Properties

Label 1344.3.f.d.769.2
Level $1344$
Weight $3$
Character 1344.769
Analytic conductor $36.621$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,3,Mod(769,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.769"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1344.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,14,0,-6,0,36,0,0,0,24,0,0,0,0,0,0,0,-36,0,-46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.6213475300\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.2
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1344.769
Dual form 1344.3.f.d.769.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} -6.92820i q^{5} +7.00000 q^{7} -3.00000 q^{9} +18.0000 q^{11} -20.7846i q^{13} +12.0000 q^{15} -13.8564i q^{17} -20.7846i q^{19} +12.1244i q^{21} -18.0000 q^{23} -23.0000 q^{25} -5.19615i q^{27} -18.0000 q^{29} +41.5692i q^{31} +31.1769i q^{33} -48.4974i q^{35} -10.0000 q^{37} +36.0000 q^{39} +55.4256i q^{41} -38.0000 q^{43} +20.7846i q^{45} -27.7128i q^{47} +49.0000 q^{49} +24.0000 q^{51} -18.0000 q^{53} -124.708i q^{55} +36.0000 q^{57} -6.92820i q^{59} -20.7846i q^{61} -21.0000 q^{63} -144.000 q^{65} +26.0000 q^{67} -31.1769i q^{69} -18.0000 q^{71} -41.5692i q^{73} -39.8372i q^{75} +126.000 q^{77} -2.00000 q^{79} +9.00000 q^{81} +34.6410i q^{83} -96.0000 q^{85} -31.1769i q^{87} -145.492i q^{91} -72.0000 q^{93} -144.000 q^{95} -166.277i q^{97} -54.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{7} - 6 q^{9} + 36 q^{11} + 24 q^{15} - 36 q^{23} - 46 q^{25} - 36 q^{29} - 20 q^{37} + 72 q^{39} - 76 q^{43} + 98 q^{49} + 48 q^{51} - 36 q^{53} + 72 q^{57} - 42 q^{63} - 288 q^{65} + 52 q^{67}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) − 6.92820i − 1.38564i −0.721110 0.692820i \(-0.756368\pi\)
0.721110 0.692820i \(-0.243632\pi\)
\(6\) 0 0
\(7\) 7.00000 1.00000
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 18.0000 1.63636 0.818182 0.574960i \(-0.194982\pi\)
0.818182 + 0.574960i \(0.194982\pi\)
\(12\) 0 0
\(13\) − 20.7846i − 1.59882i −0.600788 0.799408i \(-0.705147\pi\)
0.600788 0.799408i \(-0.294853\pi\)
\(14\) 0 0
\(15\) 12.0000 0.800000
\(16\) 0 0
\(17\) − 13.8564i − 0.815083i −0.913187 0.407541i \(-0.866386\pi\)
0.913187 0.407541i \(-0.133614\pi\)
\(18\) 0 0
\(19\) − 20.7846i − 1.09393i −0.837157 0.546963i \(-0.815784\pi\)
0.837157 0.546963i \(-0.184216\pi\)
\(20\) 0 0
\(21\) 12.1244i 0.577350i
\(22\) 0 0
\(23\) −18.0000 −0.782609 −0.391304 0.920261i \(-0.627976\pi\)
−0.391304 + 0.920261i \(0.627976\pi\)
\(24\) 0 0
\(25\) −23.0000 −0.920000
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) −18.0000 −0.620690 −0.310345 0.950624i \(-0.600445\pi\)
−0.310345 + 0.950624i \(0.600445\pi\)
\(30\) 0 0
\(31\) 41.5692i 1.34094i 0.741935 + 0.670471i \(0.233908\pi\)
−0.741935 + 0.670471i \(0.766092\pi\)
\(32\) 0 0
\(33\) 31.1769i 0.944755i
\(34\) 0 0
\(35\) − 48.4974i − 1.38564i
\(36\) 0 0
\(37\) −10.0000 −0.270270 −0.135135 0.990827i \(-0.543147\pi\)
−0.135135 + 0.990827i \(0.543147\pi\)
\(38\) 0 0
\(39\) 36.0000 0.923077
\(40\) 0 0
\(41\) 55.4256i 1.35184i 0.736973 + 0.675922i \(0.236255\pi\)
−0.736973 + 0.675922i \(0.763745\pi\)
\(42\) 0 0
\(43\) −38.0000 −0.883721 −0.441860 0.897084i \(-0.645681\pi\)
−0.441860 + 0.897084i \(0.645681\pi\)
\(44\) 0 0
\(45\) 20.7846i 0.461880i
\(46\) 0 0
\(47\) − 27.7128i − 0.589634i −0.955554 0.294817i \(-0.904741\pi\)
0.955554 0.294817i \(-0.0952587\pi\)
\(48\) 0 0
\(49\) 49.0000 1.00000
\(50\) 0 0
\(51\) 24.0000 0.470588
\(52\) 0 0
\(53\) −18.0000 −0.339623 −0.169811 0.985477i \(-0.554316\pi\)
−0.169811 + 0.985477i \(0.554316\pi\)
\(54\) 0 0
\(55\) − 124.708i − 2.26741i
\(56\) 0 0
\(57\) 36.0000 0.631579
\(58\) 0 0
\(59\) − 6.92820i − 0.117427i −0.998275 0.0587136i \(-0.981300\pi\)
0.998275 0.0587136i \(-0.0186999\pi\)
\(60\) 0 0
\(61\) − 20.7846i − 0.340731i −0.985381 0.170366i \(-0.945505\pi\)
0.985381 0.170366i \(-0.0544949\pi\)
\(62\) 0 0
\(63\) −21.0000 −0.333333
\(64\) 0 0
\(65\) −144.000 −2.21538
\(66\) 0 0
\(67\) 26.0000 0.388060 0.194030 0.980996i \(-0.437844\pi\)
0.194030 + 0.980996i \(0.437844\pi\)
\(68\) 0 0
\(69\) − 31.1769i − 0.451839i
\(70\) 0 0
\(71\) −18.0000 −0.253521 −0.126761 0.991933i \(-0.540458\pi\)
−0.126761 + 0.991933i \(0.540458\pi\)
\(72\) 0 0
\(73\) − 41.5692i − 0.569441i −0.958611 0.284721i \(-0.908099\pi\)
0.958611 0.284721i \(-0.0919009\pi\)
\(74\) 0 0
