Properties

Label 1764.3.z.g.901.1
Level $1764$
Weight $3$
Character 1764.901
Analytic conductor $48.066$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(325,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.325"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.z (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,12,0,0,0,0,0,18,0,0,0,0,0,24,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1764.901
Dual form 1764.3.z.g.325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.00000 + 3.46410i) q^{5} +(9.00000 + 15.5885i) q^{11} +20.7846i q^{13} +(12.0000 - 6.92820i) q^{17} +(18.0000 + 10.3923i) q^{19} +(9.00000 - 15.5885i) q^{23} +(11.5000 + 19.9186i) q^{25} -18.0000 q^{29} +(-36.0000 + 20.7846i) q^{31} +(-5.00000 + 8.66025i) q^{37} -55.4256i q^{41} -38.0000 q^{43} +(24.0000 + 13.8564i) q^{47} +(9.00000 + 15.5885i) q^{53} +124.708i q^{55} +(6.00000 - 3.46410i) q^{59} +(-18.0000 - 10.3923i) q^{61} +(-72.0000 + 124.708i) q^{65} +(-13.0000 - 22.5167i) q^{67} -18.0000 q^{71} +(-36.0000 + 20.7846i) q^{73} +(-1.00000 + 1.73205i) q^{79} -34.6410i q^{83} +96.0000 q^{85} +(72.0000 + 124.708i) q^{95} -166.277i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{5} + 18 q^{11} + 24 q^{17} + 36 q^{19} + 18 q^{23} + 23 q^{25} - 36 q^{29} - 72 q^{31} - 10 q^{37} - 76 q^{43} + 48 q^{47} + 18 q^{53} + 12 q^{59} - 36 q^{61} - 144 q^{65} - 26 q^{67} - 36 q^{71}+ \cdots + 144 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.00000 + 3.46410i 1.20000 + 0.692820i 0.960555 0.278090i \(-0.0897012\pi\)
0.239445 + 0.970910i \(0.423035\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 9.00000 + 15.5885i 0.818182 + 1.41713i 0.907021 + 0.421086i \(0.138351\pi\)
−0.0888387 + 0.996046i \(0.528316\pi\)
\(12\) 0 0
\(13\) 20.7846i 1.59882i 0.600788 + 0.799408i \(0.294853\pi\)
−0.600788 + 0.799408i \(0.705147\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 12.0000 6.92820i 0.705882 0.407541i −0.103652 0.994614i \(-0.533053\pi\)
0.809535 + 0.587072i \(0.199720\pi\)
\(18\) 0 0
\(19\) 18.0000 + 10.3923i 0.947368 + 0.546963i 0.892262 0.451517i \(-0.149117\pi\)
0.0551060 + 0.998481i \(0.482450\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 9.00000 15.5885i 0.391304 0.677759i −0.601318 0.799010i \(-0.705357\pi\)
0.992622 + 0.121251i \(0.0386906\pi\)
\(24\) 0 0
\(25\) 11.5000 + 19.9186i 0.460000 + 0.796743i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −18.0000 −0.620690 −0.310345 0.950624i \(-0.600445\pi\)
−0.310345 + 0.950624i \(0.600445\pi\)
\(30\) 0 0
\(31\) −36.0000 + 20.7846i −1.16129 + 0.670471i −0.951613 0.307299i \(-0.900575\pi\)
−0.209677 + 0.977771i \(0.567241\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 + 8.66025i −0.135135 + 0.234061i −0.925649 0.378383i \(-0.876480\pi\)
0.790514 + 0.612444i \(0.209814\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 55.4256i 1.35184i −0.736973 0.675922i \(-0.763745\pi\)
0.736973 0.675922i \(-0.236255\pi\)
\(42\) 0 0
\(43\) −38.0000 −0.883721 −0.441860 0.897084i \(-0.645681\pi\)
−0.441860 + 0.897084i \(0.645681\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 24.0000 + 13.8564i 0.510638 + 0.294817i 0.733096 0.680125i \(-0.238075\pi\)
−0.222458 + 0.974942i \(0.571408\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.00000 + 15.5885i 0.169811 + 0.294122i 0.938353 0.345677i \(-0.112351\pi\)
−0.768542 + 0.639799i \(0.779018\pi\)
\(54\) 0 0
\(55\) 124.708i 2.26741i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000 3.46410i 0.101695 0.0587136i −0.448290 0.893888i \(-0.647967\pi\)
0.549985 + 0.835175i \(0.314633\pi\)
\(60\) 0 0
\(61\) −18.0000 10.3923i −0.295082 0.170366i 0.345149 0.938548i \(-0.387828\pi\)
−0.640231 + 0.768182i \(0.721162\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −72.0000 + 124.708i −1.10769 + 1.91858i
\(66\) 0 0
\(67\) −13.0000 22.5167i −0.194030 0.336070i 0.752552 0.658533i \(-0.228823\pi\)
−0.946582 + 0.322463i \(0.895489\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −18.0000 −0.253521 −0.126761 0.991933i \(-0.540458\pi\)
−0.126761 + 0.991933i \(0.540458\pi\)
\(72\) 0 0
\(73\) −36.0000 + 20.7846i −0.493151 + 0.284721i −0.725881 0.687821i \(-0.758568\pi\)
0.232730 + 0.972541i \(0.425234\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.00000 + 1.73205i −0.0126582 + 0.0219247i −0.872285 0.488998i \(-0.837363\pi\)
