Properties

Label 1764.4.a.ba.1.3
Level $1764$
Weight $4$
Character 1764.1
Self dual yes
Analytic conductor $104.079$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,4,Mod(1,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.079369250\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.136768.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 23x^{2} + 18x + 119 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 7 \)
Twist minimal: no (minimal twist has level 588)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.51732\) of defining polynomial
Character \(\chi\) \(=\) 1764.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.6550 q^{5} +6.65399 q^{11} +75.9335 q^{13} +104.287 q^{17} +85.4943 q^{19} +68.6733 q^{23} -11.4700 q^{25} -87.7843 q^{29} +62.7683 q^{31} +42.2093 q^{37} -313.904 q^{41} +306.591 q^{43} -215.081 q^{47} -525.024 q^{53} +70.8986 q^{55} -360.491 q^{59} +800.726 q^{61} +809.075 q^{65} -40.2286 q^{67} +298.781 q^{71} +517.126 q^{73} -1222.47 q^{79} -1328.55 q^{83} +1111.18 q^{85} +639.938 q^{89} +910.946 q^{95} +1425.65 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 48 q^{17} + 192 q^{19} - 192 q^{23} + 324 q^{25} - 96 q^{29} + 48 q^{31} + 256 q^{37} - 1008 q^{41} - 112 q^{43} - 864 q^{47} + 648 q^{53} + 2352 q^{55} - 336 q^{59} + 960 q^{61} + 360 q^{65} + 720 q^{67}+ \cdots + 2016 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 10.6550 0.953016 0.476508 0.879170i \(-0.341902\pi\)
0.476508 + 0.879170i \(0.341902\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.65399 0.182387 0.0911933 0.995833i \(-0.470932\pi\)
0.0911933 + 0.995833i \(0.470932\pi\)
\(12\) 0 0
\(13\) 75.9335 1.62001 0.810006 0.586422i \(-0.199464\pi\)
0.810006 + 0.586422i \(0.199464\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 104.287 1.48784 0.743921 0.668268i \(-0.232964\pi\)
0.743921 + 0.668268i \(0.232964\pi\)
\(18\) 0 0
\(19\) 85.4943 1.03230 0.516151 0.856498i \(-0.327364\pi\)
0.516151 + 0.856498i \(0.327364\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 68.6733 0.622581 0.311291 0.950315i \(-0.399239\pi\)
0.311291 + 0.950315i \(0.399239\pi\)
\(24\) 0 0
\(25\) −11.4700 −0.0917596
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −87.7843 −0.562108 −0.281054 0.959692i \(-0.590684\pi\)
−0.281054 + 0.959692i \(0.590684\pi\)
\(30\) 0 0
\(31\) 62.7683 0.363662 0.181831 0.983330i \(-0.441798\pi\)
0.181831 + 0.983330i \(0.441798\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 42.2093 0.187545 0.0937726 0.995594i \(-0.470107\pi\)
0.0937726 + 0.995594i \(0.470107\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −313.904 −1.19570 −0.597848 0.801609i \(-0.703977\pi\)
−0.597848 + 0.801609i \(0.703977\pi\)
\(42\) 0 0
\(43\) 306.591 1.08732 0.543659 0.839306i \(-0.317038\pi\)
0.543659 + 0.839306i \(0.317038\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −215.081 −0.667508 −0.333754 0.942660i \(-0.608315\pi\)
−0.333754 + 0.942660i \(0.608315\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −525.024 −1.36071 −0.680354 0.732884i \(-0.738174\pi\)
−0.680354 + 0.732884i \(0.738174\pi\)
\(54\) 0 0
\(55\) 70.8986 0.173818
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −360.491 −0.795457 −0.397729 0.917503i \(-0.630201\pi\)
−0.397729 + 0.917503i \(0.630201\pi\)
\(60\) 0 0
\(61\) 800.726 1.68070 0.840348 0.542048i \(-0.182351\pi\)
0.840348 + 0.542048i \(0.182351\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 809.075 1.54390
\(66\) 0 0
\(67\) −40.2286 −0.0733538 −0.0366769 0.999327i \(-0.511677\pi\)
−0.0366769 + 0.999327i \(0.511677\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 298.781 0.499419 0.249709 0.968321i \(-0.419665\pi\)
0.249709 + 0.968321i \(0.419665\pi\)
\(72\) 0 0
\(73\) 517.126 0.829110 0.414555 0.910024i \(-0.363937\pi\)
