Properties

Label 1764.4.a.bb.1.2
Level $1764$
Weight $4$
Character 1764.1
Self dual yes
Analytic conductor $104.079$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,4,Mod(1,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.079369250\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{7}, \sqrt{109})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 67x^{2} + 68x + 393 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.36590\) of defining polynomial
Character \(\chi\) \(=\) 1764.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.5830 q^{5} +55.2449 q^{11} +83.5225 q^{13} -95.2470 q^{17} +83.5225 q^{19} +165.735 q^{23} -13.0000 q^{25} -110.490 q^{29} -83.5225 q^{31} +78.0000 q^{37} -412.737 q^{41} +148.000 q^{43} +465.652 q^{47} -110.490 q^{53} -584.657 q^{55} -550.316 q^{59} -584.657 q^{61} -883.919 q^{65} -260.000 q^{67} +718.184 q^{71} +668.180 q^{73} +664.000 q^{79} -126.996 q^{83} +1008.00 q^{85} -878.389 q^{89} -883.919 q^{95} +1169.31 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 52 q^{25} + 312 q^{37} + 592 q^{43} - 1040 q^{67} + 2656 q^{79} + 4032 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −10.5830 −0.946573 −0.473286 0.880909i \(-0.656932\pi\)
−0.473286 + 0.880909i \(0.656932\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 55.2449 1.51427 0.757135 0.653259i \(-0.226599\pi\)
0.757135 + 0.653259i \(0.226599\pi\)
\(12\) 0 0
\(13\) 83.5225 1.78192 0.890960 0.454082i \(-0.150033\pi\)
0.890960 + 0.454082i \(0.150033\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −95.2470 −1.35887 −0.679435 0.733735i \(-0.737775\pi\)
−0.679435 + 0.733735i \(0.737775\pi\)
\(18\) 0 0
\(19\) 83.5225 1.00849 0.504246 0.863560i \(-0.331770\pi\)
0.504246 + 0.863560i \(0.331770\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 165.735 1.50253 0.751263 0.660003i \(-0.229445\pi\)
0.751263 + 0.660003i \(0.229445\pi\)
\(24\) 0 0
\(25\) −13.0000 −0.104000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −110.490 −0.707498 −0.353749 0.935340i \(-0.615093\pi\)
−0.353749 + 0.935340i \(0.615093\pi\)
\(30\) 0 0
\(31\) −83.5225 −0.483906 −0.241953 0.970288i \(-0.577788\pi\)
−0.241953 + 0.970288i \(0.577788\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 78.0000 0.346571 0.173285 0.984872i \(-0.444562\pi\)
0.173285 + 0.984872i \(0.444562\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −412.737 −1.57216 −0.786082 0.618122i \(-0.787894\pi\)
−0.786082 + 0.618122i \(0.787894\pi\)
\(42\) 0 0
\(43\) 148.000 0.524879 0.262439 0.964948i \(-0.415473\pi\)
0.262439 + 0.964948i \(0.415473\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 465.652 1.44516 0.722578 0.691289i \(-0.242957\pi\)
0.722578 + 0.691289i \(0.242957\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −110.490 −0.286357 −0.143179 0.989697i \(-0.545732\pi\)
−0.143179 + 0.989697i \(0.545732\pi\)
\(54\) 0 0
\(55\) −584.657 −1.43337
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −550.316 −1.21432 −0.607162 0.794578i \(-0.707692\pi\)
−0.607162 + 0.794578i \(0.707692\pi\)
\(60\) 0 0
\(61\) −584.657 −1.22718 −0.613588 0.789627i \(-0.710274\pi\)
−0.613588 + 0.789627i \(0.710274\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −883.919 −1.68672
\(66\) 0 0
\(67\) −260.000 −0.474090 −0.237045 0.971499i \(-0.576179\pi\)
−0.237045 + 0.971499i \(0.576179\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 718.184 1.20046 0.600231 0.799827i \(-0.295075\pi\)
0.600231 + 0.799827i \(0.295075\pi\)
\(72\) 0 0
\(73\) 668.180 1.07129 0.535647 0.844442i \(-0.320068\pi\)
0.535647 + 0.844442i \(0.320068\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 664.000 0.945644 0.472822 0.881158i \(-0.343235\pi\)
0.472822 + 0.881158i \(0.343235\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −126.996 −0.167947 −0.0839737 0.996468i \(-0.526761\pi\)