0.859627 + 0.510922i \(0.170696\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 34.6410i 0.417362i −0.977984 0.208681i \(-0.933083\pi\)
0.977984 0.208681i \(-0.0669170\pi\)
\(84\) 0 0
\(85\) 96.0000 1.12941
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 72.0000 + 124.708i 0.757895 + 1.31271i
\(96\) 0 0
\(97\) 166.277i 1.71419i −0.515155 0.857097i \(-0.672265\pi\)
0.515155 0.857097i \(-0.327735\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 162.000 93.5307i 1.60396 0.926047i 0.613276 0.789869i \(-0.289851\pi\)
0.990684 0.136178i \(-0.0434820\pi\)
\(102\) 0 0
\(103\) −72.0000 41.5692i −0.699029 0.403585i 0.107957 0.994156i \(-0.465569\pi\)
−0.806986 + 0.590571i \(0.798903\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −63.0000 + 109.119i −0.588785 + 1.01981i 0.405607 + 0.914048i \(0.367060\pi\)
−0.994392 + 0.105758i \(0.966273\pi\)
\(108\) 0 0
\(109\) 67.0000 + 116.047i 0.614679 + 1.06466i 0.990441 + 0.137939i \(0.0440477\pi\)
−0.375762 + 0.926716i \(0.622619\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 126.000 1.11504 0.557522 0.830162i \(-0.311752\pi\)
0.557522 + 0.830162i \(0.311752\pi\)
\(114\) 0 0
\(115\) 108.000 62.3538i 0.939130 0.542207i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −101.500 + 175.803i −0.838843 + 1.45292i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 13.8564i 0.110851i
\(126\) 0 0
\(127\) −46.0000 −0.362205 −0.181102 0.983464i \(-0.557967\pi\)
−0.181102 + 0.983464i \(0.557967\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −162.000 93.5307i −1.23664 0.713975i −0.268235 0.963353i \(-0.586440\pi\)
−0.968406 + 0.249378i \(0.919774\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 81.0000 + 140.296i 0.591241 + 1.02406i 0.994066 + 0.108782i \(0.0346951\pi\)
−0.402825 + 0.915277i \(0.631972\pi\)
\(138\) 0 0
\(139\) 62.3538i 0.448589i −0.974521 0.224294i \(-0.927992\pi\)
0.974521 0.224294i \(-0.0720077\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −324.000 + 187.061i −2.26573 + 1.30812i
\(144\) 0 0
\(145\) −108.000 62.3538i −0.744828 0.430026i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 81.0000 140.296i 0.543624 0.941585i −0.455068 0.890457i \(-0.650385\pi\)
0.998692 0.0511280i \(-0.0162816\pi\)
\(150\) 0 0
\(151\) 127.000 + 219.970i 0.841060 + 1.45676i 0.889000 + 0.457908i \(0.151401\pi\)
−0.0479401 + 0.998850i \(0.515266\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −288.000 −1.85806
\(156\) 0 0
\(157\) 18.0000 10.3923i 0.114650 0.0661930i −0.441579 0.897223i \(-0.645581\pi\)
0.556228 + 0.831030i \(0.312248\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −13.0000 + 22.5167i −0.0797546 + 0.138139i −0.903144 0.429338i \(-0.858747\pi\)
0.823389 + 0.567477i \(0.192080\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 180.133i 1.07864i 0.842100 + 0.539321i \(0.181319\pi\)
−0.842100 + 0.539321i \(0.818681\pi\)
\(168\) 0 0
\(169\) −263.000 −1.55621
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 162.000 + 93.5307i 0.936416 + 0.540640i 0.888835 0.458227i \(-0.151515\pi\)
0.0475811 + 0.998867i \(0.484849\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 153.000 + 265.004i 0.854749 + 1.48047i 0.876878 + 0.480713i \(0.159622\pi\)
−0.0221294 + 0.999755i \(0.507045\pi\)
\(180\) 0 0
\(181\) 187.061i 1.03349i −0.856140 0.516744i \(-0.827144\pi\)
0.856140 0.516744i \(-0.172856\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −60.0000 + 34.6410i −0.324324 + 0.187249i
\(186\) 0 0
\(187\) 216.000 + 124.708i 1.15508 + 0.666886i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −135.000 + 233.827i −0.706806 + 1.22422i 0.259229 + 0.965816i \(0.416531\pi\)
−0.966036 + 0.258409i \(0.916802\pi\)
\(192\) 0 0
\(193\) −137.000 237.291i −0.709845 1.22949i −0.964915 0.262564i \(-0.915432\pi\)
0.255070 0.966923i \(-0.417901\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −162.000 −0.822335 −0.411168 0.911560i \(-0.634879\pi\)
−0.411168 + 0.911560i \(0.634879\pi\)
\(198\) 0 0
\(199\) 72.0000 41.5692i 0.361809 0.208891i −0.308065 0.951365i \(-0.599681\pi\)
0.669874 + 0.742475i \(0.266348\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 192.000 332.554i 0.936585 1.62221i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 374.123i 1.79006i
\(210\) 0 0
\(211\) 10.0000 0.0473934 0.0236967 0.999719i \(-0.492456\pi\)