0.414555 + 0.910024i \(0.363937\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1222.47 −1.74099 −0.870494 0.492178i \(-0.836201\pi\)
−0.870494 + 0.492178i \(0.836201\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1328.55 −1.75696 −0.878479 0.477782i \(-0.841441\pi\)
−0.878479 + 0.477782i \(0.841441\pi\)
\(84\) 0 0
\(85\) 1111.18 1.41794
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 639.938 0.762172 0.381086 0.924540i \(-0.375550\pi\)
0.381086 + 0.924540i \(0.375550\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 910.946 0.983801
\(96\) 0 0
\(97\) 1425.65 1.49230 0.746149 0.665779i \(-0.231901\pi\)
0.746149 + 0.665779i \(0.231901\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 992.170 0.977471 0.488736 0.872432i \(-0.337458\pi\)
0.488736 + 0.872432i \(0.337458\pi\)
\(102\) 0 0
\(103\) 267.572 0.255967 0.127984 0.991776i \(-0.459149\pi\)
0.127984 + 0.991776i \(0.459149\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1536.62 1.38833 0.694164 0.719817i \(-0.255774\pi\)
0.694164 + 0.719817i \(0.255774\pi\)
\(108\) 0 0
\(109\) 998.820 0.877703 0.438852 0.898560i \(-0.355385\pi\)
0.438852 + 0.898560i \(0.355385\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −939.006 −0.781719 −0.390860 0.920450i \(-0.627822\pi\)
−0.390860 + 0.920450i \(0.627822\pi\)
\(114\) 0 0
\(115\) 731.717 0.593330
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1286.72 −0.966735
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1454.09 −1.04046
\(126\) 0 0
\(127\) −1621.27 −1.13279 −0.566397 0.824133i \(-0.691663\pi\)
−0.566397 + 0.824133i \(0.691663\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1518.43 −1.01271 −0.506357 0.862324i \(-0.669008\pi\)
−0.506357 + 0.862324i \(0.669008\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2484.99 1.54969 0.774844 0.632152i \(-0.217828\pi\)
0.774844 + 0.632152i \(0.217828\pi\)
\(138\) 0 0
\(139\) −1655.36 −1.01011 −0.505057 0.863086i \(-0.668529\pi\)
−0.505057 + 0.863086i \(0.668529\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 505.260 0.295469
\(144\) 0 0
\(145\) −935.346 −0.535698
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −350.191 −0.192542 −0.0962709 0.995355i \(-0.530692\pi\)
−0.0962709 + 0.995355i \(0.530692\pi\)
\(150\) 0 0
\(151\) 3338.14 1.79903 0.899516 0.436888i \(-0.143919\pi\)
0.899516 + 0.436888i \(0.143919\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 668.799 0.346576
\(156\) 0 0
\(157\) −1743.67 −0.886371 −0.443185 0.896430i \(-0.646152\pi\)
−0.443185 + 0.896430i \(0.646152\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3431.56 1.64896 0.824480 0.565891i \(-0.191468\pi\)
0.824480 + 0.565891i \(0.191468\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3381.05 −1.56667 −0.783335 0.621600i \(-0.786483\pi\)
−0.783335 + 0.621600i \(0.786483\pi\)
\(168\) 0 0
\(169\) 3568.89 1.62444
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1341.00 0.589332 0.294666 0.955600i \(-0.404792\pi\)
0.294666 + 0.955600i \(0.404792\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1125.15 −0.469818 −0.234909 0.972017i \(-0.575479\pi\)
−0.234909 + 0.972017i \(0.575479\pi\)
\(180\) 0 0
\(181\) −3535.04 −1.45170 −0.725848 0.687855i \(-0.758553\pi\)
−0.725848 + 0.687855i \(0.758553\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 449.742 0.178734
\(186\) 0 0
\(187\) 693.925 0.271363
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2639.89 −1.00008 −0.500041 0.866001i \(-0.666682\pi\)
−0.500041 + 0.866001i \(0.666682\pi\)
\(192\) 0 0
\(193\) 1047.05 0.390510 0.195255 0.980752i \(-0.437447\pi\)
0.195255 + 0.980752i \(0.437447\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4585.45 1.65837 0.829187 0.558972i \(-0.188804\pi\)
0.829187 + 0.558972i \(0.188804\pi\)
\(198\) 0 0
\(199\) 830.742 0.295928 0.147964 0.988993i \(-0.452728\pi\)
