Properties

Label 1764.3.c.e.197.2
Level $1764$
Weight $3$
Character 1764.197
Analytic conductor $48.066$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(197,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.197"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-23})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 17x^{2} - 16x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 197.2
Root \(0.500000 + 0.983702i\) of defining polynomial
Character \(\chi\) \(=\) 1764.197
Dual form 1764.3.c.e.197.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.96740i q^{5} +14.6953i q^{11} -7.21767 q^{13} +12.1123i q^{17} -18.3470 q^{19} -36.9524i q^{23} +21.1293 q^{25} -1.96740i q^{29} +1.78233 q^{31} -19.6530 q^{37} -45.7456i q^{41} +10.3470 q^{43} -38.1838i q^{47} -22.8728i q^{53} +28.9116 q^{55} -111.353i q^{59} +45.4763 q^{61} +14.2001i q^{65} +8.87068 q^{67} +79.9945i q^{71} -139.823 q^{73} -28.2177 q^{79} -21.0928i q^{83} +23.8297 q^{85} +128.751i q^{89} +36.0959i q^{95} -177.517 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 56 q^{13} + 8 q^{19} - 24 q^{25} - 20 q^{31} - 160 q^{37} - 40 q^{43} - 20 q^{55} - 8 q^{61} + 144 q^{67} - 288 q^{73} - 140 q^{79} + 448 q^{85} - 276 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.96740i − 0.393481i −0.980456 0.196740i \(-0.936964\pi\)
0.980456 0.196740i \(-0.0630356\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 14.6953i 1.33594i 0.744189 + 0.667969i \(0.232836\pi\)
−0.744189 + 0.667969i \(0.767164\pi\)
\(12\) 0 0
\(13\) −7.21767 −0.555205 −0.277603 0.960696i \(-0.589540\pi\)
−0.277603 + 0.960696i \(0.589540\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 12.1123i 0.712486i 0.934393 + 0.356243i \(0.115942\pi\)
−0.934393 + 0.356243i \(0.884058\pi\)
\(18\) 0 0
\(19\) −18.3470 −0.965631 −0.482816 0.875722i \(-0.660386\pi\)
−0.482816 + 0.875722i \(0.660386\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 36.9524i − 1.60663i −0.595556 0.803314i \(-0.703068\pi\)
0.595556 0.803314i \(-0.296932\pi\)
\(24\) 0 0
\(25\) 21.1293 0.845173
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 1.96740i − 0.0678415i −0.999425 0.0339208i \(-0.989201\pi\)
0.999425 0.0339208i \(-0.0107994\pi\)
\(30\) 0 0
\(31\) 1.78233 0.0574945 0.0287473 0.999587i \(-0.490848\pi\)
0.0287473 + 0.999587i \(0.490848\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −19.6530 −0.531162 −0.265581 0.964088i \(-0.585564\pi\)
−0.265581 + 0.964088i \(0.585564\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 45.7456i − 1.11575i −0.829927 0.557873i \(-0.811618\pi\)
0.829927 0.557873i \(-0.188382\pi\)
\(42\) 0 0
\(43\) 10.3470 0.240628 0.120314 0.992736i \(-0.461610\pi\)
0.120314 + 0.992736i \(0.461610\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 38.1838i − 0.812421i −0.913780 0.406210i \(-0.866850\pi\)
0.913780 0.406210i \(-0.133150\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 22.8728i − 0.431562i −0.976442 0.215781i \(-0.930770\pi\)
0.976442 0.215781i \(-0.0692297\pi\)
\(54\) 0 0
\(55\) 28.9116 0.525666
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 111.353i − 1.88733i −0.330900 0.943666i \(-0.607352\pi\)
0.330900 0.943666i \(-0.392648\pi\)
\(60\) 0 0
\(61\) 45.4763 0.745513 0.372757 0.927929i \(-0.378413\pi\)
0.372757 + 0.927929i \(0.378413\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.2001i 0.218463i
\(66\) 0 0
\(67\) 8.87068 0.132398 0.0661991 0.997806i \(-0.478913\pi\)
0.0661991 + 0.997806i \(0.478913\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 79.9945i 1.12668i 0.826224 + 0.563342i \(0.190484\pi\)
−0.826224 + 0.563342i \(0.809516\pi\)
\(72\) 0 0
\(73\) −139.823 −1.91539 −0.957694 0.287789i \(-0.907080\pi\)
−0.957694 + 0.287789i \(0.907080\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −28.2177 −0.357186 −0.178593 0.983923i \(-0.557154\pi\)
−0.178593 + 0.983923i \(0.557154\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 21.0928i − 0.254130i −0.991894 0.127065i \(-0.959444\pi\)