\(75\) − 39.8372i − 0.531162i
\(76\) 0 0
\(77\) 126.000 1.63636
\(78\) 0 0
\(79\) −2.00000 −0.0253165 −0.0126582 0.999920i \(-0.504029\pi\)
−0.0126582 + 0.999920i \(0.504029\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 34.6410i 0.417362i 0.977984 + 0.208681i \(0.0669170\pi\)
−0.977984 + 0.208681i \(0.933083\pi\)
\(84\) 0 0
\(85\) −96.0000 −1.12941
\(86\) 0 0
\(87\) − 31.1769i − 0.358355i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 145.492i − 1.59882i
\(92\) 0 0
\(93\) −72.0000 −0.774194
\(94\) 0 0
\(95\) −144.000 −1.51579
\(96\) 0 0
\(97\) − 166.277i − 1.71419i −0.515155 0.857097i \(-0.672265\pi\)
0.515155 0.857097i \(-0.327735\pi\)
\(98\) 0 0
\(99\) −54.0000 −0.545455
\(100\) 0 0
\(101\) 187.061i 1.85209i 0.377408 + 0.926047i \(0.376815\pi\)
−0.377408 + 0.926047i \(0.623185\pi\)
\(102\) 0 0
\(103\) − 83.1384i − 0.807169i −0.914942 0.403585i \(-0.867764\pi\)
0.914942 0.403585i \(-0.132236\pi\)
\(104\) 0 0
\(105\) 84.0000 0.800000
\(106\) 0 0
\(107\) −126.000 −1.17757 −0.588785 0.808290i \(-0.700394\pi\)
−0.588785 + 0.808290i \(0.700394\pi\)
\(108\) 0 0
\(109\) 134.000 1.22936 0.614679 0.788777i \(-0.289286\pi\)
0.614679 + 0.788777i \(0.289286\pi\)
\(110\) 0 0
\(111\) − 17.3205i − 0.156041i
\(112\) 0 0
\(113\) −126.000 −1.11504 −0.557522 0.830162i \(-0.688248\pi\)
−0.557522 + 0.830162i \(0.688248\pi\)
\(114\) 0 0
\(115\) 124.708i 1.08441i
\(116\) 0 0
\(117\) 62.3538i 0.532939i
\(118\) 0 0
\(119\) − 96.9948i − 0.815083i
\(120\) 0 0
\(121\) 203.000 1.67769
\(122\) 0 0
\(123\) −96.0000 −0.780488
\(124\) 0 0
\(125\) − 13.8564i − 0.110851i
\(126\) 0 0
\(127\) 46.0000 0.362205 0.181102 0.983464i \(-0.442033\pi\)
0.181102 + 0.983464i \(0.442033\pi\)
\(128\) 0 0
\(129\) − 65.8179i − 0.510217i
\(130\) 0 0
\(131\) − 187.061i − 1.42795i −0.700171 0.713975i \(-0.746893\pi\)
0.700171 0.713975i \(-0.253107\pi\)
\(132\) 0 0
\(133\) − 145.492i − 1.09393i
\(134\) 0 0
\(135\) −36.0000 −0.266667
\(136\) 0 0
\(137\) 162.000 1.18248 0.591241 0.806495i \(-0.298638\pi\)
0.591241 + 0.806495i \(0.298638\pi\)
\(138\) 0 0
\(139\) − 62.3538i − 0.448589i −0.974521 0.224294i \(-0.927992\pi\)
0.974521 0.224294i \(-0.0720077\pi\)
\(140\) 0 0
\(141\) 48.0000 0.340426
\(142\) 0 0
\(143\) − 374.123i − 2.61624i
\(144\) 0 0
\(145\) 124.708i 0.860053i
\(146\) 0 0
\(147\) 84.8705i 0.577350i
\(148\) 0 0
\(149\) −162.000 −1.08725 −0.543624 0.839329i \(-0.682948\pi\)
−0.543624 + 0.839329i \(0.682948\pi\)
\(150\) 0 0
\(151\) 254.000 1.68212 0.841060 0.540942i \(-0.181932\pi\)
0.841060 + 0.540942i \(0.181932\pi\)
\(152\) 0 0
\(153\) 41.5692i 0.271694i
\(154\) 0 0
\(155\) 288.000 1.85806
\(156\) 0 0
\(157\) − 20.7846i − 0.132386i −0.997807 0.0661930i \(-0.978915\pi\)
0.997807 0.0661930i \(-0.0210853\pi\)
\(158\) 0 0
\(159\) − 31.1769i − 0.196081i
\(160\) 0 0
\(161\) −126.000 −0.782609
\(162\) 0 0
\(163\) 26.0000 0.159509 0.0797546 0.996815i \(-0.474586\pi\)
0.0797546 + 0.996815i \(0.474586\pi\)
\(164\) 0 0
\(165\) 216.000 1.30909
\(166\) 0 0
\(167\) 180.133i 1.07864i 0.842100 + 0.539321i \(0.181319\pi\)
−0.842100 + 0.539321i \(0.818681\pi\)
\(168\) 0 0
\(169\) −263.000 −1.55621
\(170\) 0 0
\(171\) 62.3538i 0.364642i
\(172\) 0 0
\(173\) − 187.061i − 1.08128i −0.841254 0.540640i \(-0.818182\pi\)
0.841254 0.540640i \(-0.181818\pi\)
\(174\) 0 0
\(175\) −161.000 −0.920000
\(176\) 0 0
\(177\) 12.0000 0.0677966
\(178\) 0 0
\(179\) 306.000 1.70950 0.854749 0.519042i \(-0.173711\pi\)
0.854749 + 0.519042i \(0.173711\pi\)
\(180\) 0 0
\(181\) 187.061i 1.03349i 0.856140 + 0.516744i \(0.172856\pi\)
−0.856140 + 0.516744i \(0.827144\pi\)
\(182\) 0 0
\(183\) 36.0000 0.196721
\(184\) 0 0
\(185\) 69.2820i 0.374497i
\(186\) 0 0
\(187\) − 249.415i − 1.33377i
\(188\) 0 0
\(189\) − 36.3731i − 0.192450i
\(190\) 0 0
\(191\) 270.000 1.41361 0.706806 0.707407i \(-0.250135\pi\)
0.706806 + 0.707407i \(0.250135\pi\)
\(192\) 0 0
\(193\) 274.000 1.41969 0.709845 0.704358i \(-0.248765\pi\)
0.709845 + 0.704358i \(0.248765\pi\)
\(194\) 0 0
\(195\) − 249.415i − 1.27905i
\(196\) 0 0
\(197\) −162.000 −0.822335 −0.411168 0.911560i \(-0.634879\pi\)
−0.411168 + 0.911560i \(0.634879\pi\)
\(198\) 0 0
\(199\) − 83.1384i − 0.417781i −0.977939 0.208891i \(-0.933015\pi\)
0.977939 0.208891i \(-0.0669852\pi\)
\(200\) 0 0
\(201\) 45.0333i 0.224046i
\(202\) 0 0
\(203\) −126.000 −0.620690
\(204\) 0 0
\(205\) 384.000 1.87317
\(206\) 0 0
\(207\) 54.0000 0.260870
\(208\) 0 0