0.147964 + 0.988993i \(0.452728\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3344.66 −1.13952
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 568.878 0.188278
\(210\) 0 0
\(211\) −2630.08 −0.858114 −0.429057 0.903277i \(-0.641154\pi\)
−0.429057 + 0.903277i \(0.641154\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3266.74 1.03623
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7918.87 2.41032
\(222\) 0 0
\(223\) −863.988 −0.259448 −0.129724 0.991550i \(-0.541409\pi\)
−0.129724 + 0.991550i \(0.541409\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4160.36 1.21644 0.608221 0.793767i \(-0.291883\pi\)
0.608221 + 0.793767i \(0.291883\pi\)
\(228\) 0 0
\(229\) −181.210 −0.0522914 −0.0261457 0.999658i \(-0.508323\pi\)
−0.0261457 + 0.999658i \(0.508323\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2150.45 −0.604637 −0.302319 0.953207i \(-0.597761\pi\)
−0.302319 + 0.953207i \(0.597761\pi\)
\(234\) 0 0
\(235\) −2291.70 −0.636146
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6939.47 1.87815 0.939073 0.343719i \(-0.111687\pi\)
0.939073 + 0.343719i \(0.111687\pi\)
\(240\) 0 0
\(241\) −206.170 −0.0551060 −0.0275530 0.999620i \(-0.508772\pi\)
−0.0275530 + 0.999620i \(0.508772\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6491.88 1.67234
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5011.93 −1.26036 −0.630180 0.776449i \(-0.717019\pi\)
−0.630180 + 0.776449i \(0.717019\pi\)
\(252\) 0 0
\(253\) 456.951 0.113551
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5863.08 1.42307 0.711535 0.702651i \(-0.248000\pi\)
0.711535 + 0.702651i \(0.248000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5639.56 1.32224 0.661122 0.750279i \(-0.270081\pi\)
0.661122 + 0.750279i \(0.270081\pi\)
\(264\) 0 0
\(265\) −5594.15 −1.29678
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2976.63 0.674679 0.337339 0.941383i \(-0.390473\pi\)
0.337339 + 0.941383i \(0.390473\pi\)
\(270\) 0 0
\(271\) −2807.33 −0.629275 −0.314637 0.949212i \(-0.601883\pi\)
−0.314637 + 0.949212i \(0.601883\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −76.3210 −0.0167357
\(276\) 0 0
\(277\) −1918.39 −0.416118 −0.208059 0.978116i \(-0.566715\pi\)
−0.208059 + 0.978116i \(0.566715\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5209.50 −1.10595 −0.552977 0.833197i \(-0.686508\pi\)
−0.552977 + 0.833197i \(0.686508\pi\)
\(282\) 0 0
\(283\) 7496.70 1.57467 0.787337 0.616523i \(-0.211459\pi\)
0.787337 + 0.616523i \(0.211459\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5962.78 1.21367
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3358.94 0.669732 0.334866 0.942266i \(-0.391309\pi\)
0.334866 + 0.942266i \(0.391309\pi\)
\(294\) 0 0
\(295\) −3841.05 −0.758084
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5214.60 1.00859
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8531.77 1.60173
\(306\) 0 0
\(307\) −7330.92 −1.36286 −0.681429 0.731884i \(-0.738641\pi\)
−0.681429 + 0.731884i \(0.738641\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2038.53 0.371687 0.185843 0.982579i \(-0.440498\pi\)
0.185843 + 0.982579i \(0.440498\pi\)
\(312\) 0 0
\(313\) 4138.87 0.747421 0.373711 0.927545i \(-0.378085\pi\)
0.373711 + 0.927545i \(0.378085\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7552.25 1.33810 0.669049 0.743219i \(-0.266702\pi\)
0.669049 + 0.743219i \(0.266702\pi\)
\(318\) 0 0
\(319\) −584.116 −0.102521
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8915.94 1.53590
\(324\) 0 0
\(325\) −870.953 −0.148652
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 5577.70 0.926218 0.463109 0.886301i \(-0.346734\pi\)
0.463109 + 0.886301i \(0.346734\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −428.637 −0.0699073
\(336\) 0 0