0.0236967 + 0.999719i \(0.492456\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −228.000 131.636i −1.06047 0.612260i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 144.000 + 249.415i 0.651584 + 1.12858i
\(222\) 0 0
\(223\) 41.5692i 0.186409i 0.995647 + 0.0932045i \(0.0297110\pi\)
−0.995647 + 0.0932045i \(0.970289\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 162.000 93.5307i 0.713656 0.412030i −0.0987570 0.995112i \(-0.531487\pi\)
0.812413 + 0.583082i \(0.198153\pi\)
\(228\) 0 0
\(229\) 234.000 + 135.100i 1.02183 + 0.589956i 0.914635 0.404281i \(-0.132478\pi\)
0.107199 + 0.994238i \(0.465812\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −63.0000 + 109.119i −0.270386 + 0.468323i −0.968961 0.247215i \(-0.920485\pi\)
0.698574 + 0.715537i \(0.253818\pi\)
\(234\) 0 0
\(235\) 96.0000 + 166.277i 0.408511 + 0.707561i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −18.0000 −0.0753138 −0.0376569 0.999291i \(-0.511989\pi\)
−0.0376569 + 0.999291i \(0.511989\pi\)
\(240\) 0 0
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −216.000 + 374.123i −0.874494 + 1.51467i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 48.4974i 0.193217i −0.995322 0.0966084i \(-0.969201\pi\)
0.995322 0.0966084i \(-0.0307994\pi\)
\(252\) 0 0
\(253\) 324.000 1.28063
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 324.000 + 187.061i 1.26070 + 0.727866i 0.973210 0.229918i \(-0.0738457\pi\)
0.287490 + 0.957784i \(0.407179\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −135.000 233.827i −0.513308 0.889076i −0.999881 0.0154355i \(-0.995087\pi\)
0.486573 0.873640i \(-0.338247\pi\)
\(264\) 0 0
\(265\) 124.708i 0.470595i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −66.0000 + 38.1051i −0.245353 + 0.141655i −0.617635 0.786465i \(-0.711909\pi\)
0.372281 + 0.928120i \(0.378576\pi\)
\(270\) 0 0
\(271\) 180.000 + 103.923i 0.664207 + 0.383480i 0.793878 0.608077i \(-0.208059\pi\)
−0.129671 + 0.991557i \(0.541392\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −207.000 + 358.535i −0.752727 + 1.30376i
\(276\) 0 0
\(277\) 179.000 + 310.037i 0.646209 + 1.11927i 0.984021 + 0.178054i \(0.0569801\pi\)
−0.337811 + 0.941214i \(0.609687\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 414.000 1.47331 0.736655 0.676269i \(-0.236404\pi\)
0.736655 + 0.676269i \(0.236404\pi\)
\(282\) 0 0
\(283\) 234.000 135.100i 0.826855 0.477385i −0.0259195 0.999664i \(-0.508251\pi\)
0.852775 + 0.522279i \(0.174918\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −48.5000 + 84.0045i −0.167820 + 0.290673i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 117.779i 0.401978i −0.979594 0.200989i \(-0.935585\pi\)
0.979594 0.200989i \(-0.0644155\pi\)
\(294\) 0 0
\(295\) 48.0000 0.162712
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 324.000 + 187.061i 1.08361 + 0.625624i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −72.0000 124.708i −0.236066 0.408878i
\(306\) 0 0
\(307\) 62.3538i 0.203107i 0.994830 + 0.101553i \(0.0323813\pi\)
−0.994830 + 0.101553i \(0.967619\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −276.000 + 159.349i −0.887460 + 0.512375i −0.873111 0.487522i \(-0.837901\pi\)
−0.0143490 + 0.999897i \(0.504568\pi\)
\(312\) 0 0
\(313\) −324.000 187.061i −1.03514 0.597641i −0.116690 0.993168i \(-0.537228\pi\)
−0.918454 + 0.395528i \(0.870562\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 225.000 389.711i 0.709779 1.22937i −0.255160 0.966899i \(-0.582128\pi\)
0.964939 0.262475i \(-0.0845386\pi\)
\(318\) 0 0
\(319\) −162.000 280.592i −0.507837 0.879599i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 288.000 0.891641
\(324\) 0 0
\(325\) −414.000 + 239.023i −1.27385 + 0.735455i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −125.000 + 216.506i −0.377644 + 0.654098i −0.990719 0.135927i \(-0.956599\pi\)
0.613075 + 0.790024i \(0.289932\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 180.133i 0.537711i
\(336\) 0 0
\(337\) −14.0000 −0.0415430 −0.0207715 0.999784i \(-0.506612\pi\)
−0.0207715 + 0.999784i \(0.506612\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −648.000 374.123i −1.90029 1.09713i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −207.000 358.535i −0.596542 1.03324i −0.993327 0.115329i \(-0.963208\pi\)
0.396786 0.917911i \(-0.370126\pi\)
\(348\) 0 0
\(349\) 436.477i 1.25065i 0.780364 + 0.625325i \(0.215034\pi\)
−0.780364 + 0.625325i \(0.784966\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 516.000 297.913i 1.46176 0.843945i 0.462664 0.886534i \(-0.346894\pi\)