\(209\) − 374.123i − 1.79006i
\(210\) 0 0
\(211\) 10.0000 0.0473934 0.0236967 0.999719i \(-0.492456\pi\)
0.0236967 + 0.999719i \(0.492456\pi\)
\(212\) 0 0
\(213\) − 31.1769i − 0.146370i
\(214\) 0 0
\(215\) 263.272i 1.22452i
\(216\) 0 0
\(217\) 290.985i 1.34094i
\(218\) 0 0
\(219\) 72.0000 0.328767
\(220\) 0 0
\(221\) −288.000 −1.30317
\(222\) 0 0
\(223\) − 41.5692i − 0.186409i −0.995647 0.0932045i \(-0.970289\pi\)
0.995647 0.0932045i \(-0.0297110\pi\)
\(224\) 0 0
\(225\) 69.0000 0.306667
\(226\) 0 0
\(227\) − 187.061i − 0.824059i −0.911170 0.412030i \(-0.864820\pi\)
0.911170 0.412030i \(-0.135180\pi\)
\(228\) 0 0
\(229\) 270.200i 1.17991i 0.807435 + 0.589956i \(0.200855\pi\)
−0.807435 + 0.589956i \(0.799145\pi\)
\(230\) 0 0
\(231\) 218.238i 0.944755i
\(232\) 0 0
\(233\) −126.000 −0.540773 −0.270386 0.962752i \(-0.587151\pi\)
−0.270386 + 0.962752i \(0.587151\pi\)
\(234\) 0 0
\(235\) −192.000 −0.817021
\(236\) 0 0
\(237\) − 3.46410i − 0.0146165i
\(238\) 0 0
\(239\) −18.0000 −0.0753138 −0.0376569 0.999291i \(-0.511989\pi\)
−0.0376569 + 0.999291i \(0.511989\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) − 339.482i − 1.38564i
\(246\) 0 0
\(247\) −432.000 −1.74899
\(248\) 0 0
\(249\) −60.0000 −0.240964
\(250\) 0 0
\(251\) 48.4974i 0.193217i 0.995322 + 0.0966084i \(0.0307994\pi\)
−0.995322 + 0.0966084i \(0.969201\pi\)
\(252\) 0 0
\(253\) −324.000 −1.28063
\(254\) 0 0
\(255\) − 166.277i − 0.652066i
\(256\) 0 0
\(257\) 374.123i 1.45573i 0.685720 + 0.727866i \(0.259488\pi\)
−0.685720 + 0.727866i \(0.740512\pi\)
\(258\) 0 0
\(259\) −70.0000 −0.270270
\(260\) 0 0
\(261\) 54.0000 0.206897
\(262\) 0 0
\(263\) 270.000 1.02662 0.513308 0.858204i \(-0.328420\pi\)
0.513308 + 0.858204i \(0.328420\pi\)
\(264\) 0 0
\(265\) 124.708i 0.470595i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 76.2102i − 0.283309i −0.989916 0.141655i \(-0.954758\pi\)
0.989916 0.141655i \(-0.0452423\pi\)
\(270\) 0 0
\(271\) 207.846i 0.766960i 0.923549 + 0.383480i \(0.125274\pi\)
−0.923549 + 0.383480i \(0.874726\pi\)
\(272\) 0 0
\(273\) 252.000 0.923077
\(274\) 0 0
\(275\) −414.000 −1.50545
\(276\) 0 0
\(277\) 358.000 1.29242 0.646209 0.763160i \(-0.276353\pi\)
0.646209 + 0.763160i \(0.276353\pi\)
\(278\) 0 0
\(279\) − 124.708i − 0.446981i
\(280\) 0 0
\(281\) −414.000 −1.47331 −0.736655 0.676269i \(-0.763596\pi\)
−0.736655 + 0.676269i \(0.763596\pi\)
\(282\) 0 0
\(283\) 270.200i 0.954770i 0.878694 + 0.477385i \(0.158415\pi\)
−0.878694 + 0.477385i \(0.841585\pi\)
\(284\) 0 0
\(285\) − 249.415i − 0.875141i
\(286\) 0 0
\(287\) 387.979i 1.35184i
\(288\) 0 0
\(289\) 97.0000 0.335640
\(290\) 0 0
\(291\) 288.000 0.989691
\(292\) 0 0
\(293\) − 117.779i − 0.401978i −0.979594 0.200989i \(-0.935585\pi\)
0.979594 0.200989i \(-0.0644155\pi\)
\(294\) 0 0
\(295\) −48.0000 −0.162712
\(296\) 0 0
\(297\) − 93.5307i − 0.314918i
\(298\) 0 0
\(299\) 374.123i 1.25125i
\(300\) 0 0
\(301\) −266.000 −0.883721
\(302\) 0 0
\(303\) −324.000 −1.06931
\(304\) 0 0
\(305\) −144.000 −0.472131
\(306\) 0 0
\(307\) 62.3538i 0.203107i 0.994830 + 0.101553i \(0.0323813\pi\)
−0.994830 + 0.101553i \(0.967619\pi\)
\(308\) 0 0
\(309\) 144.000 0.466019
\(310\) 0 0
\(311\) − 318.697i − 1.02475i −0.858762 0.512375i \(-0.828766\pi\)
0.858762 0.512375i \(-0.171234\pi\)
\(312\) 0 0
\(313\) 374.123i 1.19528i 0.801764 + 0.597641i \(0.203895\pi\)
−0.801764 + 0.597641i \(0.796105\pi\)
\(314\) 0 0
\(315\) 145.492i 0.461880i
\(316\) 0 0
\(317\) −450.000 −1.41956 −0.709779 0.704424i \(-0.751205\pi\)
−0.709779 + 0.704424i \(0.751205\pi\)
\(318\) 0 0
\(319\) −324.000 −1.01567
\(320\) 0 0
\(321\) − 218.238i − 0.679870i
\(322\) 0 0
\(323\) −288.000 −0.891641
\(324\) 0 0
\(325\) 478.046i 1.47091i
\(326\) 0 0
\(327\) 232.095i 0.709770i
\(328\) 0 0
\(329\) − 193.990i − 0.589634i
\(330\) 0 0
\(331\) 250.000 0.755287 0.377644 0.925951i \(-0.376734\pi\)
0.377644 + 0.925951i \(0.376734\pi\)
\(332\) 0 0
\(333\) 30.0000 0.0900901
\(334\) 0 0
\(335\) − 180.133i − 0.537711i
\(336\) 0 0
\(337\) −14.0000 −0.0415430 −0.0207715 0.999784i \(-0.506612\pi\)
−0.0207715 + 0.999784i \(0.506612\pi\)
\(338\) 0 0
\(339\) − 218.238i − 0.643771i
\(340\) 0 0
\(341\) 748.246i 2.19427i
\(342\) 0 0
\(343\) 343.000 1.00000
\(344\) 0 0
\(345\) −216.000 −0.626087
\(346\) 0 0
\(347\) −414.000 −1.19308 −0.596542 0.802582i \(-0.703459\pi\)
−0.596542 + 0.802582i \(0.703459\pi\)
\(348\) 0 0