0.991894 0.127065i \(-0.0405557\pi\)
\(84\) 0 0
\(85\) 23.8297 0.280350
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 128.751i 1.44664i 0.690511 + 0.723322i \(0.257386\pi\)
−0.690511 + 0.723322i \(0.742614\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 36.0959i 0.379957i
\(96\) 0 0
\(97\) −177.517 −1.83008 −0.915038 0.403369i \(-0.867839\pi\)
−0.915038 + 0.403369i \(0.867839\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 189.380i − 1.87505i −0.347923 0.937523i \(-0.613113\pi\)
0.347923 0.937523i \(-0.386887\pi\)
\(102\) 0 0
\(103\) −58.0000 −0.563107 −0.281553 0.959546i \(-0.590850\pi\)
−0.281553 + 0.959546i \(0.590850\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 142.590i − 1.33262i −0.745675 0.666309i \(-0.767873\pi\)
0.745675 0.666309i \(-0.232127\pi\)
\(108\) 0 0
\(109\) −101.211 −0.928544 −0.464272 0.885693i \(-0.653684\pi\)
−0.464272 + 0.885693i \(0.653684\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 39.7229i 0.351530i 0.984432 + 0.175765i \(0.0562399\pi\)
−0.984432 + 0.175765i \(0.943760\pi\)
\(114\) 0 0
\(115\) −72.7004 −0.632177
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −94.9526 −0.784732
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 90.7550i − 0.726040i
\(126\) 0 0
\(127\) 152.558 1.20125 0.600623 0.799532i \(-0.294919\pi\)
0.600623 + 0.799532i \(0.294919\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 189.192i − 1.44422i −0.691781 0.722108i \(-0.743173\pi\)
0.691781 0.722108i \(-0.256827\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 147.810i 1.07890i 0.842017 + 0.539452i \(0.181368\pi\)
−0.842017 + 0.539452i \(0.818632\pi\)
\(138\) 0 0
\(139\) −133.823 −0.962758 −0.481379 0.876513i \(-0.659864\pi\)
−0.481379 + 0.876513i \(0.659864\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 106.066i − 0.741720i
\(144\) 0 0
\(145\) −3.87068 −0.0266943
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 169.706i − 1.13896i −0.822004 0.569482i \(-0.807144\pi\)
0.822004 0.569482i \(-0.192856\pi\)
\(150\) 0 0
\(151\) 182.994 1.21188 0.605939 0.795511i \(-0.292798\pi\)
0.605939 + 0.795511i \(0.292798\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 3.50656i − 0.0226230i
\(156\) 0 0
\(157\) 24.6940 0.157286 0.0786432 0.996903i \(-0.474941\pi\)
0.0786432 + 0.996903i \(0.474941\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −257.041 −1.57694 −0.788469 0.615074i \(-0.789126\pi\)
−0.788469 + 0.615074i \(0.789126\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 130.358i − 0.780584i −0.920691 0.390292i \(-0.872374\pi\)
0.920691 0.390292i \(-0.127626\pi\)
\(168\) 0 0
\(169\) −116.905 −0.691747
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 153.592i − 0.887812i −0.896073 0.443906i \(-0.853592\pi\)
0.896073 0.443906i \(-0.146408\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 155.679i 0.869717i 0.900499 + 0.434859i \(0.143202\pi\)
−0.900499 + 0.434859i \(0.856798\pi\)
\(180\) 0 0
\(181\) 240.599 1.32928 0.664639 0.747165i \(-0.268585\pi\)
0.664639 + 0.747165i \(0.268585\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 38.6654i 0.209002i
\(186\) 0 0
\(187\) −177.994 −0.951837
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 198.106i − 1.03720i −0.855016 0.518602i \(-0.826453\pi\)
0.855016 0.518602i \(-0.173547\pi\)
\(192\) 0 0
\(193\) 286.470 1.48430 0.742150 0.670234i \(-0.233806\pi\)
0.742150 + 0.670234i \(0.233806\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 304.480i 1.54558i 0.634661 + 0.772791i \(0.281140\pi\)
−0.634661 + 0.772791i \(0.718860\pi\)
\(198\) 0 0
\(199\) −264.082 −1.32704 −0.663522 0.748156i \(-0.730939\pi\)
−0.663522 + 0.748156i \(0.730939\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −90.0000 −0.439024
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 269.615i − 1.29002i
\(210\) 0 0
\(211\) −72.3470 −0.342877 −0.171438 0.985195i \(-0.554841\pi\)