0.999093 + 0.0425884i \(0.0135604\pi\)
\(354\) 0 0
\(355\) −108.000 62.3538i −0.304225 0.175645i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.00000 15.5885i 0.0250696 0.0434219i −0.853218 0.521554i \(-0.825353\pi\)
0.878288 + 0.478132i \(0.158686\pi\)
\(360\) 0 0
\(361\) 35.5000 + 61.4878i 0.0983380 + 0.170326i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −288.000 −0.789041
\(366\) 0 0
\(367\) −396.000 + 228.631i −1.07902 + 0.622972i −0.930632 0.365957i \(-0.880742\pi\)
−0.148387 + 0.988929i \(0.547408\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 227.000 393.176i 0.608579 1.05409i −0.382896 0.923792i \(-0.625073\pi\)
0.991475 0.130298i \(-0.0415935\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 374.123i 0.992369i
\(378\) 0 0
\(379\) −134.000 −0.353562 −0.176781 0.984250i \(-0.556568\pi\)
−0.176781 + 0.984250i \(0.556568\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −168.000 96.9948i −0.438642 0.253250i 0.264379 0.964419i \(-0.414833\pi\)
−0.703022 + 0.711169i \(0.748166\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 297.000 + 514.419i 0.763496 + 1.32241i 0.941038 + 0.338301i \(0.109852\pi\)
−0.177542 + 0.984113i \(0.556815\pi\)
\(390\) 0 0
\(391\) 249.415i 0.637891i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −12.0000 + 6.92820i −0.0303797 + 0.0175398i
\(396\) 0 0
\(397\) −306.000 176.669i −0.770781 0.445011i 0.0623722 0.998053i \(-0.480133\pi\)
−0.833153 + 0.553042i \(0.813467\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 81.0000 140.296i 0.201995 0.349866i −0.747176 0.664626i \(-0.768591\pi\)
0.949171 + 0.314760i \(0.101924\pi\)
\(402\) 0 0
\(403\) −432.000 748.246i −1.07196 1.85669i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −180.000 −0.442260
\(408\) 0 0
\(409\) −108.000 + 62.3538i −0.264059 + 0.152454i −0.626185 0.779675i \(-0.715384\pi\)
0.362126 + 0.932129i \(0.382051\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 120.000 207.846i 0.289157 0.500834i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 505.759i 1.20706i −0.797340 0.603531i \(-0.793760\pi\)
0.797340 0.603531i \(-0.206240\pi\)
\(420\) 0 0
\(421\) −454.000 −1.07838 −0.539192 0.842183i \(-0.681270\pi\)
−0.539192 + 0.842183i \(0.681270\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 276.000 + 159.349i 0.649412 + 0.374938i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −135.000 233.827i −0.313225 0.542522i 0.665834 0.746100i \(-0.268076\pi\)
−0.979059 + 0.203579i \(0.934743\pi\)
\(432\) 0 0
\(433\) 166.277i 0.384011i −0.981394 0.192006i \(-0.938501\pi\)
0.981394 0.192006i \(-0.0614992\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 324.000 187.061i 0.741419 0.428058i
\(438\) 0 0
\(439\) −432.000 249.415i −0.984055 0.568144i −0.0805628 0.996750i \(-0.525672\pi\)
−0.903492 + 0.428605i \(0.859005\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 153.000 265.004i 0.345372 0.598203i −0.640049 0.768334i \(-0.721086\pi\)
0.985421 + 0.170132i \(0.0544193\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −162.000 −0.360802 −0.180401 0.983593i \(-0.557740\pi\)
−0.180401 + 0.983593i \(0.557740\pi\)
\(450\) 0 0
\(451\) 864.000 498.831i 1.91574 1.10605i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 79.0000 136.832i 0.172867 0.299414i −0.766554 0.642179i \(-0.778030\pi\)
0.939421 + 0.342766i \(0.111364\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 408.764i 0.886690i −0.896351 0.443345i \(-0.853792\pi\)
0.896351 0.443345i \(-0.146208\pi\)
\(462\) 0 0
\(463\) −382.000 −0.825054 −0.412527 0.910945i \(-0.635354\pi\)
−0.412527 + 0.910945i \(0.635354\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 486.000 + 280.592i 1.04069 + 0.600840i 0.920027 0.391854i \(-0.128166\pi\)
0.120658 + 0.992694i \(0.461500\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −342.000 592.361i −0.723044 1.25235i
\(474\) 0 0
\(475\) 478.046i 1.00641i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 672.000 387.979i 1.40292 0.809978i 0.408231 0.912879i \(-0.366146\pi\)
0.994692 + 0.102901i \(0.0328124\pi\)
\(480\) 0 0
\(481\) −180.000 103.923i −0.374220 0.216056i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 576.000 997.661i 1.18763 2.05703i
\(486\) 0 0
\(487\) 271.000 + 469.386i 0.556468 + 0.963831i 0.997788 + 0.0664811i \(0.0211772\pi\)