\(349\) − 436.477i − 1.25065i −0.780364 0.625325i \(-0.784966\pi\)
0.780364 0.625325i \(-0.215034\pi\)
\(350\) 0 0
\(351\) −108.000 −0.307692
\(352\) 0 0
\(353\) − 595.825i − 1.68789i −0.536429 0.843945i \(-0.680227\pi\)
0.536429 0.843945i \(-0.319773\pi\)
\(354\) 0 0
\(355\) 124.708i 0.351289i
\(356\) 0 0
\(357\) 168.000 0.470588
\(358\) 0 0
\(359\) −18.0000 −0.0501393 −0.0250696 0.999686i \(-0.507981\pi\)
−0.0250696 + 0.999686i \(0.507981\pi\)
\(360\) 0 0
\(361\) −71.0000 −0.196676
\(362\) 0 0
\(363\) 351.606i 0.968612i
\(364\) 0 0
\(365\) −288.000 −0.789041
\(366\) 0 0
\(367\) 457.261i 1.24594i 0.782244 + 0.622972i \(0.214075\pi\)
−0.782244 + 0.622972i \(0.785925\pi\)
\(368\) 0 0
\(369\) − 166.277i − 0.450615i
\(370\) 0 0
\(371\) −126.000 −0.339623
\(372\) 0 0
\(373\) 454.000 1.21716 0.608579 0.793493i \(-0.291740\pi\)
0.608579 + 0.793493i \(0.291740\pi\)
\(374\) 0 0
\(375\) 24.0000 0.0640000
\(376\) 0 0
\(377\) 374.123i 0.992369i
\(378\) 0 0
\(379\) −134.000 −0.353562 −0.176781 0.984250i \(-0.556568\pi\)
−0.176781 + 0.984250i \(0.556568\pi\)
\(380\) 0 0
\(381\) 79.6743i 0.209119i
\(382\) 0 0
\(383\) 193.990i 0.506500i 0.967401 + 0.253250i \(0.0814996\pi\)
−0.967401 + 0.253250i \(0.918500\pi\)
\(384\) 0 0
\(385\) − 872.954i − 2.26741i
\(386\) 0 0
\(387\) 114.000 0.294574
\(388\) 0 0
\(389\) −594.000 −1.52699 −0.763496 0.645812i \(-0.776519\pi\)
−0.763496 + 0.645812i \(0.776519\pi\)
\(390\) 0 0
\(391\) 249.415i 0.637891i
\(392\) 0 0
\(393\) 324.000 0.824427
\(394\) 0 0
\(395\) 13.8564i 0.0350795i
\(396\) 0 0
\(397\) − 353.338i − 0.890021i −0.895525 0.445011i \(-0.853200\pi\)
0.895525 0.445011i \(-0.146800\pi\)
\(398\) 0 0
\(399\) 252.000 0.631579
\(400\) 0 0
\(401\) 162.000 0.403990 0.201995 0.979387i \(-0.435258\pi\)
0.201995 + 0.979387i \(0.435258\pi\)
\(402\) 0 0
\(403\) 864.000 2.14392
\(404\) 0 0
\(405\) − 62.3538i − 0.153960i
\(406\) 0 0
\(407\) −180.000 −0.442260
\(408\) 0 0
\(409\) − 124.708i − 0.304909i −0.988311 0.152454i \(-0.951282\pi\)
0.988311 0.152454i \(-0.0487177\pi\)
\(410\) 0 0
\(411\) 280.592i 0.682706i
\(412\) 0 0
\(413\) − 48.4974i − 0.117427i
\(414\) 0 0
\(415\) 240.000 0.578313
\(416\) 0 0
\(417\) 108.000 0.258993
\(418\) 0 0
\(419\) 505.759i 1.20706i 0.797340 + 0.603531i \(0.206240\pi\)
−0.797340 + 0.603531i \(0.793760\pi\)
\(420\) 0 0
\(421\) 454.000 1.07838 0.539192 0.842183i \(-0.318730\pi\)
0.539192 + 0.842183i \(0.318730\pi\)
\(422\) 0 0
\(423\) 83.1384i 0.196545i
\(424\) 0 0
\(425\) 318.697i 0.749876i
\(426\) 0 0
\(427\) − 145.492i − 0.340731i
\(428\) 0 0
\(429\) 648.000 1.51049
\(430\) 0 0
\(431\) 270.000 0.626450 0.313225 0.949679i \(-0.398591\pi\)
0.313225 + 0.949679i \(0.398591\pi\)
\(432\) 0 0
\(433\) − 166.277i − 0.384011i −0.981394 0.192006i \(-0.938501\pi\)
0.981394 0.192006i \(-0.0614992\pi\)
\(434\) 0 0
\(435\) −216.000 −0.496552
\(436\) 0 0
\(437\) 374.123i 0.856117i
\(438\) 0 0
\(439\) − 498.831i − 1.13629i −0.822929 0.568144i \(-0.807662\pi\)
0.822929 0.568144i \(-0.192338\pi\)
\(440\) 0 0
\(441\) −147.000 −0.333333
\(442\) 0 0
\(443\) 306.000 0.690745 0.345372 0.938466i \(-0.387753\pi\)
0.345372 + 0.938466i \(0.387753\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 280.592i − 0.627723i
\(448\) 0 0
\(449\) 162.000 0.360802 0.180401 0.983593i \(-0.442260\pi\)
0.180401 + 0.983593i \(0.442260\pi\)
\(450\) 0 0
\(451\) 997.661i 2.21211i
\(452\) 0 0
\(453\) 439.941i 0.971172i
\(454\) 0 0
\(455\) −1008.00 −2.21538
\(456\) 0 0
\(457\) −158.000 −0.345733 −0.172867 0.984945i \(-0.555303\pi\)
−0.172867 + 0.984945i \(0.555303\pi\)
\(458\) 0 0
\(459\) −72.0000 −0.156863
\(460\) 0 0
\(461\) − 408.764i − 0.886690i −0.896351 0.443345i \(-0.853792\pi\)
0.896351 0.443345i \(-0.146208\pi\)
\(462\) 0 0
\(463\) 382.000 0.825054 0.412527 0.910945i \(-0.364646\pi\)
0.412527 + 0.910945i \(0.364646\pi\)
\(464\) 0 0
\(465\) 498.831i 1.07275i
\(466\) 0 0
\(467\) 561.184i 1.20168i 0.799369 + 0.600840i \(0.205167\pi\)
−0.799369 + 0.600840i \(0.794833\pi\)
\(468\) 0 0
\(469\) 182.000 0.388060
\(470\) 0 0
\(471\) 36.0000 0.0764331
\(472\) 0 0
\(473\) −684.000 −1.44609
\(474\) 0 0
\(475\) 478.046i 1.00641i
\(476\) 0 0
\(477\) 54.0000 0.113208
\(478\) 0 0
\(479\) 775.959i 1.61996i 0.586460 + 0.809978i \(0.300521\pi\)
−0.586460 + 0.809978i \(0.699479\pi\)
\(480\) 0 0
\(481\) 207.846i 0.432112i
\(482\) 0 0
\(483\) − 218.238i − 0.451839i
\(484\) 0 0
\(485\) −1152.00 −2.37526