−0.171438 + 0.985195i \(0.554841\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 20.3567i − 0.0946824i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 87.4223i − 0.395576i
\(222\) 0 0
\(223\) −291.347 −1.30649 −0.653244 0.757147i \(-0.726593\pi\)
−0.653244 + 0.757147i \(0.726593\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 256.218i − 1.12871i −0.825531 0.564357i \(-0.809124\pi\)
0.825531 0.564357i \(-0.190876\pi\)
\(228\) 0 0
\(229\) 170.871 0.746160 0.373080 0.927799i \(-0.378302\pi\)
0.373080 + 0.927799i \(0.378302\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 253.876i − 1.08960i −0.838567 0.544798i \(-0.816606\pi\)
0.838567 0.544798i \(-0.183394\pi\)
\(234\) 0 0
\(235\) −75.1229 −0.319672
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 239.234i − 1.00098i −0.865743 0.500489i \(-0.833153\pi\)
0.865743 0.500489i \(-0.166847\pi\)
\(240\) 0 0
\(241\) 74.3880 0.308664 0.154332 0.988019i \(-0.450678\pi\)
0.154332 + 0.988019i \(0.450678\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 132.423 0.536124
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 140.368i − 0.559237i −0.960111 0.279618i \(-0.909792\pi\)
0.960111 0.279618i \(-0.0902079\pi\)
\(252\) 0 0
\(253\) 543.028 2.14636
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 202.175i 0.786672i 0.919395 + 0.393336i \(0.128679\pi\)
−0.919395 + 0.393336i \(0.871321\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 2.02081i − 0.00768369i −0.999993 0.00384185i \(-0.998777\pi\)
0.999993 0.00384185i \(-0.00122290\pi\)
\(264\) 0 0
\(265\) −45.0000 −0.169811
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 247.291i − 0.919297i −0.888101 0.459648i \(-0.847975\pi\)
0.888101 0.459648i \(-0.152025\pi\)
\(270\) 0 0
\(271\) −15.4418 −0.0569806 −0.0284903 0.999594i \(-0.509070\pi\)
−0.0284903 + 0.999594i \(0.509070\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 310.502i 1.12910i
\(276\) 0 0
\(277\) −356.694 −1.28770 −0.643852 0.765150i \(-0.722665\pi\)
−0.643852 + 0.765150i \(0.722665\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 228.487i 0.813121i 0.913624 + 0.406560i \(0.133272\pi\)
−0.913624 + 0.406560i \(0.866728\pi\)
\(282\) 0 0
\(283\) −322.170 −1.13841 −0.569205 0.822195i \(-0.692749\pi\)
−0.569205 + 0.822195i \(0.692749\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 142.293 0.492364
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 493.605i 1.68466i 0.538963 + 0.842329i \(0.318816\pi\)
−0.538963 + 0.842329i \(0.681184\pi\)
\(294\) 0 0
\(295\) −219.076 −0.742629
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 266.711i 0.892008i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 89.4703i − 0.293345i
\(306\) 0 0
\(307\) 115.300 0.375569 0.187784 0.982210i \(-0.439869\pi\)
0.187784 + 0.982210i \(0.439869\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 231.806i − 0.745357i −0.927960 0.372679i \(-0.878439\pi\)
0.927960 0.372679i \(-0.121561\pi\)
\(312\) 0 0
\(313\) −154.823 −0.494643 −0.247322 0.968933i \(-0.579550\pi\)
−0.247322 + 0.968933i \(0.579550\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 123.224i − 0.388719i −0.980930 0.194360i \(-0.937737\pi\)
0.980930 0.194360i \(-0.0622629\pi\)
\(318\) 0 0
\(319\) 28.9116 0.0906321
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 222.223i − 0.687998i
\(324\) 0 0
\(325\) −152.504 −0.469244
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 399.306 1.20636 0.603181 0.797604i \(-0.293900\pi\)
0.603181 + 0.797604i \(0.293900\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 17.4522i − 0.0520962i
\(336\) 0 0
\(337\) −99.1767 −0.294293 −0.147146 0.989115i \(-0.547009\pi\)
−0.147146 + 0.989115i \(0.547009\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 26.1919i 0.0768092i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 176.344i − 0.508196i −0.967179 0.254098i \(-0.918221\pi\)
0.967179 0.254098i \(-0.0817785\pi\)
\(348\) 0 0
