L(s) = 1 | + 25.9i·13-s − 8.66i·19-s + 25·25-s − 19.0i·31-s − 47·37-s − 83·43-s + 96.9i·61-s − 109·67-s − 29.4i·73-s + 131·79-s + 193. i·97-s + 202. i·103-s − 143·109-s + ⋯ |
L(s) = 1 | + 1.99i·13-s − 0.455i·19-s + 25-s − 0.614i·31-s − 1.27·37-s − 1.93·43-s + 1.59i·61-s − 1.62·67-s − 0.403i·73-s + 1.65·79-s + 1.99i·97-s + 1.96i·103-s − 1.31·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 - 0.654i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.9302248497\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9302248497\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 25T^{2} \) |
| 11 | \( 1 + 121T^{2} \) |
| 13 | \( 1 - 25.9iT - 169T^{2} \) |
| 17 | \( 1 - 289T^{2} \) |
| 19 | \( 1 + 8.66iT - 361T^{2} \) |
| 23 | \( 1 + 529T^{2} \) |
| 29 | \( 1 + 841T^{2} \) |
| 31 | \( 1 + 19.0iT - 961T^{2} \) |
| 37 | \( 1 + 47T + 1.36e3T^{2} \) |
| 41 | \( 1 - 1.68e3T^{2} \) |
| 43 | \( 1 + 83T + 1.84e3T^{2} \) |
| 47 | \( 1 - 2.20e3T^{2} \) |
| 53 | \( 1 + 2.80e3T^{2} \) |
| 59 | \( 1 - 3.48e3T^{2} \) |
| 61 | \( 1 - 96.9iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 109T + 4.48e3T^{2} \) |
| 71 | \( 1 + 5.04e3T^{2} \) |
| 73 | \( 1 + 29.4iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 131T + 6.24e3T^{2} \) |
| 83 | \( 1 - 6.88e3T^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 - 193. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.167619524977627984786768467535, −8.893507568642603225504536023398, −7.82371266056352850905535584450, −6.84246275220602777596355889579, −6.49502437640926880484117657050, −5.23686254162897457698565427796, −4.49605238053017678983952142430, −3.60160788491019171088966842766, −2.40210214058272971773926815179, −1.39437209184315243454134998295,
0.24362651316094292010829520575, 1.51759060196703476486870935817, 2.92255987812982272530874233845, 3.53004825071167767830153317139, 4.88478739772536426627467866995, 5.44770955865084735282240718119, 6.40687313990306286913915338816, 7.26591815117370438036045134988, 8.138245616333137025369813177963, 8.618561865501307005566447917880