\(486\) 0 0
\(487\) 542.000 1.11294 0.556468 0.830869i \(-0.312156\pi\)
0.556468 + 0.830869i \(0.312156\pi\)
\(488\) 0 0
\(489\) 45.0333i 0.0920927i
\(490\) 0 0
\(491\) 594.000 1.20978 0.604888 0.796311i \(-0.293218\pi\)
0.604888 + 0.796311i \(0.293218\pi\)
\(492\) 0 0
\(493\) 249.415i 0.505913i
\(494\) 0 0
\(495\) 374.123i 0.755804i
\(496\) 0 0
\(497\) −126.000 −0.253521
\(498\) 0 0
\(499\) −662.000 −1.32665 −0.663327 0.748330i \(-0.730856\pi\)
−0.663327 + 0.748330i \(0.730856\pi\)
\(500\) 0 0
\(501\) −312.000 −0.622754
\(502\) 0 0
\(503\) − 13.8564i − 0.0275475i −0.999905 0.0137738i \(-0.995616\pi\)
0.999905 0.0137738i \(-0.00438446\pi\)
\(504\) 0 0
\(505\) 1296.00 2.56634
\(506\) 0 0
\(507\) − 455.529i − 0.898480i
\(508\) 0 0
\(509\) 256.344i 0.503622i 0.967776 + 0.251811i \(0.0810261\pi\)
−0.967776 + 0.251811i \(0.918974\pi\)
\(510\) 0 0
\(511\) − 290.985i − 0.569441i
\(512\) 0 0
\(513\) −108.000 −0.210526
\(514\) 0 0
\(515\) −576.000 −1.11845
\(516\) 0 0
\(517\) − 498.831i − 0.964856i
\(518\) 0 0
\(519\) 324.000 0.624277
\(520\) 0 0
\(521\) 886.810i 1.70213i 0.525060 + 0.851065i \(0.324043\pi\)
−0.525060 + 0.851065i \(0.675957\pi\)
\(522\) 0 0
\(523\) − 644.323i − 1.23197i −0.787756 0.615987i \(-0.788757\pi\)
0.787756 0.615987i \(-0.211243\pi\)
\(524\) 0 0
\(525\) − 278.860i − 0.531162i
\(526\) 0 0
\(527\) 576.000 1.09298
\(528\) 0 0
\(529\) −205.000 −0.387524
\(530\) 0 0
\(531\) 20.7846i 0.0391424i
\(532\) 0 0
\(533\) 1152.00 2.16135
\(534\) 0 0
\(535\) 872.954i 1.63169i
\(536\) 0 0
\(537\) 530.008i 0.986979i
\(538\) 0 0
\(539\) 882.000 1.63636
\(540\) 0 0
\(541\) −458.000 −0.846580 −0.423290 0.905994i \(-0.639125\pi\)
−0.423290 + 0.905994i \(0.639125\pi\)
\(542\) 0 0
\(543\) −324.000 −0.596685
\(544\) 0 0
\(545\) − 928.379i − 1.70345i
\(546\) 0 0
\(547\) 506.000 0.925046 0.462523 0.886607i \(-0.346944\pi\)
0.462523 + 0.886607i \(0.346944\pi\)
\(548\) 0 0
\(549\) 62.3538i 0.113577i
\(550\) 0 0
\(551\) 374.123i 0.678989i
\(552\) 0 0
\(553\) −14.0000 −0.0253165
\(554\) 0 0
\(555\) −120.000 −0.216216
\(556\) 0 0
\(557\) 558.000 1.00180 0.500898 0.865507i \(-0.333003\pi\)
0.500898 + 0.865507i \(0.333003\pi\)
\(558\) 0 0
\(559\) 789.815i 1.41291i
\(560\) 0 0
\(561\) 432.000 0.770053
\(562\) 0 0
\(563\) − 187.061i − 0.332258i −0.986104 0.166129i \(-0.946873\pi\)
0.986104 0.166129i \(-0.0531269\pi\)
\(564\) 0 0
\(565\) 872.954i 1.54505i
\(566\) 0 0
\(567\) 63.0000 0.111111
\(568\) 0 0
\(569\) 738.000 1.29701 0.648506 0.761209i \(-0.275394\pi\)
0.648506 + 0.761209i \(0.275394\pi\)
\(570\) 0 0
\(571\) 266.000 0.465849 0.232925 0.972495i \(-0.425170\pi\)
0.232925 + 0.972495i \(0.425170\pi\)
\(572\) 0 0
\(573\) 467.654i 0.816150i
\(574\) 0 0
\(575\) 414.000 0.720000
\(576\) 0 0
\(577\) 83.1384i 0.144087i 0.997401 + 0.0720437i \(0.0229521\pi\)
−0.997401 + 0.0720437i \(0.977048\pi\)
\(578\) 0 0
\(579\) 474.582i 0.819658i
\(580\) 0 0
\(581\) 242.487i 0.417362i
\(582\) 0 0
\(583\) −324.000 −0.555746
\(584\) 0 0
\(585\) 432.000 0.738462
\(586\) 0 0
\(587\) − 561.184i − 0.956021i −0.878354 0.478011i \(-0.841358\pi\)
0.878354 0.478011i \(-0.158642\pi\)
\(588\) 0 0
\(589\) 864.000 1.46689
\(590\) 0 0
\(591\) − 280.592i − 0.474775i
\(592\) 0 0
\(593\) 263.272i 0.443966i 0.975051 + 0.221983i \(0.0712529\pi\)
−0.975051 + 0.221983i \(0.928747\pi\)
\(594\) 0 0
\(595\) −672.000 −1.12941
\(596\) 0 0
\(597\) 144.000 0.241206
\(598\) 0 0
\(599\) −18.0000 −0.0300501 −0.0150250 0.999887i \(-0.504783\pi\)
−0.0150250 + 0.999887i \(0.504783\pi\)
\(600\) 0 0
\(601\) − 41.5692i − 0.0691668i −0.999402 0.0345834i \(-0.988990\pi\)
0.999402 0.0345834i \(-0.0110104\pi\)
\(602\) 0 0
\(603\) −78.0000 −0.129353
\(604\) 0 0
\(605\) − 1406.43i − 2.32467i
\(606\) 0 0
\(607\) − 374.123i − 0.616348i −0.951330 0.308174i \(-0.900282\pi\)
0.951330 0.308174i \(-0.0997178\pi\)
\(608\) 0 0
\(609\) − 218.238i − 0.358355i
\(610\) 0 0
\(611\) −576.000 −0.942717
\(612\) 0 0
\(613\) −794.000 −1.29527 −0.647635 0.761951i \(-0.724242\pi\)
−0.647635 + 0.761951i \(0.724242\pi\)
\(614\) 0 0
\(615\) 665.108i 1.08148i
\(616\) 0 0
\(617\) −702.000 −1.13776 −0.568882 0.822419i \(-0.692624\pi\)
−0.568882 + 0.822419i \(0.692624\pi\)
\(618\) 0 0
\(619\) 103.923i 0.167889i 0.996470 + 0.0839443i \(0.0267518\pi\)
−0.996470 + 0.0839443i \(0.973248\pi\)
\(620\) 0 0
\(621\) 93.5307i 0.150613i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −671.000 −1.07360