\(349\) −132.517 −0.379706 −0.189853 0.981813i \(-0.560801\pi\)
−0.189853 + 0.981813i \(0.560801\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 551.543i 1.56245i 0.624252 + 0.781223i \(0.285404\pi\)
−0.624252 + 0.781223i \(0.714596\pi\)
\(354\) 0 0
\(355\) 157.382 0.443328
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 596.780i 1.66234i 0.556019 + 0.831170i \(0.312328\pi\)
−0.556019 + 0.831170i \(0.687672\pi\)
\(360\) 0 0
\(361\) −24.3880 −0.0675567
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 275.089i 0.753668i
\(366\) 0 0
\(367\) 214.735 0.585109 0.292554 0.956249i \(-0.405495\pi\)
0.292554 + 0.956249i \(0.405495\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −627.375 −1.68197 −0.840985 0.541058i \(-0.818024\pi\)
−0.840985 + 0.541058i \(0.818024\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.2001i 0.0376660i
\(378\) 0 0
\(379\) −471.375 −1.24373 −0.621867 0.783123i \(-0.713626\pi\)
−0.621867 + 0.783123i \(0.713626\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 555.826i − 1.45124i −0.688095 0.725621i \(-0.741553\pi\)
0.688095 0.725621i \(-0.258447\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 296.744i − 0.762838i −0.924402 0.381419i \(-0.875436\pi\)
0.924402 0.381419i \(-0.124564\pi\)
\(390\) 0 0
\(391\) 447.577 1.14470
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 55.5156i 0.140546i
\(396\) 0 0
\(397\) 252.353 0.635651 0.317825 0.948149i \(-0.397047\pi\)
0.317825 + 0.948149i \(0.397047\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 258.600i − 0.644888i −0.946589 0.322444i \(-0.895496\pi\)
0.946589 0.322444i \(-0.104504\pi\)
\(402\) 0 0
\(403\) −12.8643 −0.0319213
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 288.807i − 0.709600i
\(408\) 0 0
\(409\) 738.798 1.80635 0.903176 0.429271i \(-0.141230\pi\)
0.903176 + 0.429271i \(0.141230\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −41.4980 −0.0999953
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 410.238i − 0.979088i −0.871979 0.489544i \(-0.837163\pi\)
0.871979 0.489544i \(-0.162837\pi\)
\(420\) 0 0
\(421\) 543.722 1.29150 0.645751 0.763548i \(-0.276545\pi\)
0.645751 + 0.763548i \(0.276545\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 255.924i 0.602174i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 596.539i 1.38408i 0.721858 + 0.692041i \(0.243288\pi\)
−0.721858 + 0.692041i \(0.756712\pi\)
\(432\) 0 0
\(433\) 137.918 0.318517 0.159259 0.987237i \(-0.449090\pi\)
0.159259 + 0.987237i \(0.449090\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 677.966i 1.55141i
\(438\) 0 0
\(439\) −78.0538 −0.177799 −0.0888995 0.996041i \(-0.528335\pi\)
−0.0888995 + 0.996041i \(0.528335\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 196.955i 0.444594i 0.974979 + 0.222297i \(0.0713554\pi\)
−0.974979 + 0.222297i \(0.928645\pi\)
\(444\) 0 0
\(445\) 253.306 0.569227
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 484.317i − 1.07866i −0.842096 0.539328i \(-0.818678\pi\)
0.842096 0.539328i \(-0.181322\pi\)
\(450\) 0 0
\(451\) 672.246 1.49057
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 65.0948 0.142439 0.0712197 0.997461i \(-0.477311\pi\)
0.0712197 + 0.997461i \(0.477311\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 674.620i 1.46338i 0.681636 + 0.731692i \(0.261269\pi\)
−0.681636 + 0.731692i \(0.738731\pi\)
\(462\) 0 0
\(463\) −412.965 −0.891934 −0.445967 0.895049i \(-0.647140\pi\)
−0.445967 + 0.895049i \(0.647140\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 616.588i − 1.32032i −0.751126 0.660159i \(-0.770489\pi\)
0.751126 0.660159i \(-0.229511\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 152.052i 0.321464i
\(474\) 0 0
\(475\) −387.659 −0.816125
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 455.916i 0.951809i 0.879497 + 0.475904i \(0.157879\pi\)
−0.879497 + 0.475904i \(0.842121\pi\)
\(480\) 0 0
\(481\) 141.849 0.294904
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 349.248i 0.720100i