−0.0839737 + 0.996468i \(0.526761\pi\)
\(84\) 0 0
\(85\) 1008.00 1.28627
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −878.389 −1.04617 −0.523085 0.852281i \(-0.675219\pi\)
−0.523085 + 0.852281i \(0.675219\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −883.919 −0.954612
\(96\) 0 0
\(97\) 1169.31 1.22398 0.611989 0.790866i \(-0.290370\pi\)
0.611989 + 0.790866i \(0.290370\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −455.069 −0.448328 −0.224164 0.974551i \(-0.571965\pi\)
−0.224164 + 0.974551i \(0.571965\pi\)
\(102\) 0 0
\(103\) 1085.79 1.03870 0.519351 0.854561i \(-0.326174\pi\)
0.519351 + 0.854561i \(0.326174\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 939.163 0.848527 0.424263 0.905539i \(-0.360533\pi\)
0.424263 + 0.905539i \(0.360533\pi\)
\(108\) 0 0
\(109\) −650.000 −0.571181 −0.285590 0.958352i \(-0.592190\pi\)
−0.285590 + 0.958352i \(0.592190\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1546.86 −1.28775 −0.643877 0.765129i \(-0.722675\pi\)
−0.643877 + 0.765129i \(0.722675\pi\)
\(114\) 0 0
\(115\) −1753.97 −1.42225
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1721.00 1.29301
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1460.45 1.04502
\(126\) 0 0
\(127\) 2288.00 1.59864 0.799320 0.600906i \(-0.205193\pi\)
0.799320 + 0.600906i \(0.205193\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 888.972 0.592900 0.296450 0.955048i \(-0.404197\pi\)
0.296450 + 0.955048i \(0.404197\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2872.74 1.79149 0.895746 0.444567i \(-0.146642\pi\)
0.895746 + 0.444567i \(0.146642\pi\)
\(138\) 0 0
\(139\) 501.135 0.305796 0.152898 0.988242i \(-0.451139\pi\)
0.152898 + 0.988242i \(0.451139\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4614.19 2.69831
\(144\) 0 0
\(145\) 1169.31 0.669698
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1878.33 1.03274 0.516371 0.856365i \(-0.327283\pi\)
0.516371 + 0.856365i \(0.327283\pi\)
\(150\) 0 0
\(151\) −1976.00 −1.06493 −0.532466 0.846452i \(-0.678734\pi\)
−0.532466 + 0.846452i \(0.678734\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 883.919 0.458052
\(156\) 0 0
\(157\) 584.657 0.297202 0.148601 0.988897i \(-0.452523\pi\)
0.148601 + 0.988897i \(0.452523\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3348.00 1.60881 0.804404 0.594083i \(-0.202485\pi\)
0.804404 + 0.594083i \(0.202485\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −84.6640 −0.0392305 −0.0196153 0.999808i \(-0.506244\pi\)
−0.0196153 + 0.999808i \(0.506244\pi\)
\(168\) 0 0
\(169\) 4779.00 2.17524
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1513.37 −0.665083 −0.332542 0.943089i \(-0.607906\pi\)
−0.332542 + 0.943089i \(0.607906\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 165.735 0.0692044 0.0346022 0.999401i \(-0.488984\pi\)
0.0346022 + 0.999401i \(0.488984\pi\)
\(180\) 0 0
\(181\) −3591.47 −1.47487 −0.737435 0.675418i \(-0.763963\pi\)
−0.737435 + 0.675418i \(0.763963\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −825.474 −0.328055
\(186\) 0 0
\(187\) −5261.91 −2.05770
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2154.55 −0.816219 −0.408110 0.912933i \(-0.633812\pi\)
−0.408110 + 0.912933i \(0.633812\pi\)
\(192\) 0 0
\(193\) −1378.00 −0.513941 −0.256970 0.966419i \(-0.582724\pi\)
−0.256970 + 0.966419i \(0.582724\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 994.408 0.359638 0.179819 0.983700i \(-0.442449\pi\)
0.179819 + 0.983700i \(0.442449\pi\)
\(198\) 0 0
\(199\) 4677.26 1.66614 0.833070 0.553167i \(-0.186581\pi\)
0.833070 + 0.553167i \(0.186581\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4368.00 1.48817
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4614.19 1.52713