\(626\) 0 0
\(627\) 648.000 1.03349
\(628\) 0 0
\(629\) 138.564i 0.220293i
\(630\) 0 0
\(631\) −530.000 −0.839937 −0.419968 0.907539i \(-0.637959\pi\)
−0.419968 + 0.907539i \(0.637959\pi\)
\(632\) 0 0
\(633\) 17.3205i 0.0273626i
\(634\) 0 0
\(635\) − 318.697i − 0.501886i
\(636\) 0 0
\(637\) − 1018.45i − 1.59882i
\(638\) 0 0
\(639\) 54.0000 0.0845070
\(640\) 0 0
\(641\) −990.000 −1.54446 −0.772231 0.635342i \(-0.780859\pi\)
−0.772231 + 0.635342i \(0.780859\pi\)
\(642\) 0 0
\(643\) − 436.477i − 0.678813i −0.940640 0.339407i \(-0.889774\pi\)
0.940640 0.339407i \(-0.110226\pi\)
\(644\) 0 0
\(645\) −456.000 −0.706977
\(646\) 0 0
\(647\) 374.123i 0.578243i 0.957292 + 0.289121i \(0.0933631\pi\)
−0.957292 + 0.289121i \(0.906637\pi\)
\(648\) 0 0
\(649\) − 124.708i − 0.192154i
\(650\) 0 0
\(651\) −504.000 −0.774194
\(652\) 0 0
\(653\) −18.0000 −0.0275651 −0.0137825 0.999905i \(-0.504387\pi\)
−0.0137825 + 0.999905i \(0.504387\pi\)
\(654\) 0 0
\(655\) −1296.00 −1.97863
\(656\) 0 0
\(657\) 124.708i 0.189814i
\(658\) 0 0
\(659\) 882.000 1.33839 0.669196 0.743086i \(-0.266639\pi\)
0.669196 + 0.743086i \(0.266639\pi\)
\(660\) 0 0
\(661\) − 1226.29i − 1.85521i −0.373566 0.927604i \(-0.621865\pi\)
0.373566 0.927604i \(-0.378135\pi\)
\(662\) 0 0
\(663\) − 498.831i − 0.752384i
\(664\) 0 0
\(665\) −1008.00 −1.51579
\(666\) 0 0
\(667\) 324.000 0.485757
\(668\) 0 0
\(669\) 72.0000 0.107623
\(670\) 0 0
\(671\) − 374.123i − 0.557560i
\(672\) 0 0
\(673\) 706.000 1.04903 0.524517 0.851400i \(-0.324246\pi\)
0.524517 + 0.851400i \(0.324246\pi\)
\(674\) 0 0
\(675\) 119.512i 0.177054i
\(676\) 0 0
\(677\) 187.061i 0.276309i 0.990411 + 0.138155i \(0.0441171\pi\)
−0.990411 + 0.138155i \(0.955883\pi\)
\(678\) 0 0
\(679\) − 1163.94i − 1.71419i
\(680\) 0 0
\(681\) 324.000 0.475771
\(682\) 0 0
\(683\) −558.000 −0.816984 −0.408492 0.912762i \(-0.633945\pi\)
−0.408492 + 0.912762i \(0.633945\pi\)
\(684\) 0 0
\(685\) − 1122.37i − 1.63849i
\(686\) 0 0
\(687\) −468.000 −0.681223
\(688\) 0 0
\(689\) 374.123i 0.542994i
\(690\) 0 0
\(691\) − 602.754i − 0.872292i −0.899876 0.436146i \(-0.856343\pi\)
0.899876 0.436146i \(-0.143657\pi\)
\(692\) 0 0
\(693\) −378.000 −0.545455
\(694\) 0 0
\(695\) −432.000 −0.621583
\(696\) 0 0
\(697\) 768.000 1.10187
\(698\) 0 0
\(699\) − 218.238i − 0.312215i
\(700\) 0 0
\(701\) 414.000 0.590585 0.295292 0.955407i \(-0.404583\pi\)
0.295292 + 0.955407i \(0.404583\pi\)
\(702\) 0 0
\(703\) 207.846i 0.295656i
\(704\) 0 0
\(705\) − 332.554i − 0.471707i
\(706\) 0 0
\(707\) 1309.43i 1.85209i
\(708\) 0 0
\(709\) 182.000 0.256700 0.128350 0.991729i \(-0.459032\pi\)
0.128350 + 0.991729i \(0.459032\pi\)
\(710\) 0 0
\(711\) 6.00000 0.00843882
\(712\) 0 0
\(713\) − 748.246i − 1.04943i
\(714\) 0 0
\(715\) −2592.00 −3.62517
\(716\) 0 0
\(717\) − 31.1769i − 0.0434824i
\(718\) 0 0
\(719\) − 1136.23i − 1.58029i −0.612923 0.790143i \(-0.710006\pi\)
0.612923 0.790143i \(-0.289994\pi\)
\(720\) 0 0
\(721\) − 581.969i − 0.807169i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 414.000 0.571034
\(726\) 0 0
\(727\) 1247.08i 1.71537i 0.514173 + 0.857687i \(0.328099\pi\)
−0.514173 + 0.857687i \(0.671901\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 526.543i 0.720306i
\(732\) 0 0
\(733\) 1392.57i 1.89982i 0.312522 + 0.949911i \(0.398826\pi\)
−0.312522 + 0.949911i \(0.601174\pi\)
\(734\) 0 0
\(735\) 588.000 0.800000
\(736\) 0 0
\(737\) 468.000 0.635007
\(738\) 0 0
\(739\) −1222.00 −1.65359 −0.826793 0.562506i \(-0.809837\pi\)
−0.826793 + 0.562506i \(0.809837\pi\)
\(740\) 0 0
\(741\) − 748.246i − 1.00978i
\(742\) 0 0
\(743\) 270.000 0.363392 0.181696 0.983355i \(-0.441841\pi\)
0.181696 + 0.983355i \(0.441841\pi\)
\(744\) 0 0
\(745\) 1122.37i 1.50654i
\(746\) 0 0
\(747\) − 103.923i − 0.139121i
\(748\) 0 0
\(749\) −882.000 −1.17757
\(750\) 0 0
\(751\) 206.000 0.274301 0.137150 0.990550i \(-0.456206\pi\)
0.137150 + 0.990550i \(0.456206\pi\)
\(752\) 0 0
\(753\) −84.0000 −0.111554
\(754\) 0 0
\(755\) − 1759.76i − 2.33081i
\(756\) 0 0
\(757\) −1162.00 −1.53501 −0.767503 0.641045i \(-0.778501\pi\)
−0.767503 + 0.641045i \(0.778501\pi\)
\(758\) 0 0
\(759\) − 561.184i − 0.739373i
\(760\) 0 0
\(761\) 554.256i 0.728326i 0.931335 + 0.364163i \(0.118645\pi\)
−0.931335 + 0.364163i \(0.881355\pi\)
\(762\) 0 0
\(763\) 938.000 1.22936
\(764\) 0 0
\(765\) 288.000 0.376471
\(766\) 0 0
\(767\) −144.000 −0.187744