\(486\) 0 0
\(487\) 462.287 0.949254 0.474627 0.880187i \(-0.342583\pi\)
0.474627 + 0.880187i \(0.342583\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 59.9592i − 0.122117i −0.998134 0.0610583i \(-0.980552\pi\)
0.998134 0.0610583i \(-0.0194475\pi\)
\(492\) 0 0
\(493\) 23.8297 0.0483361
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 559.035 1.12031 0.560155 0.828388i \(-0.310742\pi\)
0.560155 + 0.828388i \(0.310742\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 726.214i 1.44377i 0.692015 + 0.721883i \(0.256723\pi\)
−0.692015 + 0.721883i \(0.743277\pi\)
\(504\) 0 0
\(505\) −372.586 −0.737795
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 896.107i 1.76052i 0.474487 + 0.880262i \(0.342633\pi\)
−0.474487 + 0.880262i \(0.657367\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 114.109i 0.221572i
\(516\) 0 0
\(517\) 561.123 1.08534
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 755.739i 1.45055i 0.688457 + 0.725277i \(0.258288\pi\)
−0.688457 + 0.725277i \(0.741712\pi\)
\(522\) 0 0
\(523\) −776.675 −1.48504 −0.742519 0.669825i \(-0.766369\pi\)
−0.742519 + 0.669825i \(0.766369\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.5880i 0.0409640i
\(528\) 0 0
\(529\) −836.483 −1.58125
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 330.176i 0.619468i
\(534\) 0 0
\(535\) −280.533 −0.524360
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 566.416 1.04698 0.523490 0.852032i \(-0.324630\pi\)
0.523490 + 0.852032i \(0.324630\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 199.123i 0.365364i
\(546\) 0 0
\(547\) 189.476 0.346392 0.173196 0.984887i \(-0.444591\pi\)
0.173196 + 0.984887i \(0.444591\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 36.0959i 0.0655099i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 689.998i − 1.23877i −0.785085 0.619387i \(-0.787381\pi\)
0.785085 0.619387i \(-0.212619\pi\)
\(558\) 0 0
\(559\) −74.6812 −0.133598
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 181.457i 0.322303i 0.986930 + 0.161152i \(0.0515208\pi\)
−0.986930 + 0.161152i \(0.948479\pi\)
\(564\) 0 0
\(565\) 78.1511 0.138320
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 936.124i 1.64521i 0.568614 + 0.822605i \(0.307480\pi\)
−0.568614 + 0.822605i \(0.692520\pi\)
\(570\) 0 0
\(571\) −690.933 −1.21004 −0.605020 0.796210i \(-0.706835\pi\)
−0.605020 + 0.796210i \(0.706835\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 780.780i − 1.35788i
\(576\) 0 0
\(577\) 742.035 1.28602 0.643011 0.765857i \(-0.277685\pi\)
0.643011 + 0.765857i \(0.277685\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 336.123 0.576540
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 237.160i 0.404020i 0.979383 + 0.202010i \(0.0647473\pi\)
−0.979383 + 0.202010i \(0.935253\pi\)
\(588\) 0 0
\(589\) −32.7004 −0.0555185
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 283.132i 0.477458i 0.971086 + 0.238729i \(0.0767307\pi\)
−0.971086 + 0.238729i \(0.923269\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 617.926i − 1.03160i −0.856710 0.515798i \(-0.827495\pi\)
0.856710 0.515798i \(-0.172505\pi\)
\(600\) 0 0
\(601\) −81.6120 −0.135794 −0.0678969 0.997692i \(-0.521629\pi\)
−0.0678969 + 0.997692i \(0.521629\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 186.810i 0.308777i
\(606\) 0 0
\(607\) 419.416 0.690966 0.345483 0.938425i \(-0.387715\pi\)
0.345483 + 0.938425i \(0.387715\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 275.598i 0.451060i
\(612\) 0 0
\(613\) −60.4418 −0.0985999 −0.0493000 0.998784i \(-0.515699\pi\)
−0.0493000 + 0.998784i \(0.515699\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 254.598i − 0.412639i −0.978485 0.206319i \(-0.933851\pi\)
0.978485 0.206319i \(-0.0661486\pi\)
\(618\) 0 0
\(619\) −497.192 −0.803218 −0.401609 0.915811i \(-0.631549\pi\)
−0.401609 + 0.915811i \(0.631549\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 349.681 0.559490