\(210\) 0 0
\(211\) 5108.00 1.66658 0.833292 0.552833i \(-0.186453\pi\)
0.833292 + 0.552833i \(0.186453\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1566.28 −0.496836
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7955.27 −2.42140
\(222\) 0 0
\(223\) 1169.31 0.351135 0.175567 0.984467i \(-0.443824\pi\)
0.175567 + 0.984467i \(0.443824\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1354.62 −0.396078 −0.198039 0.980194i \(-0.563457\pi\)
−0.198039 + 0.980194i \(0.563457\pi\)
\(228\) 0 0
\(229\) 1085.79 0.313324 0.156662 0.987652i \(-0.449927\pi\)
0.156662 + 0.987652i \(0.449927\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3756.65 −1.05625 −0.528126 0.849166i \(-0.677105\pi\)
−0.528126 + 0.849166i \(0.677105\pi\)
\(234\) 0 0
\(235\) −4928.00 −1.36795
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3148.96 −0.852256 −0.426128 0.904663i \(-0.640123\pi\)
−0.426128 + 0.904663i \(0.640123\pi\)
\(240\) 0 0
\(241\) −5846.57 −1.56270 −0.781350 0.624093i \(-0.785469\pi\)
−0.781350 + 0.624093i \(0.785469\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6976.00 1.79705
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6011.15 −1.51163 −0.755817 0.654783i \(-0.772760\pi\)
−0.755817 + 0.654783i \(0.772760\pi\)
\(252\) 0 0
\(253\) 9156.00 2.27523
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1005.39 −0.244024 −0.122012 0.992529i \(-0.538935\pi\)
−0.122012 + 0.992529i \(0.538935\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3701.41 0.867828 0.433914 0.900954i \(-0.357132\pi\)
0.433914 + 0.900954i \(0.357132\pi\)
\(264\) 0 0
\(265\) 1169.31 0.271058
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4201.45 −0.952294 −0.476147 0.879366i \(-0.657967\pi\)
−0.476147 + 0.879366i \(0.657967\pi\)
\(270\) 0 0
\(271\) 7600.54 1.70369 0.851845 0.523794i \(-0.175484\pi\)
0.851845 + 0.523794i \(0.175484\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −718.184 −0.157484
\(276\) 0 0
\(277\) −1058.00 −0.229491 −0.114746 0.993395i \(-0.536605\pi\)
−0.114746 + 0.993395i \(0.536605\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8618.21 1.82961 0.914803 0.403901i \(-0.132346\pi\)
0.914803 + 0.403901i \(0.132346\pi\)
\(282\) 0 0
\(283\) −1085.79 −0.228069 −0.114035 0.993477i \(-0.536377\pi\)
−0.114035 + 0.993477i \(0.536377\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4159.00 0.846530
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6000.56 −1.19644 −0.598220 0.801332i \(-0.704125\pi\)
−0.598220 + 0.801332i \(0.704125\pi\)
\(294\) 0 0
\(295\) 5824.00 1.14945
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13842.6 2.67738
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6187.43 1.16161
\(306\) 0 0
\(307\) 6932.36 1.28877 0.644383 0.764703i \(-0.277114\pi\)
0.644383 + 0.764703i \(0.277114\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 550.316 0.100339 0.0501697 0.998741i \(-0.484024\pi\)
0.0501697 + 0.998741i \(0.484024\pi\)
\(312\) 0 0
\(313\) 501.135 0.0904978 0.0452489 0.998976i \(-0.485592\pi\)
0.0452489 + 0.998976i \(0.485592\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9612.61 1.70315 0.851574 0.524234i \(-0.175648\pi\)
0.851574 + 0.524234i \(0.175648\pi\)
\(318\) 0 0
\(319\) −6104.00 −1.07134
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7955.27 −1.37041
\(324\) 0 0
\(325\) −1085.79 −0.185320
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8324.00 1.38226 0.691131 0.722730i \(-0.257113\pi\)
0.691131 + 0.722730i \(0.257113\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2751.58 0.448761
\(336\) 0 0
\(337\) 9794.00 1.58313 0.791563 0.611088i \(-0.209268\pi\)
0.791563 + 0.611088i \(0.209268\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4614.19 −0.732764
