.715296\pi\)
\(720\) 29.9353 1.11562
\(721\) −0.723570 −0.0269471
\(722\) −33.9279 −1.26267
\(723\) 2.96686 0.110339
\(724\) 29.4317 1.09382
\(725\) 3.24182 0.120398
\(726\) −6.05705 −0.224798
\(727\) 48.7995 1.80987 0.904937 0.425545i \(-0.139918\pi\)
0.904937 + 0.425545i \(0.139918\pi\)
\(728\) 1.26415 0.0468526
\(729\) −6.13900 −0.227370
\(730\) 47.5976 1.76166
\(731\) −17.1026 −0.632561
\(732\) −7.19124 −0.265796
\(733\) 26.7007 0.986214 0.493107 0.869969i \(-0.335861\pi\)
0.493107 + 0.869969i \(0.335861\pi\)
\(734\) −53.2191 −1.96435
\(735\) −1.35871 −0.0501167
\(736\) −55.9413 −2.06202
\(737\) 30.0525 1.10700
\(738\) 16.3546 0.602022
\(739\) 17.3969 0.639954 0.319977 0.947425i \(-0.396325\pi\)
0.319977 + 0.947425i \(0.396325\pi\)
\(740\) −29.8617 −1.09774
\(741\) −0.191100 −0.00702024
\(742\) −1.96008 −0.0719569
\(743\) 50.6579 1.85846 0.929229 0.369505i \(-0.120473\pi\)
0.929229 + 0.369505i \(0.120473\pi\)
\(744\) −0.710979 −0.0260658
\(745\) −52.4190 −1.92049
\(746\) −6.25077 −0.228857
\(747\) 1.14388 0.0418524
\(748\) −11.9286 −0.436153
\(749\) 37.8190 1.38188
\(750\) −12.3685 −0.451635
\(751\) 6.22588 0.227186 0.113593 0.993527i \(-0.463764\pi\)
0.113593 + 0.993527i \(0.463764\pi\)
\(752\) −48.1759 −1.75679
\(753\) 4.95137 0.180438
\(754\) 3.44805 0.125571
\(755\) 10.0823 0.366932
\(756\) 12.2953 0.447175
\(757\) −1.43773 −0.0522550 −0.0261275 0.999659i \(-0.508318\pi\)
−0.0261275 + 0.999659i \(0.508318\pi\)
\(758\) −19.7806 −0.718462
\(759\) 13.8658 0.503297
\(760\) 1.93155 0.0700646
\(761\) 9.52056 0.345120 0.172560 0.984999i \(-0.444796\pi\)
0.172560 + 0.984999i \(0.444796\pi\)
\(762\) −6.63287 −0.240284
\(763\) 11.5028 0.416429
\(764\) −9.25104 −0.334691
\(765\) 22.1745 0.801722
\(766\) −36.7044 −1.32619
\(767\) −0.0995159 −0.00359331
\(768\) 13.8705 0.500508
\(769\) −0.107823 −0.00388818 −0.00194409 0.999998i \(-0.500619\pi\)
−0.00194409 + 0.999998i \(0.500619\pi\)
\(770\) −26.5968 −0.958481
\(771\) 17.3226 0.623858
\(772\) −12.4193 −0.446981
\(773\) −18.3261 −0.659145 −0.329573 0.944130i \(-0.606905\pi\)
−0.329573 + 0.944130i \(0.606905\pi\)
\(774\) −22.1809 −0.797275
\(775\) 0.661494 0.0237616
\(776\) −7.76832 −0.278867
\(777\) 15.1787 0.544534
\(778\) 27.7421 0.994604
\(779\) 2.35755 0.0844682
\(780\) 0.912714 0.0326804
\(781\) −35.4645 −1.26902
\(782\) −56.5653 −2.02277
\(783\) −16.2355 −0.580209
\(784\) 4.18249 0.149375
\(785\) −21.6884 −0.774091
\(786\) −11.9034 −0.424581
\(787\) −12.3630 −0.440694 −0.220347 0.975422i \(-0.570719\pi\)
−0.220347 + 0.975422i \(0.570719\pi\)
\(788\) 1.34760 0.0480063
\(789\) −1.39991 −0.0498380
\(790\) 36.5949 1.30199
\(791\) −7.44648 −0.264766
\(792\) 7.48961 0.266132