−0.441320 + 0.897350i \(0.645489\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −594.000 −1.20978 −0.604888 0.796311i \(-0.706782\pi\)
−0.604888 + 0.796311i \(0.706782\pi\)
\(492\) 0 0
\(493\) −216.000 + 124.708i −0.438134 + 0.252957i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 331.000 573.309i 0.663327 1.14892i −0.316409 0.948623i \(-0.602477\pi\)
0.979736 0.200293i \(-0.0641893\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.8564i 0.0275475i −0.999905 0.0137738i \(-0.995616\pi\)
0.999905 0.0137738i \(-0.00438446\pi\)
\(504\) 0 0
\(505\) 1296.00 2.56634
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −222.000 128.172i −0.436149 0.251811i 0.265814 0.964024i \(-0.414359\pi\)
−0.701963 + 0.712214i \(0.747693\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −288.000 498.831i −0.559223 0.968603i
\(516\) 0 0
\(517\) 498.831i 0.964856i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −768.000 + 443.405i −1.47409 + 0.851065i −0.999574 0.0291826i \(-0.990710\pi\)
−0.474514 + 0.880248i \(0.657376\pi\)
\(522\) 0 0
\(523\) 558.000 + 322.161i 1.06692 + 0.615987i 0.927339 0.374223i \(-0.122091\pi\)
0.139583 + 0.990210i \(0.455424\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −288.000 + 498.831i −0.546490 + 0.946548i
\(528\) 0 0
\(529\) 102.500 + 177.535i 0.193762 + 0.335605i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1152.00 2.16135
\(534\) 0 0
\(535\) −756.000 + 436.477i −1.41308 + 0.815844i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −229.000 + 396.640i −0.423290 + 0.733160i −0.996259 0.0864170i \(-0.972458\pi\)
0.572969 + 0.819577i \(0.305792\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 928.379i 1.70345i
\(546\) 0 0
\(547\) 506.000 0.925046 0.462523 0.886607i \(-0.346944\pi\)
0.462523 + 0.886607i \(0.346944\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −324.000 187.061i −0.588022 0.339495i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −279.000 483.242i −0.500898 0.867580i −0.999999 0.00103685i \(-0.999670\pi\)
0.499102 0.866543i \(-0.333663\pi\)
\(558\) 0 0
\(559\) 789.815i 1.41291i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 162.000 93.5307i 0.287744 0.166129i −0.349180 0.937056i \(-0.613540\pi\)
0.636924 + 0.770927i \(0.280206\pi\)
\(564\) 0 0
\(565\) 756.000 + 436.477i 1.33805 + 0.772525i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 369.000 639.127i 0.648506 1.12325i −0.334974 0.942228i \(-0.608727\pi\)
0.983480 0.181018i \(-0.0579393\pi\)
\(570\) 0 0
\(571\) −133.000 230.363i −0.232925 0.403437i 0.725743 0.687966i \(-0.241496\pi\)
−0.958668 + 0.284529i \(0.908163\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 414.000 0.720000
\(576\) 0 0
\(577\) 72.0000 41.5692i 0.124783 0.0720437i −0.436309 0.899797i \(-0.643715\pi\)
0.561092 + 0.827753i \(0.310381\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −162.000 + 280.592i −0.277873 + 0.481290i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 561.184i 0.956021i 0.878354 + 0.478011i \(0.158642\pi\)
−0.878354 + 0.478011i \(0.841358\pi\)
\(588\) 0 0
\(589\) −864.000 −1.46689
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 228.000 + 131.636i 0.384486 + 0.221983i 0.679768 0.733427i \(-0.262080\pi\)
−0.295282 + 0.955410i \(0.595414\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.00000 + 15.5885i 0.0150250 + 0.0260241i 0.873440 0.486931i \(-0.161884\pi\)
−0.858415 + 0.512956i \(0.828551\pi\)
\(600\) 0 0
\(601\) 41.5692i 0.0691668i −0.999402 0.0345834i \(-0.988990\pi\)
0.999402 0.0345834i \(-0.0110104\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1218.00 + 703.213i −2.01322 + 1.16233i
\(606\) 0 0
\(607\) −324.000 187.061i −0.533773 0.308174i 0.208779 0.977963i \(-0.433051\pi\)
−0.742551 + 0.669789i \(0.766384\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −288.000 + 498.831i −0.471358 + 0.816417i
\(612\) 0 0
\(613\) −397.000 687.624i −0.647635 1.12174i −0.983686 0.179892i \(-0.942425\pi\)
0.336052 0.941844i \(-0.390908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 702.000 1.13776 0.568882 0.822419i \(-0.307376\pi\)
0.568882 + 0.822419i \(0.307376\pi\)
\(618\) 0 0
\(619\) 90.0000 51.9615i 0.145396 0.0839443i −0.425537 0.904941i \(-0.639915\pi\)
0.570933 + 0.820997i \(0.306582\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 335.500 581.103i 0.536800 0.929765i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 138.564i 0.220293i