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2154.55 0.333321 0.166660 0.986014i \(-0.446702\pi\)
0.166660 + 0.986014i \(0.446702\pi\)
\(348\) 0 0
\(349\) −1753.97 −0.269020 −0.134510 0.990912i \(-0.542946\pi\)
−0.134510 + 0.990912i \(0.542946\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6191.06 −0.933475 −0.466738 0.884396i \(-0.654571\pi\)
−0.466738 + 0.884396i \(0.654571\pi\)
\(354\) 0 0
\(355\) −7600.54 −1.13632
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2927.98 0.430454 0.215227 0.976564i \(-0.430951\pi\)
0.215227 + 0.976564i \(0.430951\pi\)
\(360\) 0 0
\(361\) 117.000 0.0170579
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7071.35 −1.01406
\(366\) 0 0
\(367\) 8686.34 1.23549 0.617743 0.786380i \(-0.288047\pi\)
0.617743 + 0.786380i \(0.288047\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4654.00 0.646046 0.323023 0.946391i \(-0.395301\pi\)
0.323023 + 0.946391i \(0.395301\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9228.38 −1.26070
\(378\) 0 0
\(379\) 2388.00 0.323650 0.161825 0.986819i \(-0.448262\pi\)
0.161825 + 0.986819i \(0.448262\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8254.74 −1.10130 −0.550650 0.834736i \(-0.685620\pi\)
−0.550650 + 0.834736i \(0.685620\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4309.10 −0.561646 −0.280823 0.959760i \(-0.590607\pi\)
−0.280823 + 0.959760i \(0.590607\pi\)
\(390\) 0 0
\(391\) −15785.7 −2.04174
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7027.12 −0.895120
\(396\) 0 0
\(397\) −10440.3 −1.31986 −0.659929 0.751328i \(-0.729414\pi\)
−0.659929 + 0.751328i \(0.729414\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −662.939 −0.0825576 −0.0412788 0.999148i \(-0.513143\pi\)
−0.0412788 + 0.999148i \(0.513143\pi\)
\(402\) 0 0
\(403\) −6976.00 −0.862281
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4309.10 0.524802
\(408\) 0 0
\(409\) 7517.02 0.908784 0.454392 0.890802i \(-0.349857\pi\)
0.454392 + 0.890802i \(0.349857\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1344.00 0.158974
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13419.3 1.56461 0.782307 0.622893i \(-0.214043\pi\)
0.782307 + 0.622893i \(0.214043\pi\)
\(420\) 0 0
\(421\) 8238.00 0.953671 0.476836 0.878993i \(-0.341784\pi\)
0.476836 + 0.878993i \(0.341784\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1238.21 0.141323
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8341.98 −0.932295 −0.466147 0.884707i \(-0.654358\pi\)
−0.466147 + 0.884707i \(0.654358\pi\)
\(432\) 0 0
\(433\) 1837.49 0.203936 0.101968 0.994788i \(-0.467486\pi\)
0.101968 + 0.994788i \(0.467486\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13842.6 1.51529
\(438\) 0 0
\(439\) 10523.8 1.14413 0.572067 0.820207i \(-0.306142\pi\)
0.572067 + 0.820207i \(0.306142\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13756.0 −1.47532 −0.737660 0.675173i \(-0.764069\pi\)
−0.737660 + 0.675173i \(0.764069\pi\)
\(444\) 0 0
\(445\) 9296.00 0.990276
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9281.14 0.975511 0.487755 0.872980i \(-0.337816\pi\)
0.487755 + 0.872980i \(0.337816\pi\)
\(450\) 0 0
\(451\) −22801.6 −2.38068
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2890.00 −0.295817 −0.147909 0.989001i \(-0.547254\pi\)
−0.147909 + 0.989001i \(0.547254\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14191.8 1.43379 0.716896 0.697180i \(-0.245562\pi\)
0.716896 + 0.697180i \(0.245562\pi\)
\(462\) 0 0
\(463\) −8632.00 −0.866443 −0.433221 0.901288i \(-0.642623\pi\)
−0.433221 + 0.901288i \(0.642623\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4402.53 −0.436242 −0.218121 0.975922i \(-0.569993\pi\)
−0.218121 + 0.975922i \(0.569993\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8176.25 0.794808