\(768\) 0 0
\(769\) − 1330.22i − 1.72980i −0.501946 0.864899i \(-0.667382\pi\)
0.501946 0.864899i \(-0.332618\pi\)
\(770\) 0 0
\(771\) −648.000 −0.840467
\(772\) 0 0
\(773\) 1323.29i 1.71188i 0.517071 + 0.855942i \(0.327022\pi\)
−0.517071 + 0.855942i \(0.672978\pi\)
\(774\) 0 0
\(775\) − 956.092i − 1.23367i
\(776\) 0 0
\(777\) − 121.244i − 0.156041i
\(778\) 0 0
\(779\) 1152.00 1.47882
\(780\) 0 0
\(781\) −324.000 −0.414853
\(782\) 0 0
\(783\) 93.5307i 0.119452i
\(784\) 0 0
\(785\) −144.000 −0.183439
\(786\) 0 0
\(787\) − 769.031i − 0.977167i −0.872517 0.488584i \(-0.837514\pi\)
0.872517 0.488584i \(-0.162486\pi\)
\(788\) 0 0
\(789\) 467.654i 0.592717i
\(790\) 0 0
\(791\) −882.000 −1.11504
\(792\) 0 0
\(793\) −432.000 −0.544767
\(794\) 0 0
\(795\) −216.000 −0.271698
\(796\) 0 0
\(797\) − 187.061i − 0.234707i −0.993090 0.117354i \(-0.962559\pi\)
0.993090 0.117354i \(-0.0374411\pi\)
\(798\) 0 0
\(799\) −384.000 −0.480601
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 748.246i − 0.931813i
\(804\) 0 0
\(805\) 872.954i 1.08441i
\(806\) 0 0
\(807\) 132.000 0.163569
\(808\) 0 0
\(809\) 450.000 0.556242 0.278121 0.960546i \(-0.410288\pi\)
0.278121 + 0.960546i \(0.410288\pi\)
\(810\) 0 0
\(811\) 852.169i 1.05076i 0.850867 + 0.525382i \(0.176077\pi\)
−0.850867 + 0.525382i \(0.823923\pi\)
\(812\) 0 0
\(813\) −360.000 −0.442804
\(814\) 0 0
\(815\) − 180.133i − 0.221022i
\(816\) 0 0
\(817\) 789.815i 0.966726i
\(818\) 0 0
\(819\) 436.477i 0.532939i
\(820\) 0 0
\(821\) 846.000 1.03045 0.515225 0.857055i \(-0.327708\pi\)
0.515225 + 0.857055i \(0.327708\pi\)
\(822\) 0 0
\(823\) 1390.00 1.68894 0.844471 0.535601i \(-0.179915\pi\)
0.844471 + 0.535601i \(0.179915\pi\)
\(824\) 0 0
\(825\) − 717.069i − 0.869175i
\(826\) 0 0
\(827\) 1314.00 1.58888 0.794438 0.607346i \(-0.207766\pi\)
0.794438 + 0.607346i \(0.207766\pi\)
\(828\) 0 0
\(829\) 478.046i 0.576654i 0.957532 + 0.288327i \(0.0930990\pi\)
−0.957532 + 0.288327i \(0.906901\pi\)
\(830\) 0 0
\(831\) 620.074i 0.746178i
\(832\) 0 0
\(833\) − 678.964i − 0.815083i
\(834\) 0 0
\(835\) 1248.00 1.49461
\(836\) 0 0
\(837\) 216.000 0.258065
\(838\) 0 0
\(839\) − 900.666i − 1.07350i −0.843741 0.536750i \(-0.819652\pi\)
0.843741 0.536750i \(-0.180348\pi\)
\(840\) 0 0
\(841\) −517.000 −0.614744
\(842\) 0 0
\(843\) − 717.069i − 0.850616i
\(844\) 0 0
\(845\) 1822.12i 2.15635i
\(846\) 0 0
\(847\) 1421.00 1.67769
\(848\) 0 0
\(849\) −468.000 −0.551237
\(850\) 0 0
\(851\) 180.000 0.211516
\(852\) 0 0
\(853\) 1517.28i 1.77875i 0.457175 + 0.889377i \(0.348861\pi\)
−0.457175 + 0.889377i \(0.651139\pi\)
\(854\) 0 0
\(855\) 432.000 0.505263
\(856\) 0 0
\(857\) 775.959i 0.905436i 0.891654 + 0.452718i \(0.149546\pi\)
−0.891654 + 0.452718i \(0.850454\pi\)
\(858\) 0 0
\(859\) 1184.72i 1.37919i 0.724196 + 0.689594i \(0.242211\pi\)
−0.724196 + 0.689594i \(0.757789\pi\)
\(860\) 0 0
\(861\) −672.000 −0.780488
\(862\) 0 0
\(863\) 558.000 0.646582 0.323291 0.946300i \(-0.395211\pi\)
0.323291 + 0.946300i \(0.395211\pi\)
\(864\) 0 0
\(865\) −1296.00 −1.49827
\(866\) 0 0
\(867\) 168.009i 0.193782i
\(868\) 0 0
\(869\) −36.0000 −0.0414269
\(870\) 0 0
\(871\) − 540.400i − 0.620436i
\(872\) 0 0
\(873\) 498.831i 0.571398i
\(874\) 0 0
\(875\) − 96.9948i − 0.110851i
\(876\) 0 0
\(877\) 1174.00 1.33865 0.669327 0.742968i \(-0.266582\pi\)
0.669327 + 0.742968i \(0.266582\pi\)
\(878\) 0 0
\(879\) 204.000 0.232082
\(880\) 0 0
\(881\) 1122.37i 1.27397i 0.770876 + 0.636986i \(0.219819\pi\)
−0.770876 + 0.636986i \(0.780181\pi\)
\(882\) 0 0
\(883\) 1450.00 1.64213 0.821065 0.570835i \(-0.193381\pi\)
0.821065 + 0.570835i \(0.193381\pi\)
\(884\) 0 0
\(885\) − 83.1384i − 0.0939417i
\(886\) 0 0
\(887\) − 69.2820i − 0.0781083i −0.999237 0.0390541i \(-0.987566\pi\)
0.999237 0.0390541i \(-0.0124345\pi\)
\(888\) 0 0
\(889\) 322.000 0.362205
\(890\) 0 0
\(891\) 162.000 0.181818
\(892\) 0 0
\(893\) −576.000 −0.645017
\(894\) 0 0
\(895\) − 2120.03i − 2.36875i
\(896\) 0 0
\(897\) −648.000 −0.722408
\(898\) 0 0
\(899\) − 748.246i − 0.832309i
\(900\) 0 0
\(901\) 249.415i 0.276821i
\(902\) 0 0
\(903\) − 460.726i − 0.510217i
\(904\) 0 0
\(905\) 1296.00 1.43204
\(906\) 0 0
\(907\) 826.000 0.910695 0.455347 0.890314i \(-0.349515\pi\)
0.455347 + 0.890314i \(0.349515\pi\)
\(908\) 0 0
\(909\) − 561.184i − 0.617365i
\(910\) 0 0
\(911\) −594.000 −0.652031 −0.326015 0.945364i \(-0.605706\pi\)
−0.326015 + 0.945364i \(0.605706\pi\)