\(630\) 0 0
\(631\) 530.000 0.839937 0.419968 0.907539i \(-0.362041\pi\)
0.419968 + 0.907539i \(0.362041\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −276.000 159.349i −0.434646 0.250943i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −495.000 857.365i −0.772231 1.33754i −0.936338 0.351101i \(-0.885808\pi\)
0.164107 0.986443i \(-0.447526\pi\)
\(642\) 0 0
\(643\) 436.477i 0.678813i −0.940640 0.339407i \(-0.889774\pi\)
0.940640 0.339407i \(-0.110226\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 324.000 187.061i 0.500773 0.289121i −0.228260 0.973600i \(-0.573304\pi\)
0.729033 + 0.684479i \(0.239970\pi\)
\(648\) 0 0
\(649\) 108.000 + 62.3538i 0.166410 + 0.0960768i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000 15.5885i 0.0137825 0.0238721i −0.859052 0.511889i \(-0.828946\pi\)
0.872834 + 0.488016i \(0.162279\pi\)
\(654\) 0 0
\(655\) −648.000 1122.37i −0.989313 1.71354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −882.000 −1.33839 −0.669196 0.743086i \(-0.733361\pi\)
−0.669196 + 0.743086i \(0.733361\pi\)
\(660\) 0 0
\(661\) 1062.00 613.146i 1.60666 0.927604i 0.616545 0.787319i \(-0.288532\pi\)
0.990111 0.140284i \(-0.0448016\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −162.000 + 280.592i −0.242879 + 0.420678i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 374.123i 0.557560i
\(672\) 0 0
\(673\) 706.000 1.04903 0.524517 0.851400i \(-0.324246\pi\)
0.524517 + 0.851400i \(0.324246\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −162.000 93.5307i −0.239291 0.138155i 0.375560 0.926798i \(-0.377450\pi\)
−0.614851 + 0.788643i \(0.710784\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −279.000 483.242i −0.408492 0.707529i 0.586229 0.810145i \(-0.300612\pi\)
−0.994721 + 0.102617i \(0.967279\pi\)
\(684\) 0 0
\(685\) 1122.37i 1.63849i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −324.000 + 187.061i −0.470247 + 0.271497i
\(690\) 0 0
\(691\) 522.000 + 301.377i 0.755427 + 0.436146i 0.827651 0.561242i \(-0.189676\pi\)
−0.0722245 + 0.997388i \(0.523010\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 216.000 374.123i 0.310791 0.538306i
\(696\) 0 0
\(697\) −384.000 665.108i −0.550933 0.954243i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 414.000 0.590585 0.295292 0.955407i \(-0.404583\pi\)
0.295292 + 0.955407i \(0.404583\pi\)
\(702\) 0 0
\(703\) −180.000 + 103.923i −0.256046 + 0.147828i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 91.0000 157.617i 0.128350 0.222308i −0.794688 0.607019i \(-0.792365\pi\)
0.923037 + 0.384710i \(0.125699\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 748.246i 1.04943i
\(714\) 0 0
\(715\) −2592.00 −3.62517
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 984.000 + 568.113i 1.36857 + 0.790143i 0.990745 0.135735i \(-0.0433397\pi\)
0.377822 + 0.925878i \(0.376673\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −207.000 358.535i −0.285517 0.494530i
\(726\) 0 0
\(727\) 1247.08i 1.71537i −0.514173 0.857687i \(-0.671901\pi\)
0.514173 0.857687i \(-0.328099\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −456.000 + 263.272i −0.623803 + 0.360153i
\(732\) 0 0
\(733\) 1206.00 + 696.284i 1.64529 + 0.949911i 0.978908 + 0.204303i \(0.0654929\pi\)
0.666386 + 0.745607i \(0.267840\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 234.000 405.300i 0.317503 0.549932i
\(738\) 0 0
\(739\) 611.000 + 1058.28i 0.826793 + 1.43205i 0.900541 + 0.434771i \(0.143171\pi\)
−0.0737483 + 0.997277i \(0.523496\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 270.000 0.363392 0.181696 0.983355i \(-0.441841\pi\)
0.181696 + 0.983355i \(0.441841\pi\)
\(744\) 0 0
\(745\) 972.000 561.184i 1.30470 0.753268i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 103.000 178.401i 0.137150 0.237552i −0.789266 0.614051i \(-0.789539\pi\)
0.926417 + 0.376499i \(0.122872\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1759.76i 2.33081i
\(756\) 0 0
\(757\) 1162.00 1.53501 0.767503 0.641045i \(-0.221499\pi\)
0.767503 + 0.641045i \(0.221499\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 480.000 + 277.128i 0.630749 + 0.364163i 0.781042 0.624478i \(-0.214688\pi\)
−0.150293 + 0.988641i \(0.548022\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 72.0000 + 124.708i 0.0938722 + 0.162591i
\(768\) 0 0
\(769\) 1330.22i 1.72980i −0.501946 0.864899i \(-0.667382\pi\)