\(474\) 0 0
\(475\) −1085.79 −0.104883
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9270.71 0.884321 0.442160 0.896936i \(-0.354212\pi\)
0.442160 + 0.896936i \(0.354212\pi\)
\(480\) 0 0
\(481\) 6514.75 0.617562
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12374.9 −1.15858
\(486\) 0 0
\(487\) −12536.0 −1.16645 −0.583224 0.812311i \(-0.698209\pi\)
−0.583224 + 0.812311i \(0.698209\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19391.0 1.78228 0.891142 0.453724i \(-0.149905\pi\)
0.891142 + 0.453724i \(0.149905\pi\)
\(492\) 0 0
\(493\) 10523.8 0.961398
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6756.00 0.606092 0.303046 0.952976i \(-0.401996\pi\)
0.303046 + 0.952976i \(0.401996\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16721.1 −1.48222 −0.741112 0.671381i \(-0.765701\pi\)
−0.741112 + 0.671381i \(0.765701\pi\)
\(504\) 0 0
\(505\) 4816.00 0.424375
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10995.7 0.957520 0.478760 0.877946i \(-0.341086\pi\)
0.478760 + 0.877946i \(0.341086\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11490.9 −0.983207
\(516\) 0 0
\(517\) 25724.9 2.18836
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20774.4 1.74692 0.873459 0.486897i \(-0.161871\pi\)
0.873459 + 0.486897i \(0.161871\pi\)
\(522\) 0 0
\(523\) −1670.45 −0.139663 −0.0698314 0.997559i \(-0.522246\pi\)
−0.0698314 + 0.997559i \(0.522246\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7955.27 0.657565
\(528\) 0 0
\(529\) 15301.0 1.25758
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −34472.8 −2.80147
\(534\) 0 0
\(535\) −9939.17 −0.803192
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −19370.0 −1.53934 −0.769669 0.638444i \(-0.779579\pi\)
−0.769669 + 0.638444i \(0.779579\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6878.95 0.540664
\(546\) 0 0
\(547\) −20396.0 −1.59428 −0.797139 0.603796i \(-0.793654\pi\)
−0.797139 + 0.603796i \(0.793654\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9228.38 −0.713507
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4309.10 −0.327796 −0.163898 0.986477i \(-0.552407\pi\)
−0.163898 + 0.986477i \(0.552407\pi\)
\(558\) 0 0
\(559\) 12361.3 0.935292
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 42.3320 0.00316888 0.00158444 0.999999i \(-0.499496\pi\)
0.00158444 + 0.999999i \(0.499496\pi\)
\(564\) 0 0
\(565\) 16370.4 1.21895
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6629.39 0.488433 0.244217 0.969721i \(-0.421469\pi\)
0.244217 + 0.969721i \(0.421469\pi\)
\(570\) 0 0
\(571\) 1308.00 0.0958636 0.0479318 0.998851i \(-0.484737\pi\)
0.0479318 + 0.998851i \(0.484737\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2154.55 −0.156263
\(576\) 0 0
\(577\) 8686.34 0.626719 0.313359 0.949635i \(-0.398546\pi\)
0.313359 + 0.949635i \(0.398546\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6104.00 −0.433622
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25737.9 1.80974 0.904868 0.425691i \(-0.139969\pi\)
0.904868 + 0.425691i \(0.139969\pi\)
\(588\) 0 0
\(589\) −6976.00 −0.488015
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −222.243 −0.0153903 −0.00769514 0.999970i \(-0.502449\pi\)
−0.00769514 + 0.999970i \(0.502449\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22374.2 1.52618 0.763092 0.646290i \(-0.223680\pi\)
0.763092 + 0.646290i \(0.223680\pi\)
\(600\) 0 0
\(601\) −21715.8 −1.47389 −0.736945 0.675953i \(-0.763732\pi\)
−0.736945 + 0.675953i \(0.763732\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −18213.4 −1.22393
\(606\) 0 0
\(607\) −13530.6 −0.904764 −0.452382 0.891824i \(-0.649426\pi\)
−0.452382 + 0.891824i \(0.649426\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 38892.4 2.57515
\(612\) 0 0