\(912\) 0 0
\(913\) 623.538i 0.682955i
\(914\) 0 0
\(915\) − 249.415i − 0.272585i
\(916\) 0 0
\(917\) − 1309.43i − 1.42795i
\(918\) 0 0
\(919\) −82.0000 −0.0892274 −0.0446137 0.999004i \(-0.514206\pi\)
−0.0446137 + 0.999004i \(0.514206\pi\)
\(920\) 0 0
\(921\) −108.000 −0.117264
\(922\) 0 0
\(923\) 374.123i 0.405334i
\(924\) 0 0
\(925\) 230.000 0.248649
\(926\) 0 0
\(927\) 249.415i 0.269056i
\(928\) 0 0
\(929\) − 845.241i − 0.909839i −0.890532 0.454920i \(-0.849668\pi\)
0.890532 0.454920i \(-0.150332\pi\)
\(930\) 0 0
\(931\) − 1018.45i − 1.09393i
\(932\) 0 0
\(933\) 552.000 0.591640
\(934\) 0 0
\(935\) −1728.00 −1.84813
\(936\) 0 0
\(937\) − 872.954i − 0.931647i −0.884878 0.465824i \(-0.845758\pi\)
0.884878 0.465824i \(-0.154242\pi\)
\(938\) 0 0
\(939\) −648.000 −0.690096
\(940\) 0 0
\(941\) − 491.902i − 0.522744i −0.965238 0.261372i \(-0.915825\pi\)
0.965238 0.261372i \(-0.0841750\pi\)
\(942\) 0 0
\(943\) − 997.661i − 1.05797i
\(944\) 0 0
\(945\) −252.000 −0.266667
\(946\) 0 0
\(947\) −1710.00 −1.80570 −0.902851 0.429953i \(-0.858530\pi\)
−0.902851 + 0.429953i \(0.858530\pi\)
\(948\) 0 0
\(949\) −864.000 −0.910432
\(950\) 0 0
\(951\) − 779.423i − 0.819582i
\(952\) 0 0
\(953\) −126.000 −0.132214 −0.0661070 0.997813i \(-0.521058\pi\)
−0.0661070 + 0.997813i \(0.521058\pi\)
\(954\) 0 0
\(955\) − 1870.61i − 1.95876i
\(956\) 0 0
\(957\) − 561.184i − 0.586400i
\(958\) 0 0
\(959\) 1134.00 1.18248
\(960\) 0 0
\(961\) −767.000 −0.798127
\(962\) 0 0
\(963\) 378.000 0.392523
\(964\) 0 0
\(965\) − 1898.33i − 1.96718i
\(966\) 0 0
\(967\) 766.000 0.792141 0.396070 0.918220i \(-0.370374\pi\)
0.396070 + 0.918220i \(0.370374\pi\)
\(968\) 0 0
\(969\) − 498.831i − 0.514789i
\(970\) 0 0
\(971\) 1572.70i 1.61967i 0.586656 + 0.809836i \(0.300444\pi\)
−0.586656 + 0.809836i \(0.699556\pi\)
\(972\) 0 0
\(973\) − 436.477i − 0.448589i
\(974\) 0 0
\(975\) −828.000 −0.849231
\(976\) 0 0
\(977\) 1602.00 1.63971 0.819857 0.572569i \(-0.194053\pi\)
0.819857 + 0.572569i \(0.194053\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −402.000 −0.409786
\(982\) 0 0
\(983\) − 845.241i − 0.859858i −0.902863 0.429929i \(-0.858539\pi\)
0.902863 0.429929i \(-0.141461\pi\)
\(984\) 0 0
\(985\) 1122.37i 1.13946i
\(986\) 0 0
\(987\) 336.000 0.340426
\(988\) 0 0
\(989\) 684.000 0.691608
\(990\) 0 0
\(991\) 62.0000 0.0625631 0.0312815 0.999511i \(-0.490041\pi\)
0.0312815 + 0.999511i \(0.490041\pi\)
\(992\) 0 0
\(993\) 433.013i 0.436065i
\(994\) 0 0
\(995\) −576.000 −0.578894
\(996\) 0 0
\(997\) − 62.3538i − 0.0625415i −0.999511 0.0312707i \(-0.990045\pi\)
0.999511 0.0312707i \(-0.00995540\pi\)
\(998\) 0 0
\(999\) 51.9615i 0.0520135i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.3.f.d.769.2 2
4.3 odd 2 1344.3.f.a.769.1 2
7.6 odd 2 inner 1344.3.f.d.769.1 2
8.3 odd 2 84.3.d.a.13.2 yes 2
8.5 even 2 336.3.f.b.97.1 2
24.5 odd 2 1008.3.f.f.433.1 2
24.11 even 2 252.3.d.a.181.1 2
28.27 even 2 1344.3.f.a.769.2 2
40.3 even 4 2100.3.p.b.349.2 4
40.19 odd 2 2100.3.j.c.601.1 2
40.27 even 4 2100.3.p.b.349.3 4
56.3 even 6 588.3.m.b.313.1 2
56.11 odd 6 588.3.m.c.313.1 2
56.13 odd 2 336.3.f.b.97.2 2
56.19 even 6 588.3.m.c.325.1 2
56.27 even 2 84.3.d.a.13.1 2
56.51 odd 6 588.3.m.b.325.1 2
168.11 even 6 1764.3.z.g.901.1 2
168.59 odd 6 1764.3.z.a.901.1 2
168.83 odd 2 252.3.d.a.181.2 2
168.107 even 6 1764.3.z.a.325.1 2
168.125 even 2 1008.3.f.f.433.2 2
168.131 odd 6 1764.3.z.g.325.1 2
280.27 odd 4 2100.3.p.b.349.1 4
280.83 odd 4 2100.3.p.b.349.4 4
280.139 even 2 2100.3.j.c.601.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.d.a.13.1 2 56.27 even 2
84.3.d.a.13.2 yes 2 8.3 odd 2
252.3.d.a.181.1 2 24.11 even 2
252.3.d.a.181.2 2 168.83 odd 2
336.3.f.b.97.1 2 8.5 even 2
336.3.f.b.97.2 2 56.13 odd 2
588.3.m.b.313.1 2 56.3 even 6
588.3.m.b.325.1 2 56.51 odd 6
588.3.m.c.313.1 2 56.11 odd 6
588.3.m.c.325.1 2 56.19 even 6
1008.3.f.f.433.1 2 24.5 odd 2
1008.3.f.f.433.2 2 168.125 even 2
1344.3.f.a.769.1 2 4.3 odd 2
1344.3.f.a.769.2 2 28.27 even 2
1344.3.f.d.769.1 2 7.6 odd 2 inner
1344.3.f.d.769.2 2 1.1 even 1 trivial
1764.3.z.a.325.1 2 168.107 even 6
1764.3.z.a.901.1 2 168.59 odd 6
1764.3.z.g.325.1 2 168.131 odd 6
1764.3.z.g.901.1 2 168.11 even 6
2100.3.j.c.601.1 2 40.19 odd 2
2100.3.j.c.601.2 2 280.139 even 2
2100.3.p.b.349.1 4 280.27 odd 4
2100.3.p.b.349.2 4 40.3 even 4
2100.3.p.b.349.3 4 40.27 even 4
2100.3.p.b.349.4 4 280.83 odd 4