\(793\) −3.44516 −0.122341
\(794\) 61.8406 2.19464
\(795\) 0.685113 0.0242985
\(796\) −27.9913 −0.992125
\(797\) 4.56337 0.161643 0.0808213 0.996729i \(-0.474246\pi\)
0.0808213 + 0.996729i \(0.474246\pi\)
\(798\) 2.02803 0.0717915
\(799\) −35.6863 −1.26249
\(800\) −4.80712 −0.169957
\(801\) −43.3673 −1.53231
\(802\) 34.4799 1.21753
\(803\) 26.6048 0.938862
\(804\) 10.9446 0.385986
\(805\) −50.7712 −1.78945
\(806\) 0.703575 0.0247824
\(807\) 3.59553 0.126569
\(808\) −9.32393 −0.328015
\(809\) −27.7914 −0.977095 −0.488547 0.872537i \(-0.662473\pi\)
−0.488547 + 0.872537i \(0.662473\pi\)
\(810\) 23.0006 0.808159
\(811\) 25.2664 0.887225 0.443612 0.896219i \(-0.353697\pi\)
0.443612 + 0.896219i \(0.353697\pi\)
\(812\) −14.7304 −0.516936
\(813\) 5.87822 0.206158
\(814\) −41.4631 −1.45328
\(815\) 18.6844 0.654488
\(816\) 11.6717 0.408590
\(817\) −3.19742 −0.111864
\(818\) −49.6369 −1.73551
\(819\) 2.71323 0.0948081
\(820\) −11.2599 −0.393213
\(821\) −41.2375 −1.43920 −0.719599 0.694390i \(-0.755674\pi\)
−0.719599 + 0.694390i \(0.755674\pi\)
\(822\) −6.22125 −0.216991
\(823\) −17.9367 −0.625234 −0.312617 0.949879i \(-0.601206\pi\)
−0.312617 + 0.949879i \(0.601206\pi\)
\(824\) −0.348480 −0.0121399
\(825\) 1.19151 0.0414830
\(826\) 1.05610 0.0367465
\(827\) 44.4745 1.54653 0.773265 0.634083i \(-0.218622\pi\)
0.773265 + 0.634083i \(0.218622\pi\)
\(828\) −29.5322 −1.02631
\(829\) 1.60966 0.0559059 0.0279529 0.999609i \(-0.491101\pi\)
0.0279529 + 0.999609i \(0.491101\pi\)
\(830\) −1.95636 −0.0679061
\(831\) 2.54924 0.0884321
\(832\) −0.943157 −0.0326981
\(833\) 3.09818 0.107345
\(834\) 14.6155 0.506093
\(835\) 5.91276 0.204620
\(836\) −2.23012 −0.0771303
\(837\) −3.31285 −0.114509
\(838\) 34.3447 1.18642
\(839\) −47.6291 −1.64434 −0.822169 0.569243i \(-0.807236\pi\)
−0.822169 + 0.569243i \(0.807236\pi\)
\(840\) 4.68922 0.161793
\(841\) −9.54901 −0.329276
\(842\) −55.3326 −1.90689
\(843\) −10.9903 −0.378526
\(844\) 9.63874 0.331779
\(845\) −30.6951 −1.05594
\(846\) −46.2827 −1.59123
\(847\) 12.3968 0.425958
\(848\) −2.10897 −0.0724225
\(849\) 13.2008 0.453051
\(850\) −4.86074 −0.166722
\(851\) −79.1498 −2.71322
\(852\) −12.9156 −0.442480
\(853\) 41.7275 1.42872 0.714361 0.699778i \(-0.246718\pi\)
0.714361 + 0.699778i \(0.246718\pi\)
\(854\) 36.5614 1.25111
\(855\) 4.14566 0.141778
\(856\) 18.2141 0.622546
\(857\) 55.8573 1.90805 0.954024 0.299729i \(-0.0968963\pi\)
0.954024 + 0.299729i \(0.0968963\pi\)
\(858\) 1.26731 0.0432652
\(859\) −13.5803 −0.463355 −0.231677 0.972793i \(-0.574421\pi\)
−0.231677 + 0.972793i \(0.574421\pi\)
\(860\) 15.2712 0.520744
\(861\) 5.72344 0.195054
\(862\) 72.1926 2.45889
