Properties

Label 1764.3.d.b
Level $1764$
Weight $3$
Character orbit 1764.d
Analytic conductor $48.066$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(685,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.685"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 15 \beta q^{13} + 5 \beta q^{19} + 25 q^{25} + 11 \beta q^{31} - 47 q^{37} - 83 q^{43} - 56 \beta q^{61} - 109 q^{67} + 17 \beta q^{73} + 131 q^{79} - 112 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 50 q^{25} - 94 q^{37} - 166 q^{43} - 218 q^{67} + 262 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
685.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 0 0 0 0 0 0
685.2 0 0 0 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.3.d.b 2
3.b odd 2 1 CM 1764.3.d.b 2
7.b odd 2 1 inner 1764.3.d.b 2
7.c even 3 1 252.3.z.c 2
7.c even 3 1 1764.3.z.c 2
7.d odd 6 1 252.3.z.c 2
7.d odd 6 1 1764.3.z.c 2
21.c even 2 1 inner 1764.3.d.b 2
21.g even 6 1 252.3.z.c 2
21.g even 6 1 1764.3.z.c 2
21.h odd 6 1 252.3.z.c 2
21.h odd 6 1 1764.3.z.c 2
28.f even 6 1 1008.3.cg.e 2
28.g odd 6 1 1008.3.cg.e 2
84.j odd 6 1 1008.3.cg.e 2
84.n even 6 1 1008.3.cg.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.3.z.c 2 7.c even 3 1
252.3.z.c 2 7.d odd 6 1
252.3.z.c 2 21.g even 6 1
252.3.z.c 2 21.h odd 6 1
1008.3.cg.e 2 28.f even 6 1
1008.3.cg.e 2 28.g odd 6 1
1008.3.cg.e 2 84.j odd 6 1
1008.3.cg.e 2 84.n even 6 1
1764.3.d.b 2 1.a even 1 1 trivial
1764.3.d.b 2 3.b odd 2 1 CM
1764.3.d.b 2 7.b odd 2 1 inner
1764.3.d.b 2 21.c even 2 1 inner
1764.3.z.c 2 7.c even 3 1
1764.3.z.c 2 7.d odd 6 1
1764.3.z.c 2 21.g even 6 1
1764.3.z.c 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1764, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 675 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 75 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 363 \) Copy content Toggle raw display
$37$ \( (T + 47)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 83)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 9408 \) Copy content Toggle raw display
$67$ \( (T + 109)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 867 \) Copy content Toggle raw display
$79$ \( (T - 131)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 37632 \) Copy content Toggle raw display
show more
show less