\(613\) 12770.0 0.841396 0.420698 0.907201i \(-0.361785\pi\)
0.420698 + 0.907201i \(0.361785\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11049.0 0.720932 0.360466 0.932772i \(-0.382618\pi\)
0.360466 + 0.932772i \(0.382618\pi\)
\(618\) 0 0
\(619\) 18207.9 1.18229 0.591145 0.806566i \(-0.298676\pi\)
0.591145 + 0.806566i \(0.298676\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13831.0 −0.885184
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7429.27 −0.470945
\(630\) 0 0
\(631\) −23952.0 −1.51112 −0.755558 0.655082i \(-0.772634\pi\)
−0.755558 + 0.655082i \(0.772634\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −24213.9 −1.51323
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7734.29 0.476577 0.238289 0.971194i \(-0.423414\pi\)
0.238289 + 0.971194i \(0.423414\pi\)
\(642\) 0 0
\(643\) −16286.9 −0.998899 −0.499449 0.866343i \(-0.666464\pi\)
−0.499449 + 0.866343i \(0.666464\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13207.6 −0.802541 −0.401270 0.915960i \(-0.631431\pi\)
−0.401270 + 0.915960i \(0.631431\pi\)
\(648\) 0 0
\(649\) −30402.2 −1.83881
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18672.8 −1.11902 −0.559512 0.828822i \(-0.689011\pi\)
−0.559512 + 0.828822i \(0.689011\pi\)
\(654\) 0 0
\(655\) −9408.00 −0.561223
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6353.16 −0.375545 −0.187772 0.982213i \(-0.560127\pi\)
−0.187772 + 0.982213i \(0.560127\pi\)
\(660\) 0 0
\(661\) −19961.9 −1.17462 −0.587312 0.809361i \(-0.699814\pi\)
−0.587312 + 0.809361i \(0.699814\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18312.0 −1.06303
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −32299.3 −1.85827
\(672\) 0 0
\(673\) −12046.0 −0.689954 −0.344977 0.938611i \(-0.612113\pi\)
−0.344977 + 0.938611i \(0.612113\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27653.4 1.56988 0.784938 0.619574i \(-0.212695\pi\)
0.784938 + 0.619574i \(0.212695\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7900.02 0.442586 0.221293 0.975207i \(-0.428972\pi\)
0.221293 + 0.975207i \(0.428972\pi\)
\(684\) 0 0
\(685\) −30402.2 −1.69578
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9228.38 −0.510266
\(690\) 0 0
\(691\) 7684.07 0.423033 0.211516 0.977374i \(-0.432160\pi\)
0.211516 + 0.977374i \(0.432160\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5303.51 −0.289458
\(696\) 0 0
\(697\) 39312.0 2.13637
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12043.4 0.648891 0.324445 0.945904i \(-0.394822\pi\)
0.324445 + 0.945904i \(0.394822\pi\)
\(702\) 0 0
\(703\) 6514.75 0.349514
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −25538.0 −1.35275 −0.676375 0.736557i \(-0.736450\pi\)
−0.676375 + 0.736557i \(0.736450\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −13842.6 −0.727080
\(714\) 0 0
\(715\) −48832.0 −2.55414
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4952.85 −0.256898 −0.128449 0.991716i \(-0.541000\pi\)
−0.128449 + 0.991716i \(0.541000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1436.37 0.0735798
\(726\) 0 0
\(727\) 14115.3 0.720093 0.360046 0.932934i \(-0.382761\pi\)
0.360046 + 0.932934i \(0.382761\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14096.6 −0.713242
\(732\) 0 0
\(733\) 12946.0 0.652347 0.326174 0.945310i \(-0.394241\pi\)
0.326174 + 0.945310i \(0.394241\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14363.7 −0.717901
\(738\) 0 0
\(739\) −14540.0 −0.723765 −0.361883 0.932224i \(-0.617866\pi\)
−0.361883 + 0.932224i \(0.617866\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1160.14 0.0572833 0.0286417 0.999590i \(-0.490882\pi\)
0.0286417 + 0.999590i \(0.490882\pi\)
\(744\) 0 0
\(745\) −19878.3 −0.977565
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6768.00 −0.328852 −0.164426 0.986389i \(-0.552577\pi\)