\(863\) −47.5067 −1.61715 −0.808574 0.588395i \(-0.799760\pi\)
−0.808574 + 0.588395i \(0.799760\pi\)
\(864\) 24.0747 0.819039
\(865\) −34.9403 −1.18800
\(866\) 47.6817 1.62029
\(867\) −2.60591 −0.0885013
\(868\) −3.00574 −0.102022
\(869\) 20.4548 0.693883
\(870\) 12.7901 0.433626
\(871\) 5.24332 0.177663
\(872\) 5.53989 0.187604
\(873\) −16.6731 −0.564297
\(874\) −10.5752 −0.357712
\(875\) 25.3143 0.855778
\(876\) 9.68900 0.327361
\(877\) −8.06528 −0.272345 −0.136173 0.990685i \(-0.543480\pi\)
−0.136173 + 0.990685i \(0.543480\pi\)
\(878\) −71.1457 −2.40105
\(879\) 9.73560 0.328374
\(880\) −28.6171 −0.964682
\(881\) 38.7817 1.30659 0.653294 0.757104i \(-0.273387\pi\)
0.653294 + 0.757104i \(0.273387\pi\)
\(882\) 4.01813 0.135297
\(883\) 13.6849 0.460535 0.230268 0.973127i \(-0.426040\pi\)
0.230268 + 0.973127i \(0.426040\pi\)
\(884\) −2.08121 −0.0699985
\(885\) −0.369142 −0.0124086
\(886\) 55.9849 1.88085
\(887\) −4.89122 −0.164231 −0.0821156 0.996623i \(-0.526168\pi\)
−0.0821156 + 0.996623i \(0.526168\pi\)
\(888\) 7.31026 0.245316
\(889\) 13.5753 0.455300
\(890\) 74.1701 2.48619
\(891\) 12.8562 0.430701
\(892\) 20.3978 0.682969
\(893\) −6.67175 −0.223262
\(894\) −26.5067 −0.886517
\(895\) 4.44602 0.148614
\(896\) −22.4084 −0.748611
\(897\) 2.41919 0.0807745
\(898\) 63.4429 2.11712
\(899\) 3.96898 0.132373
\(900\) −2.53774 −0.0845914
\(901\) −1.56222 −0.0520452
\(902\) −15.6345 −0.520571
\(903\) −7.76238 −0.258316
\(904\) −3.58631 −0.119279
\(905\) 52.3025 1.73860
\(906\) 5.09830 0.169380
\(907\) −4.79442 −0.159196 −0.0795981 0.996827i \(-0.525364\pi\)
−0.0795981 + 0.996827i \(0.525364\pi\)
\(908\) −32.0546 −1.06377
\(909\) −20.0118 −0.663751
\(910\) −4.64039 −0.153827
\(911\) 27.3364 0.905694 0.452847 0.891588i \(-0.350408\pi\)
0.452847 + 0.891588i \(0.350408\pi\)
\(912\) 2.18208 0.0722560
\(913\) −1.09351 −0.0361899
\(914\) −15.7810 −0.521989
\(915\) −12.7794 −0.422474
\(916\) −26.7058 −0.882383
\(917\) 24.3624 0.804516
\(918\) 24.3433 0.803448
\(919\) 54.3152 1.79169 0.895846 0.444365i \(-0.146571\pi\)
0.895846 + 0.444365i \(0.146571\pi\)
\(920\) −24.4520 −0.806160
\(921\) −3.12540 −0.102985
\(922\) 31.6361 1.04188
\(923\) −6.18756 −0.203666
\(924\) −5.41406 −0.178110
\(925\) −6.80146 −0.223631
\(926\) 31.2912 1.02829
\(927\) −0.747938 −0.0245655
\(928\) −28.8428 −0.946812
\(929\) 21.7090 0.712249 0.356124 0.934439i \(-0.384098\pi\)
0.356124 + 0.934439i \(0.384098\pi\)
\(930\) 2.60983 0.0855796
\(931\) 0.579222 0.0189832
\(932\) −39.2031 −1.28414
\(933\) 11.6040 0.379899
\(934\) 36.6388 1.19886
\(935\) −21.1981 −0.693252
\(936\) 1.30673 0.0427117
\(937\) −14.5142 −0.474158 −0.237079 0.971490i \(-0.576190\pi\)
−0.237079 + 0.971490i \(0.576190\pi\)