\(337\) 4467.16 0.722083 0.361041 0.932550i \(-0.382421\pi\)
0.361041 + 0.932550i \(0.382421\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 417.660 0.0663271
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9788.41 −1.51432 −0.757161 0.653229i \(-0.773414\pi\)
−0.757161 + 0.653229i \(0.773414\pi\)
\(348\) 0 0
\(349\) −4746.95 −0.728075 −0.364038 0.931384i \(-0.618602\pi\)
−0.364038 + 0.931384i \(0.618602\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9434.66 1.42254 0.711269 0.702920i \(-0.248121\pi\)
0.711269 + 0.702920i \(0.248121\pi\)
\(354\) 0 0
\(355\) 3183.52 0.475954
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11307.5 −1.66237 −0.831183 0.555999i \(-0.812336\pi\)
−0.831183 + 0.555999i \(0.812336\pi\)
\(360\) 0 0
\(361\) 450.275 0.0656474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5510.00 0.790155
\(366\) 0 0
\(367\) 6089.61 0.866144 0.433072 0.901359i \(-0.357430\pi\)
0.433072 + 0.901359i \(0.357430\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2601.84 −0.361175 −0.180588 0.983559i \(-0.557800\pi\)
−0.180588 + 0.983559i \(0.557800\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6665.77 −0.910622
\(378\) 0 0
\(379\) 10416.2 1.41173 0.705865 0.708347i \(-0.250559\pi\)
0.705865 + 0.708347i \(0.250559\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1664.46 0.222063 0.111031 0.993817i \(-0.464585\pi\)
0.111031 + 0.993817i \(0.464585\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1334.16 0.173893 0.0869465 0.996213i \(-0.472289\pi\)
0.0869465 + 0.996213i \(0.472289\pi\)
\(390\) 0 0
\(391\) 7161.73 0.926302
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −13025.4 −1.65919
\(396\) 0 0
\(397\) 4444.88 0.561920 0.280960 0.959720i \(-0.409347\pi\)
0.280960 + 0.959720i \(0.409347\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2649.82 0.329989 0.164995 0.986294i \(-0.447239\pi\)
0.164995 + 0.986294i \(0.447239\pi\)
\(402\) 0 0
\(403\) 4766.21 0.589137
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 280.860 0.0342057
\(408\) 0 0
\(409\) −9592.66 −1.15972 −0.579862 0.814715i \(-0.696893\pi\)
−0.579862 + 0.814715i \(0.696893\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −14155.8 −1.67441
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16850.1 −1.96463 −0.982317 0.187224i \(-0.940051\pi\)
−0.982317 + 0.187224i \(0.940051\pi\)
\(420\) 0 0
\(421\) 1691.10 0.195770 0.0978849 0.995198i \(-0.468792\pi\)
0.0978849 + 0.995198i \(0.468792\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1196.17 −0.136524
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6789.34 0.758773 0.379386 0.925238i \(-0.376135\pi\)
0.379386 + 0.925238i \(0.376135\pi\)
\(432\) 0 0
\(433\) 10386.6 1.15276 0.576382 0.817180i \(-0.304464\pi\)
0.576382 + 0.817180i \(0.304464\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5871.17 0.642692
\(438\) 0 0
\(439\) −4212.26 −0.457950 −0.228975 0.973432i \(-0.573537\pi\)
−0.228975 + 0.973432i \(0.573537\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1809.96 0.194117 0.0970585 0.995279i \(-0.469057\pi\)
0.0970585 + 0.995279i \(0.469057\pi\)
\(444\) 0 0
\(445\) 6818.57 0.726362
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1768.29 −0.185859 −0.0929297 0.995673i \(-0.529623\pi\)
−0.0929297 + 0.995673i \(0.529623\pi\)
\(450\) 0 0
\(451\) −2088.71 −0.218079
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4372.61 0.447575 0.223788 0.974638i \(-0.428158\pi\)
0.223788 + 0.974638i \(0.428158\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1164.34 0.117633 0.0588165 0.998269i \(-0.481267\pi\)
0.0588165 + 0.998269i \(0.481267\pi\)
\(462\) 0 0
\(463\) −14893.9 −1.49498 −0.747491 0.664272i \(-0.768742\pi\)
−0.747491 + 0.664272i \(0.768742\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19160.3 −1.89857 −0.949285 0.314418i \(-0.898191\pi\)