0.501946 0.864899i \(-0.332618\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1146.00 661.643i 1.48254 0.855942i 0.482732 0.875768i \(-0.339644\pi\)
0.999803 + 0.0198257i \(0.00631114\pi\)
\(774\) 0 0
\(775\) −828.000 478.046i −1.06839 0.616834i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 576.000 997.661i 0.739409 1.28069i
\(780\) 0 0
\(781\) −162.000 280.592i −0.207426 0.359273i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 144.000 0.183439
\(786\) 0 0
\(787\) −666.000 + 384.515i −0.846252 + 0.488584i −0.859384 0.511330i \(-0.829153\pi\)
0.0131328 + 0.999914i \(0.495820\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 216.000 374.123i 0.272383 0.471782i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 187.061i 0.234707i −0.993090 0.117354i \(-0.962559\pi\)
0.993090 0.117354i \(-0.0374411\pi\)
\(798\) 0 0
\(799\) 384.000 0.480601
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −648.000 374.123i −0.806974 0.465907i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 225.000 + 389.711i 0.278121 + 0.481720i 0.970918 0.239413i \(-0.0769550\pi\)
−0.692797 + 0.721133i \(0.743622\pi\)
\(810\) 0 0
\(811\) 852.169i 1.05076i 0.850867 + 0.525382i \(0.176077\pi\)
−0.850867 + 0.525382i \(0.823923\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −156.000 + 90.0666i −0.191411 + 0.110511i
\(816\) 0 0
\(817\) −684.000 394.908i −0.837209 0.483363i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −423.000 + 732.657i −0.515225 + 0.892396i 0.484619 + 0.874726i \(0.338958\pi\)
−0.999844 + 0.0176709i \(0.994375\pi\)
\(822\) 0 0
\(823\) 695.000 + 1203.78i 0.844471 + 1.46267i 0.886079 + 0.463533i \(0.153419\pi\)
−0.0416080 + 0.999134i \(0.513248\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1314.00 −1.58888 −0.794438 0.607346i \(-0.792234\pi\)
−0.794438 + 0.607346i \(0.792234\pi\)
\(828\) 0 0
\(829\) −414.000 + 239.023i −0.499397 + 0.288327i −0.728464 0.685084i \(-0.759766\pi\)
0.229068 + 0.973411i \(0.426432\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −624.000 + 1080.80i −0.747305 + 1.29437i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 900.666i 1.07350i −0.843741 0.536750i \(-0.819652\pi\)
0.843741 0.536750i \(-0.180348\pi\)
\(840\) 0 0
\(841\) −517.000 −0.614744
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1578.00 911.059i −1.86746 1.07818i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 90.0000 + 155.885i 0.105758 + 0.183178i
\(852\) 0 0
\(853\) 1517.28i 1.77875i −0.457175 0.889377i \(-0.651139\pi\)
0.457175 0.889377i \(-0.348861\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −672.000 + 387.979i −0.784131 + 0.452718i −0.837892 0.545836i \(-0.816212\pi\)
0.0537615 + 0.998554i \(0.482879\pi\)
\(858\) 0 0
\(859\) −1026.00 592.361i −1.19441 0.689594i −0.235108 0.971969i \(-0.575544\pi\)
−0.959304 + 0.282375i \(0.908878\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −279.000 + 483.242i −0.323291 + 0.559956i −0.981165 0.193172i \(-0.938123\pi\)
0.657874 + 0.753128i \(0.271456\pi\)
\(864\) 0 0
\(865\) 648.000 + 1122.37i 0.749133 + 1.29754i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −36.0000 −0.0414269
\(870\) 0 0
\(871\) 468.000 270.200i 0.537313 0.310218i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 587.000 1016.71i 0.669327 1.15931i −0.308765 0.951138i \(-0.599916\pi\)
0.978093 0.208171i \(-0.0667509\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1122.37i 1.27397i −0.770876 0.636986i \(-0.780181\pi\)
0.770876 0.636986i \(-0.219819\pi\)
\(882\) 0 0
\(883\) 1450.00 1.64213 0.821065 0.570835i \(-0.193381\pi\)
0.821065 + 0.570835i \(0.193381\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 60.0000 + 34.6410i 0.0676437 + 0.0390541i 0.533440 0.845838i \(-0.320899\pi\)
−0.465797 + 0.884892i \(0.654232\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 288.000 + 498.831i 0.322508 + 0.558601i
\(894\) 0 0
\(895\) 2120.03i 2.36875i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 648.000 374.123i 0.720801 0.416155i
\(900\) 0 0
\(901\) 216.000 + 124.708i 0.239734 + 0.138410i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 648.000 1122.37i 0.716022 1.24019i
\(906\) 0 0
\(907\) −413.000 715.337i −0.455347 0.788685i 0.543361 0.839499i \(-0.317152\pi\)
−0.998708 + 0.0508146i \(0.983818\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −594.000 −0.652031 −0.326015 0.945364i \(-0.605706\pi\)