−0.164426 + 0.986389i \(0.552577\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 20912.0 1.00803
\(756\) 0 0
\(757\) −2354.00 −0.113022 −0.0565110 0.998402i \(-0.517998\pi\)
−0.0565110 + 0.998402i \(0.517998\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33071.9 1.57537 0.787684 0.616079i \(-0.211280\pi\)
0.787684 + 0.616079i \(0.211280\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −45963.8 −2.16383
\(768\) 0 0
\(769\) 22885.2 1.07316 0.536580 0.843850i \(-0.319716\pi\)
0.536580 + 0.843850i \(0.319716\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24351.5 1.13307 0.566535 0.824038i \(-0.308284\pi\)
0.566535 + 0.824038i \(0.308284\pi\)
\(774\) 0 0
\(775\) 1085.79 0.0503262
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −34472.8 −1.58552
\(780\) 0 0
\(781\) 39676.0 1.81782
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6187.43 −0.281323
\(786\) 0 0
\(787\) 36248.7 1.64184 0.820920 0.571043i \(-0.193461\pi\)
0.820920 + 0.571043i \(0.193461\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −48832.0 −2.18673
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −33431.7 −1.48584 −0.742918 0.669382i \(-0.766559\pi\)
−0.742918 + 0.669382i \(0.766559\pi\)
\(798\) 0 0
\(799\) −44352.0 −1.96378
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 36913.5 1.62223
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −35798.7 −1.55577 −0.777883 0.628409i \(-0.783707\pi\)
−0.777883 + 0.628409i \(0.783707\pi\)
\(810\) 0 0
\(811\) 30402.2 1.31636 0.658178 0.752862i \(-0.271327\pi\)
0.658178 + 0.752862i \(0.271327\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −35431.9 −1.52285
\(816\) 0 0
\(817\) 12361.3 0.529337
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33036.5 1.40436 0.702180 0.711999i \(-0.252210\pi\)
0.702180 + 0.711999i \(0.252210\pi\)
\(822\) 0 0
\(823\) −10400.0 −0.440487 −0.220244 0.975445i \(-0.570685\pi\)
−0.220244 + 0.975445i \(0.570685\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −10109.8 −0.425094 −0.212547 0.977151i \(-0.568176\pi\)
−0.212547 + 0.977151i \(0.568176\pi\)
\(828\) 0 0
\(829\) −14115.3 −0.591368 −0.295684 0.955286i \(-0.595548\pi\)
−0.295684 + 0.955286i \(0.595548\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 896.000 0.0371346
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21843.3 −0.898826 −0.449413 0.893324i \(-0.648367\pi\)
−0.449413 + 0.893324i \(0.648367\pi\)
\(840\) 0 0
\(841\) −12181.0 −0.499446
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −50576.2 −2.05902
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12927.3 0.520731
\(852\) 0 0
\(853\) 25641.4 1.02924 0.514622 0.857417i \(-0.327932\pi\)
0.514622 + 0.857417i \(0.327932\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 730.227 0.0291063 0.0145531 0.999894i \(-0.495367\pi\)
0.0145531 + 0.999894i \(0.495367\pi\)
\(858\) 0 0
\(859\) 22801.6 0.905683 0.452841 0.891591i \(-0.350410\pi\)
0.452841 + 0.891591i \(0.350410\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32318.3 −1.27477 −0.637385 0.770545i \(-0.719984\pi\)
−0.637385 + 0.770545i \(0.719984\pi\)
\(864\) 0 0
\(865\) 16016.0 0.629550
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 36682.6 1.43196
\(870\) 0 0
\(871\) −21715.8 −0.844791
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14166.0 −0.545441 −0.272721 0.962093i \(-0.587923\pi\)
−0.272721 + 0.962093i \(0.587923\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 19673.8 0.752358 0.376179 0.926547i \(-0.377238\pi\)
0.376179 + 0.926547i \(0.377238\pi\)
\(882\) 0 0
\(883\) −44876.0 −1.71030 −0.855152 0.518378i \(-0.826536\pi\)
−0.855152 + 0.518378i \(0.826536\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15747.5 −0.596110 −0.298055 0.954549i \(-0.596338\pi\)