−0.949285 + 0.314418i \(0.898191\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2040.05 0.198312
\(474\) 0 0
\(475\) −980.616 −0.0947237
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9406.28 0.897253 0.448626 0.893719i \(-0.351913\pi\)
0.448626 + 0.893719i \(0.351913\pi\)
\(480\) 0 0
\(481\) 3205.10 0.303825
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15190.4 1.42218
\(486\) 0 0
\(487\) 12460.8 1.15945 0.579725 0.814812i \(-0.303160\pi\)
0.579725 + 0.814812i \(0.303160\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12868.0 −1.18274 −0.591369 0.806401i \(-0.701412\pi\)
−0.591369 + 0.806401i \(0.701412\pi\)
\(492\) 0 0
\(493\) −9154.76 −0.836328
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −13705.0 −1.22950 −0.614750 0.788722i \(-0.710743\pi\)
−0.614750 + 0.788722i \(0.710743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10126.1 −0.897616 −0.448808 0.893628i \(-0.648151\pi\)
−0.448808 + 0.893628i \(0.648151\pi\)
\(504\) 0 0
\(505\) 10571.6 0.931546
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6236.06 0.543042 0.271521 0.962432i \(-0.412473\pi\)
0.271521 + 0.962432i \(0.412473\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2850.99 0.243941
\(516\) 0 0
\(517\) −1431.15 −0.121744
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17016.8 −1.43094 −0.715468 0.698645i \(-0.753787\pi\)
−0.715468 + 0.698645i \(0.753787\pi\)
\(522\) 0 0
\(523\) −5814.62 −0.486148 −0.243074 0.970008i \(-0.578156\pi\)
−0.243074 + 0.970008i \(0.578156\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6545.92 0.541071
\(528\) 0 0
\(529\) −7450.98 −0.612393
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23835.8 −1.93704
\(534\) 0 0
\(535\) 16372.8 1.32310
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10069.2 −0.800199 −0.400100 0.916472i \(-0.631025\pi\)
−0.400100 + 0.916472i \(0.631025\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10642.5 0.836466
\(546\) 0 0
\(547\) −7437.51 −0.581362 −0.290681 0.956820i \(-0.593882\pi\)
−0.290681 + 0.956820i \(0.593882\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7505.06 −0.580265
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −21787.1 −1.65736 −0.828680 0.559723i \(-0.810908\pi\)
−0.828680 + 0.559723i \(0.810908\pi\)
\(558\) 0 0
\(559\) 23280.5 1.76147
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2572.48 −0.192570 −0.0962851 0.995354i \(-0.530696\pi\)
−0.0962851 + 0.995354i \(0.530696\pi\)
\(564\) 0 0
\(565\) −10005.2 −0.744991
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17580.6 1.29528 0.647642 0.761945i \(-0.275755\pi\)
0.647642 + 0.761945i \(0.275755\pi\)
\(570\) 0 0
\(571\) 7220.75 0.529210 0.264605 0.964357i \(-0.414758\pi\)
0.264605 + 0.964357i \(0.414758\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −787.679 −0.0571278
\(576\) 0 0
\(577\) 11155.1 0.804839 0.402419 0.915455i \(-0.368169\pi\)
0.402419 + 0.915455i \(0.368169\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3493.50 −0.248175
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15216.2 1.06992 0.534958 0.844879i \(-0.320327\pi\)
0.534958 + 0.844879i \(0.320327\pi\)
\(588\) 0 0
\(589\) 5366.33 0.375409
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3843.89 −0.266188 −0.133094 0.991103i \(-0.542491\pi\)
−0.133094 + 0.991103i \(0.542491\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18747.0 −1.27876 −0.639382 0.768889i \(-0.720810\pi\)
−0.639382 + 0.768889i \(0.720810\pi\)
\(600\) 0 0
\(601\) −9864.63 −0.669529 −0.334764 0.942302i \(-0.608657\pi\)
−0.334764 + 0.942302i \(0.608657\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13710.1 −0.921314
\(606\) 0 0
\(607\) 22292.8 1.49067 0.745336 0.666689i \(-0.232289\pi\)
0.745336 + 0.666689i \(0.232289\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16331.9 −1.08137
