Properties

Label 1764.3.z.d
Level $1764$
Weight $3$
Character orbit 1764.z
Analytic conductor $48.066$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(325,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.325"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.z (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (16 \zeta_{6} - 8) q^{13} + ( - 16 \zeta_{6} + 32) q^{19} + (25 \zeta_{6} - 25) q^{25} + ( - 24 \zeta_{6} - 24) q^{31} + 26 \zeta_{6} q^{37} + 22 q^{43} + (56 \zeta_{6} - 112) q^{61} + (122 \zeta_{6} - 122) q^{67}+ \cdots + ( - 224 \zeta_{6} + 112) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 48 q^{19} - 25 q^{25} - 72 q^{31} + 26 q^{37} + 44 q^{43} - 168 q^{61} - 122 q^{67} + 240 q^{73} + 142 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
325.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 0 0 0 0 0 0
901.1 0 0 0 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.3.z.d 2
3.b odd 2 1 CM 1764.3.z.d 2
7.b odd 2 1 1764.3.z.b 2
7.c even 3 1 252.3.d.b 2
7.c even 3 1 1764.3.z.b 2
7.d odd 6 1 252.3.d.b 2
7.d odd 6 1 inner 1764.3.z.d 2
21.c even 2 1 1764.3.z.b 2
21.g even 6 1 252.3.d.b 2
21.g even 6 1 inner 1764.3.z.d 2
21.h odd 6 1 252.3.d.b 2
21.h odd 6 1 1764.3.z.b 2
28.f even 6 1 1008.3.f.e 2
28.g odd 6 1 1008.3.f.e 2
84.j odd 6 1 1008.3.f.e 2
84.n even 6 1 1008.3.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.3.d.b 2 7.c even 3 1
252.3.d.b 2 7.d odd 6 1
252.3.d.b 2 21.g even 6 1
252.3.d.b 2 21.h odd 6 1
1008.3.f.e 2 28.f even 6 1
1008.3.f.e 2 28.g odd 6 1
1008.3.f.e 2 84.j odd 6 1
1008.3.f.e 2 84.n even 6 1
1764.3.z.b 2 7.b odd 2 1
1764.3.z.b 2 7.c even 3 1
1764.3.z.b 2 21.c even 2 1
1764.3.z.b 2 21.h odd 6 1
1764.3.z.d 2 1.a even 1 1 trivial
1764.3.z.d 2 3.b odd 2 1 CM
1764.3.z.d 2 7.d odd 6 1 inner
1764.3.z.d 2 21.g even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1764, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 192 \) Copy content Toggle raw display
\( T_{19}^{2} - 48T_{19} + 768 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 192 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 48T + 768 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 72T + 1728 \) Copy content Toggle raw display
$37$ \( T^{2} - 26T + 676 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 22)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 168T + 9408 \) Copy content Toggle raw display
$67$ \( T^{2} + 122T + 14884 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 240T + 19200 \) Copy content Toggle raw display
$79$ \( T^{2} - 142T + 20164 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 37632 \) Copy content Toggle raw display
show more
show less