Properties

Label 4-42e4-1.1-c2e2-0-5
Degree $4$
Conductor $3111696$
Sign $1$
Analytic cond. $2310.29$
Root an. cond. $6.93293$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 48·19-s − 25·25-s − 72·31-s + 26·37-s + 44·43-s − 168·61-s − 122·67-s + 240·73-s + 142·79-s + 120·103-s − 214·109-s + 121·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 146·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 2.52·19-s − 25-s − 2.32·31-s + 0.702·37-s + 1.02·43-s − 2.75·61-s − 1.82·67-s + 3.28·73-s + 1.79·79-s + 1.16·103-s − 1.96·109-s + 121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.863·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3111696\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2310.29\)
Root analytic conductor: \(6.93293\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3111696,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.347013773\)
\(L(\frac12)\) \(\approx\) \(2.347013773\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
11$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )( 1 + 22 T + p^{2} T^{2} ) \)
17$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
19$C_2$ \( ( 1 - 37 T + p^{2} T^{2} )( 1 - 11 T + p^{2} T^{2} ) \)
23$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
29$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 13 T + p^{2} T^{2} )( 1 + 59 T + p^{2} T^{2} ) \)
37$C_2$ \( ( 1 - 73 T + p^{2} T^{2} )( 1 + 47 T + p^{2} T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_2$ \( ( 1 - 22 T + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
53$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
59$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
61$C_2$ \( ( 1 + 47 T + p^{2} T^{2} )( 1 + 121 T + p^{2} T^{2} ) \)
67$C_2$ \( ( 1 + 13 T + p^{2} T^{2} )( 1 + 109 T + p^{2} T^{2} ) \)
71$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 143 T + p^{2} T^{2} )( 1 - 97 T + p^{2} T^{2} ) \)
79$C_2$ \( ( 1 - 131 T + p^{2} T^{2} )( 1 - 11 T + p^{2} T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
89$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )( 1 + 2 T + p^{2} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.372874321539911495544234444276, −9.021855430725347594184867888449, −8.635962559913660474865126202426, −7.87383306872839341925955146537, −7.64302190266010094140639654727, −7.53930252631966524905037476341, −7.09027104094531396437496849805, −6.43912586020080692470438130122, −6.06006645853070827091989674891, −5.66417582983816668698682358728, −5.25364460173590076304739125569, −4.93285016373796985227948771536, −4.32597274926836457411164260124, −3.75899846222041912529921123342, −3.41640410232224839599560299586, −2.99601005040899425607602515593, −2.30185439677607706467032870872, −1.73887631733641882119473445627, −1.14668635492091861950034106394, −0.43687757343711019386293760251, 0.43687757343711019386293760251, 1.14668635492091861950034106394, 1.73887631733641882119473445627, 2.30185439677607706467032870872, 2.99601005040899425607602515593, 3.41640410232224839599560299586, 3.75899846222041912529921123342, 4.32597274926836457411164260124, 4.93285016373796985227948771536, 5.25364460173590076304739125569, 5.66417582983816668698682358728, 6.06006645853070827091989674891, 6.43912586020080692470438130122, 7.09027104094531396437496849805, 7.53930252631966524905037476341, 7.64302190266010094140639654727, 7.87383306872839341925955146537, 8.635962559913660474865126202426, 9.021855430725347594184867888449, 9.372874321539911495544234444276

Graph of the $Z$-function along the critical line