\(612\) 0 0
\(613\) 6046.78 0.398413 0.199206 0.979958i \(-0.436164\pi\)
0.199206 + 0.979958i \(0.436164\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9383.68 0.612273 0.306137 0.951988i \(-0.400964\pi\)
0.306137 + 0.951988i \(0.400964\pi\)
\(618\) 0 0
\(619\) −3989.50 −0.259049 −0.129525 0.991576i \(-0.541345\pi\)
−0.129525 + 0.991576i \(0.541345\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −14059.7 −0.899821
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4401.88 0.279038
\(630\) 0 0
\(631\) 11434.0 0.721363 0.360681 0.932689i \(-0.382544\pi\)
0.360681 + 0.932689i \(0.382544\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17274.7 −1.07957
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15097.3 0.930274 0.465137 0.885239i \(-0.346005\pi\)
0.465137 + 0.885239i \(0.346005\pi\)
\(642\) 0 0
\(643\) 4170.19 0.255764 0.127882 0.991789i \(-0.459182\pi\)
0.127882 + 0.991789i \(0.459182\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4563.88 0.277318 0.138659 0.990340i \(-0.455721\pi\)
0.138659 + 0.990340i \(0.455721\pi\)
\(648\) 0 0
\(649\) −2398.71 −0.145081
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3819.04 −0.228868 −0.114434 0.993431i \(-0.536505\pi\)
−0.114434 + 0.993431i \(0.536505\pi\)
\(654\) 0 0
\(655\) −16178.9 −0.965134
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4326.02 0.255717 0.127859 0.991792i \(-0.459190\pi\)
0.127859 + 0.991792i \(0.459190\pi\)
\(660\) 0 0
\(661\) −29317.8 −1.72516 −0.862579 0.505923i \(-0.831152\pi\)
−0.862579 + 0.505923i \(0.831152\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6028.43 −0.349958
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5328.02 0.306536
\(672\) 0 0
\(673\) −5483.56 −0.314080 −0.157040 0.987592i \(-0.550195\pi\)
−0.157040 + 0.987592i \(0.550195\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12069.3 0.685174 0.342587 0.939486i \(-0.388697\pi\)
0.342587 + 0.939486i \(0.388697\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30796.7 −1.72533 −0.862667 0.505772i \(-0.831208\pi\)
−0.862667 + 0.505772i \(0.831208\pi\)
\(684\) 0 0
\(685\) 26477.7 1.47688
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39866.9 −2.20436
\(690\) 0 0
\(691\) −6501.96 −0.357954 −0.178977 0.983853i \(-0.557279\pi\)
−0.178977 + 0.983853i \(0.557279\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17638.0 −0.962656
\(696\) 0 0
\(697\) −32736.1 −1.77901
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2235.98 0.120473 0.0602367 0.998184i \(-0.480814\pi\)
0.0602367 + 0.998184i \(0.480814\pi\)
\(702\) 0 0
\(703\) 3608.66 0.193603
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 35564.5 1.88385 0.941926 0.335820i \(-0.109014\pi\)
0.941926 + 0.335820i \(0.109014\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4310.50 0.226409
\(714\) 0 0
\(715\) 5383.57 0.281586
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9924.15 0.514754 0.257377 0.966311i \(-0.417142\pi\)
0.257377 + 0.966311i \(0.417142\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1006.88 0.0515788
\(726\) 0 0
\(727\) 880.081 0.0448974 0.0224487 0.999748i \(-0.492854\pi\)
0.0224487 + 0.999748i \(0.492854\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 31973.5 1.61776
\(732\) 0 0
\(733\) −17336.2 −0.873568 −0.436784 0.899566i \(-0.643883\pi\)
−0.436784 + 0.899566i \(0.643883\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −267.681 −0.0133787
\(738\) 0 0
\(739\) −24586.4 −1.22385 −0.611924 0.790917i \(-0.709604\pi\)
−0.611924 + 0.790917i \(0.709604\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14579.3 −0.719870 −0.359935 0.932977i \(-0.617201\pi\)
−0.359935 + 0.932977i \(0.617201\pi\)
\(744\) 0 0
\(745\) −3731.30 −0.183496
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 16086.0 0.781604 0.390802 0.920475i \(-0.372198\pi\)