−0.326015 + 0.945364i \(0.605706\pi\)
\(912\) 0 0
\(913\) 540.000 311.769i 0.591457 0.341478i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −41.0000 + 71.0141i −0.0446137 + 0.0772732i −0.887470 0.460866i \(-0.847539\pi\)
0.842856 + 0.538139i \(0.180872\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 374.123i 0.405334i
\(924\) 0 0
\(925\) −230.000 −0.248649
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −732.000 422.620i −0.787944 0.454920i 0.0512942 0.998684i \(-0.483665\pi\)
−0.839238 + 0.543764i \(0.816999\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 864.000 + 1496.49i 0.924064 + 1.60053i
\(936\) 0 0
\(937\) 872.954i 0.931647i −0.884878 0.465824i \(-0.845758\pi\)
0.884878 0.465824i \(-0.154242\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −426.000 + 245.951i −0.452710 + 0.261372i −0.708974 0.705235i \(-0.750842\pi\)
0.256264 + 0.966607i \(0.417508\pi\)
\(942\) 0 0
\(943\) −864.000 498.831i −0.916225 0.528983i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −855.000 + 1480.90i −0.902851 + 1.56378i −0.0790750 + 0.996869i \(0.525197\pi\)
−0.823776 + 0.566915i \(0.808137\pi\)
\(948\) 0 0
\(949\) −432.000 748.246i −0.455216 0.788457i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 126.000 0.132214 0.0661070 0.997813i \(-0.478942\pi\)
0.0661070 + 0.997813i \(0.478942\pi\)
\(954\) 0 0
\(955\) −1620.00 + 935.307i −1.69634 + 0.979380i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 383.500 664.241i 0.399063 0.691198i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1898.33i 1.96718i
\(966\) 0 0
\(967\) −766.000 −0.792141 −0.396070 0.918220i \(-0.629626\pi\)
−0.396070 + 0.918220i \(0.629626\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1362.00 + 786.351i 1.40268 + 0.809836i 0.994667 0.103141i \(-0.0328892\pi\)
0.408011 + 0.912977i \(0.366223\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 801.000 + 1387.37i 0.819857 + 1.42003i 0.905787 + 0.423732i \(0.139280\pi\)
−0.0859307 + 0.996301i \(0.527386\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −732.000 + 422.620i −0.744659 + 0.429929i −0.823761 0.566937i \(-0.808128\pi\)
0.0791017 + 0.996867i \(0.474795\pi\)
\(984\) 0 0
\(985\) −972.000 561.184i −0.986802 0.569730i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −342.000 + 592.361i −0.345804 + 0.598950i
\(990\) 0 0
\(991\) 31.0000 + 53.6936i 0.0312815 + 0.0541812i 0.881242 0.472665i \(-0.156708\pi\)
−0.849961 + 0.526846i \(0.823374\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 576.000 0.578894
\(996\) 0 0
\(997\) 54.0000 31.1769i 0.0541625 0.0312707i −0.472674 0.881237i \(-0.656711\pi\)
0.526837 + 0.849967i \(0.323378\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.3.z.g.901.1 2
3.2 odd 2 588.3.m.c.313.1 2
7.2 even 3 252.3.d.a.181.1 2
7.3 odd 6 inner 1764.3.z.g.325.1 2
7.4 even 3 1764.3.z.a.325.1 2
7.5 odd 6 252.3.d.a.181.2 2
7.6 odd 2 1764.3.z.a.901.1 2
21.2 odd 6 84.3.d.a.13.2 yes 2
21.5 even 6 84.3.d.a.13.1 2
21.11 odd 6 588.3.m.b.325.1 2
21.17 even 6 588.3.m.c.325.1 2
21.20 even 2 588.3.m.b.313.1 2
28.19 even 6 1008.3.f.f.433.2 2
28.23 odd 6 1008.3.f.f.433.1 2
84.23 even 6 336.3.f.b.97.1 2
84.47 odd 6 336.3.f.b.97.2 2
105.2 even 12 2100.3.p.b.349.3 4
105.23 even 12 2100.3.p.b.349.2 4
105.44 odd 6 2100.3.j.c.601.1 2
105.47 odd 12 2100.3.p.b.349.1 4
105.68 odd 12 2100.3.p.b.349.4 4
105.89 even 6 2100.3.j.c.601.2 2
168.5 even 6 1344.3.f.a.769.2 2
168.107 even 6 1344.3.f.d.769.2 2
168.131 odd 6 1344.3.f.d.769.1 2
168.149 odd 6 1344.3.f.a.769.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.d.a.13.1 2 21.5 even 6
84.3.d.a.13.2 yes 2 21.2 odd 6
252.3.d.a.181.1 2 7.2 even 3
252.3.d.a.181.2 2 7.5 odd 6
336.3.f.b.97.1 2 84.23 even 6
336.3.f.b.97.2 2 84.47 odd 6
588.3.m.b.313.1 2 21.20 even 2
588.3.m.b.325.1 2 21.11 odd 6
588.3.m.c.313.1 2 3.2 odd 2
588.3.m.c.325.1 2 21.17 even 6
1008.3.f.f.433.1 2 28.23 odd 6
1008.3.f.f.433.2 2 28.19 even 6
1344.3.f.a.769.1 2 168.149 odd 6
1344.3.f.a.769.2 2 168.5 even 6
1344.3.f.d.769.1 2 168.131 odd 6
1344.3.f.d.769.2 2 168.107 even 6
1764.3.z.a.325.1 2 7.4 even 3
1764.3.z.a.901.1 2 7.6 odd 2
1764.3.z.g.325.1 2 7.3 odd 6 inner
1764.3.z.g.901.1 2 1.1 even 1 trivial
2100.3.j.c.601.1 2 105.44 odd 6
2100.3.j.c.601.2 2 105.89 even 6
2100.3.p.b.349.1 4 105.47 odd 12
2100.3.p.b.349.2 4 105.23 even 12
2100.3.p.b.349.3 4 105.2 even 12
2100.3.p.b.349.4 4 105.68 odd 12