−0.298055 + 0.954549i \(0.596338\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 38892.4 1.45743
\(894\) 0 0
\(895\) −1753.97 −0.0655070
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9228.38 0.342362
\(900\) 0 0
\(901\) 10523.8 0.389123
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 38008.5 1.39607
\(906\) 0 0
\(907\) −356.000 −0.0130328 −0.00651642 0.999979i \(-0.502074\pi\)
−0.00651642 + 0.999979i \(0.502074\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4916.80 0.178815 0.0894077 0.995995i \(-0.471503\pi\)
0.0894077 + 0.995995i \(0.471503\pi\)
\(912\) 0 0
\(913\) −7015.89 −0.254318
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −43056.0 −1.54547 −0.772735 0.634729i \(-0.781112\pi\)
−0.772735 + 0.634729i \(0.781112\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 59984.5 2.13913
\(924\) 0 0
\(925\) −1014.00 −0.0360434
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −43210.4 −1.52604 −0.763018 0.646377i \(-0.776283\pi\)
−0.763018 + 0.646377i \(0.776283\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 55686.9 1.94776
\(936\) 0 0
\(937\) −52118.0 −1.81710 −0.908549 0.417778i \(-0.862809\pi\)
−0.908549 + 0.417778i \(0.862809\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4667.11 −0.161683 −0.0808413 0.996727i \(-0.525761\pi\)
−0.0808413 + 0.996727i \(0.525761\pi\)
\(942\) 0 0
\(943\) −68404.9 −2.36222
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 718.184 0.0246440 0.0123220 0.999924i \(-0.496078\pi\)
0.0123220 + 0.999924i \(0.496078\pi\)
\(948\) 0 0
\(949\) 55808.0 1.90896
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −36461.6 −1.23936 −0.619679 0.784855i \(-0.712737\pi\)
−0.619679 + 0.784855i \(0.712737\pi\)
\(954\) 0 0
\(955\) 22801.6 0.772611
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −22815.0 −0.765835
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14583.4 0.486483
\(966\) 0 0
\(967\) −39992.0 −1.32994 −0.664972 0.746868i \(-0.731557\pi\)
−0.664972 + 0.746868i \(0.731557\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 38183.5 1.26196 0.630982 0.775798i \(-0.282652\pi\)
0.630982 + 0.775798i \(0.282652\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11049.0 −0.361810 −0.180905 0.983501i \(-0.557903\pi\)
−0.180905 + 0.983501i \(0.557903\pi\)
\(978\) 0 0
\(979\) −48526.5 −1.58418
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 46311.2 1.50264 0.751322 0.659936i \(-0.229417\pi\)
0.751322 + 0.659936i \(0.229417\pi\)
\(984\) 0 0
\(985\) −10523.8 −0.340423
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24528.7 0.788644
\(990\) 0 0
\(991\) −51064.0 −1.63683 −0.818416 0.574626i \(-0.805148\pi\)
−0.818416 + 0.574626i \(0.805148\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −49499.4 −1.57712
\(996\) 0 0
\(997\) 14115.3 0.448381 0.224191 0.974545i \(-0.428026\pi\)
0.224191 + 0.974545i \(0.428026\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.4.a.bb.1.2 yes 4
3.2 odd 2 inner 1764.4.a.bb.1.3 yes 4
7.2 even 3 1764.4.k.bc.361.3 8
7.3 odd 6 1764.4.k.bc.1549.1 8
7.4 even 3 1764.4.k.bc.1549.3 8
7.5 odd 6 1764.4.k.bc.361.1 8
7.6 odd 2 inner 1764.4.a.bb.1.4 yes 4
21.2 odd 6 1764.4.k.bc.361.2 8
21.5 even 6 1764.4.k.bc.361.4 8
21.11 odd 6 1764.4.k.bc.1549.2 8
21.17 even 6 1764.4.k.bc.1549.4 8
21.20 even 2 inner 1764.4.a.bb.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.4.a.bb.1.1 4 21.20 even 2 inner
1764.4.a.bb.1.2 yes 4 1.1 even 1 trivial
1764.4.a.bb.1.3 yes 4 3.2 odd 2 inner
1764.4.a.bb.1.4 yes 4 7.6 odd 2 inner
1764.4.k.bc.361.1 8 7.5 odd 6
1764.4.k.bc.361.2 8 21.2 odd 6
1764.4.k.bc.361.3 8 7.2 even 3
1764.4.k.bc.361.4 8 21.5 even 6
1764.4.k.bc.1549.1 8 7.3 odd 6
1764.4.k.bc.1549.2 8 21.11 odd 6
1764.4.k.bc.1549.3 8 7.4 even 3
1764.4.k.bc.1549.4 8 21.17 even 6