0.390802 + 0.920475i \(0.372198\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 35568.0 1.71451
\(756\) 0 0
\(757\) −37017.3 −1.77730 −0.888651 0.458584i \(-0.848357\pi\)
−0.888651 + 0.458584i \(0.848357\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24606.5 −1.17212 −0.586060 0.810267i \(-0.699322\pi\)
−0.586060 + 0.810267i \(0.699322\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −27373.4 −1.28865
\(768\) 0 0
\(769\) −12715.6 −0.596275 −0.298137 0.954523i \(-0.596365\pi\)
−0.298137 + 0.954523i \(0.596365\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3174.23 −0.147696 −0.0738480 0.997270i \(-0.523528\pi\)
−0.0738480 + 0.997270i \(0.523528\pi\)
\(774\) 0 0
\(775\) −719.949 −0.0333695
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −26837.0 −1.23432
\(780\) 0 0
\(781\) 1988.08 0.0910874
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −18578.9 −0.844726
\(786\) 0 0
\(787\) −15569.9 −0.705218 −0.352609 0.935771i \(-0.614705\pi\)
−0.352609 + 0.935771i \(0.614705\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 60801.9 2.72275
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 31514.5 1.40063 0.700314 0.713835i \(-0.253043\pi\)
0.700314 + 0.713835i \(0.253043\pi\)
\(798\) 0 0
\(799\) −22430.2 −0.993146
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3440.95 0.151219
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11029.1 −0.479310 −0.239655 0.970858i \(-0.577034\pi\)
−0.239655 + 0.970858i \(0.577034\pi\)
\(810\) 0 0
\(811\) −20830.5 −0.901920 −0.450960 0.892544i \(-0.648918\pi\)
−0.450960 + 0.892544i \(0.648918\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 36563.4 1.57149
\(816\) 0 0
\(817\) 26211.8 1.12244
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9349.06 0.397423 0.198712 0.980058i \(-0.436324\pi\)
0.198712 + 0.980058i \(0.436324\pi\)
\(822\) 0 0
\(823\) −32890.6 −1.39307 −0.696533 0.717525i \(-0.745275\pi\)
−0.696533 + 0.717525i \(0.745275\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13081.2 0.550033 0.275016 0.961440i \(-0.411317\pi\)
0.275016 + 0.961440i \(0.411317\pi\)
\(828\) 0 0
\(829\) 28791.2 1.20622 0.603112 0.797657i \(-0.293927\pi\)
0.603112 + 0.797657i \(0.293927\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −36025.3 −1.49306
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36766.8 1.51291 0.756455 0.654046i \(-0.226930\pi\)
0.756455 + 0.654046i \(0.226930\pi\)
\(840\) 0 0
\(841\) −16682.9 −0.684034
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 38026.7 1.54812
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2898.65 0.116762
\(852\) 0 0
\(853\) 5899.55 0.236808 0.118404 0.992966i \(-0.462222\pi\)
0.118404 + 0.992966i \(0.462222\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −42277.0 −1.68513 −0.842564 0.538596i \(-0.818955\pi\)
−0.842564 + 0.538596i \(0.818955\pi\)
\(858\) 0 0
\(859\) −6343.46 −0.251963 −0.125981 0.992033i \(-0.540208\pi\)
−0.125981 + 0.992033i \(0.540208\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6929.78 −0.273340 −0.136670 0.990617i \(-0.543640\pi\)
−0.136670 + 0.990617i \(0.543640\pi\)
\(864\) 0 0
\(865\) 14288.4 0.561643
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8134.27 −0.317533
\(870\) 0 0
\(871\) −3054.69 −0.118834
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3287.88 0.126595 0.0632976 0.997995i \(-0.479838\pi\)
0.0632976 + 0.997995i \(0.479838\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46875.9 1.79261 0.896304 0.443439i \(-0.146242\pi\)
0.896304 + 0.443439i \(0.146242\pi\)
\(882\) 0 0
\(883\) 42479.4 1.61897 0.809483 0.587144i \(-0.199748\pi\)
0.809483 + 0.587144i \(0.199748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3680.15 −0.139309 −0.0696547 0.997571i \(-0.522190\pi\)