\(938\) −55.6442 −1.81685
\(939\) 8.05469 0.262855
\(940\) 31.8650 1.03932
\(941\) −44.5490 −1.45226 −0.726128 0.687560i \(-0.758682\pi\)
−0.726128 + 0.687560i \(0.758682\pi\)
\(942\) −10.9671 −0.357329
\(943\) −29.8450 −0.971886
\(944\) 1.13633 0.0369842
\(945\) 21.8497 0.710772
\(946\) 21.2042 0.689406
\(947\) −40.2068 −1.30655 −0.653274 0.757122i \(-0.726605\pi\)
−0.653274 + 0.757122i \(0.726605\pi\)
\(948\) 7.44930 0.241942
\(949\) 4.64179 0.150679
\(950\) −0.908743 −0.0294835
\(951\) −10.9184 −0.354054
\(952\) −10.6925 −0.346547
\(953\) 25.6261 0.830109 0.415055 0.909797i \(-0.363762\pi\)
0.415055 + 0.909797i \(0.363762\pi\)
\(954\) −2.02610 −0.0655973
\(955\) −16.4399 −0.531981
\(956\) −23.2820 −0.752993
\(957\) 7.14908 0.231097
\(958\) −50.4999 −1.63158
\(959\) 12.7328 0.411165
\(960\) −3.49853 −0.112914
\(961\) −30.1901 −0.973875
\(962\) −7.23414 −0.233238
\(963\) 39.0927 1.25975
\(964\) 6.04073 0.194559
\(965\) −22.0701 −0.710463
\(966\) −25.6734 −0.826029
\(967\) 30.8216 0.991156 0.495578 0.868563i \(-0.334956\pi\)
0.495578 + 0.868563i \(0.334956\pi\)
\(968\) 5.97044 0.191897
\(969\) 1.61638 0.0519255
\(970\) 28.5156 0.915580
\(971\) 5.70753 0.183163 0.0915817 0.995798i \(-0.470808\pi\)
0.0915817 + 0.995798i \(0.470808\pi\)
\(972\) 19.5646 0.627534
\(973\) −29.9130 −0.958968
\(974\) 18.9411 0.606912
\(975\) 0.207885 0.00665764
\(976\) 39.3387 1.25920
\(977\) −4.69258 −0.150129 −0.0750644 0.997179i \(-0.523916\pi\)
−0.0750644 + 0.997179i \(0.523916\pi\)
\(978\) 9.44816 0.302119
\(979\) 41.4576 1.32499
\(980\) −2.76642 −0.0883701
\(981\) 11.8902 0.379625
\(982\) −67.1086 −2.14152
\(983\) 10.5465 0.336381 0.168190 0.985755i \(-0.446208\pi\)
0.168190 + 0.985755i \(0.446208\pi\)
\(984\) 2.75648 0.0878733
\(985\) 2.39480 0.0763046
\(986\) −29.1646 −0.928789
\(987\) −16.1970 −0.515557
\(988\) −0.389093 −0.0123787
\(989\) 40.4771 1.28710
\(990\) −27.4925 −0.873769
\(991\) −30.6070 −0.972265 −0.486132 0.873885i \(-0.661593\pi\)
−0.486132 + 0.873885i \(0.661593\pi\)
\(992\) −5.88538 −0.186861
\(993\) 2.08164 0.0660589
\(994\) 65.6648 2.08276
\(995\) −49.7428 −1.57695
\(996\) −0.398238 −0.0126186
\(997\) 56.0308 1.77451 0.887257 0.461275i \(-0.152608\pi\)
0.887257 + 0.461275i \(0.152608\pi\)
\(998\) 25.7179 0.814086
\(999\) 34.0627 1.07769
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.2.a.c.1.8 10
3.2 odd 2 1773.2.a.f.1.3 10
4.3 odd 2 3152.2.a.m.1.7 10
5.4 even 2 4925.2.a.i.1.3 10
7.6 odd 2 9653.2.a.j.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.2.a.c.1.8 10 1.1 even 1 trivial
1773.2.a.f.1.3 10 3.2 odd 2
3152.2.a.m.1.7 10 4.3 odd 2
4925.2.a.i.1.3 10 5.4 even 2
9653.2.a.j.1.8 10 7.6 odd 2