−0.0696547 + 0.997571i \(0.522190\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −18388.2 −0.689069
\(894\) 0 0
\(895\) −11988.5 −0.447745
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5510.07 −0.204417
\(900\) 0 0
\(901\) −54753.1 −2.02452
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −37666.0 −1.38349
\(906\) 0 0
\(907\) −7102.18 −0.260005 −0.130002 0.991514i \(-0.541498\pi\)
−0.130002 + 0.991514i \(0.541498\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −38119.0 −1.38632 −0.693161 0.720783i \(-0.743782\pi\)
−0.693161 + 0.720783i \(0.743782\pi\)
\(912\) 0 0
\(913\) −8840.17 −0.320446
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 17190.6 0.617045 0.308522 0.951217i \(-0.400166\pi\)
0.308522 + 0.951217i \(0.400166\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 22687.5 0.809065
\(924\) 0 0
\(925\) −484.139 −0.0172091
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −32256.5 −1.13918 −0.569591 0.821928i \(-0.692899\pi\)
−0.569591 + 0.821928i \(0.692899\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7393.80 0.258613
\(936\) 0 0
\(937\) 26213.6 0.913940 0.456970 0.889482i \(-0.348935\pi\)
0.456970 + 0.889482i \(0.348935\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −34240.1 −1.18618 −0.593089 0.805137i \(-0.702092\pi\)
−0.593089 + 0.805137i \(0.702092\pi\)
\(942\) 0 0
\(943\) −21556.8 −0.744418
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36004.5 −1.23547 −0.617735 0.786386i \(-0.711950\pi\)
−0.617735 + 0.786386i \(0.711950\pi\)
\(948\) 0 0
\(949\) 39267.2 1.34317
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 29488.1 1.00232 0.501161 0.865354i \(-0.332907\pi\)
0.501161 + 0.865354i \(0.332907\pi\)
\(954\) 0 0
\(955\) −28128.2 −0.953095
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −25851.1 −0.867750
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11156.4 0.372163
\(966\) 0 0
\(967\) −56009.0 −1.86260 −0.931298 0.364259i \(-0.881322\pi\)
−0.931298 + 0.364259i \(0.881322\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13576.9 −0.448715 −0.224358 0.974507i \(-0.572028\pi\)
−0.224358 + 0.974507i \(0.572028\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 31775.1 1.04051 0.520254 0.854011i \(-0.325837\pi\)
0.520254 + 0.854011i \(0.325837\pi\)
\(978\) 0 0
\(979\) 4258.14 0.139010
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −32755.4 −1.06280 −0.531401 0.847120i \(-0.678334\pi\)
−0.531401 + 0.847120i \(0.678334\pi\)
\(984\) 0 0
\(985\) 48858.2 1.58046
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 21054.6 0.676944
\(990\) 0 0
\(991\) −40797.0 −1.30773 −0.653865 0.756611i \(-0.726854\pi\)
−0.653865 + 0.756611i \(0.726854\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8851.60 0.282025
\(996\) 0 0
\(997\) −17370.5 −0.551784 −0.275892 0.961189i \(-0.588973\pi\)
−0.275892 + 0.961189i \(0.588973\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.4.a.ba.1.3 4
3.2 odd 2 588.4.a.k.1.2 yes 4
7.2 even 3 1764.4.k.bd.361.2 8
7.3 odd 6 1764.4.k.bb.1549.3 8
7.4 even 3 1764.4.k.bd.1549.2 8
7.5 odd 6 1764.4.k.bb.361.3 8
7.6 odd 2 1764.4.a.bc.1.2 4
12.11 even 2 2352.4.a.cl.1.2 4
21.2 odd 6 588.4.i.k.361.3 8
21.5 even 6 588.4.i.l.361.2 8
21.11 odd 6 588.4.i.k.373.3 8
21.17 even 6 588.4.i.l.373.2 8
21.20 even 2 588.4.a.j.1.3 4
84.83 odd 2 2352.4.a.cq.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.4.a.j.1.3 4 21.20 even 2
588.4.a.k.1.2 yes 4 3.2 odd 2
588.4.i.k.361.3 8 21.2 odd 6
588.4.i.k.373.3 8 21.11 odd 6
588.4.i.l.361.2 8 21.5 even 6
588.4.i.l.373.2 8 21.17 even 6
1764.4.a.ba.1.3 4 1.1 even 1 trivial
1764.4.a.bc.1.2 4 7.6 odd 2
1764.4.k.bb.361.3 8 7.5 odd 6
1764.4.k.bb.1549.3 8 7.3 odd 6
1764.4.k.bd.361.2 8 7.2 even 3
1764.4.k.bd.1549.2 8 7.4 even 3
2352.4.a.cl.1.2 4 12.11 even 2
2352.4.a.cq.1.3 4 84.83 odd 2