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 238.042i − 0.378446i
\(630\) 0 0
\(631\) −599.183 −0.949577 −0.474789 0.880100i \(-0.657475\pi\)
−0.474789 + 0.880100i \(0.657475\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 300.144i − 0.472667i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 771.103i − 1.20297i −0.798884 0.601484i \(-0.794576\pi\)
0.798884 0.601484i \(-0.205424\pi\)
\(642\) 0 0
\(643\) 1169.35 1.81858 0.909292 0.416159i \(-0.136624\pi\)
0.909292 + 0.416159i \(0.136624\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 145.896i − 0.225496i −0.993624 0.112748i \(-0.964035\pi\)
0.993624 0.112748i \(-0.0359652\pi\)
\(648\) 0 0
\(649\) 1636.36 2.52136
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 388.115i 0.594356i 0.954822 + 0.297178i \(0.0960455\pi\)
−0.954822 + 0.297178i \(0.903954\pi\)
\(654\) 0 0
\(655\) −372.218 −0.568271
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 271.395i − 0.411829i −0.978570 0.205914i \(-0.933983\pi\)
0.978570 0.205914i \(-0.0660168\pi\)
\(660\) 0 0
\(661\) 526.442 0.796432 0.398216 0.917292i \(-0.369629\pi\)
0.398216 + 0.917292i \(0.369629\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −72.7004 −0.108996
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 668.289i 0.995960i
\(672\) 0 0
\(673\) 714.022 1.06095 0.530477 0.847699i \(-0.322013\pi\)
0.530477 + 0.847699i \(0.322013\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 934.840i 1.38086i 0.723401 + 0.690428i \(0.242578\pi\)
−0.723401 + 0.690428i \(0.757422\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 394.552i − 0.577675i −0.957378 0.288837i \(-0.906731\pi\)
0.957378 0.288837i \(-0.0932687\pi\)
\(684\) 0 0
\(685\) 290.802 0.424528
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 165.088i 0.239605i
\(690\) 0 0
\(691\) −1087.88 −1.57436 −0.787178 0.616726i \(-0.788459\pi\)
−0.787178 + 0.616726i \(0.788459\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 263.285i 0.378827i
\(696\) 0 0
\(697\) 554.082 0.794953
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 670.592i 0.956621i 0.878191 + 0.478311i \(0.158751\pi\)
−0.878191 + 0.478311i \(0.841249\pi\)
\(702\) 0 0
\(703\) 360.574 0.512907
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1297.96 1.83069 0.915347 0.402667i \(-0.131917\pi\)
0.915347 + 0.402667i \(0.131917\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 65.8614i − 0.0923723i
\(714\) 0 0
\(715\) −208.675 −0.291853
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 39.8569i 0.0554338i 0.999616 + 0.0277169i \(0.00882370\pi\)
−0.999616 + 0.0277169i \(0.991176\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 41.5699i − 0.0573378i
\(726\) 0 0
\(727\) 282.627 0.388758 0.194379 0.980926i \(-0.437731\pi\)
0.194379 + 0.980926i \(0.437731\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 125.325i 0.171444i
\(732\) 0 0
\(733\) −62.2394 −0.0849105 −0.0424553 0.999098i \(-0.513518\pi\)
−0.0424553 + 0.999098i \(0.513518\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 130.358i 0.176876i
\(738\) 0 0
\(739\) 1252.23 1.69450 0.847248 0.531197i \(-0.178258\pi\)
0.847248 + 0.531197i \(0.178258\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 230.602i − 0.310366i −0.987886 0.155183i \(-0.950403\pi\)
0.987886 0.155183i \(-0.0495967\pi\)
\(744\) 0 0
\(745\) −333.880 −0.448161
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −711.688 −0.947653 −0.473827 0.880618i \(-0.657128\pi\)
−0.473827 + 0.880618i \(0.657128\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 360.022i − 0.476851i
\(756\) 0 0
\(757\) −1073.10 −1.41757 −0.708783 0.705427i \(-0.750755\pi\)
−0.708783 + 0.705427i \(0.750755\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 436.751i 0.573917i 0.957943 + 0.286959i \(0.0926443\pi\)
−0.957943 + 0.286959i \(0.907356\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 803.706i 1.04786i
\(768\) 0 0
\(769\) 284.237 0.369619 0.184809 0.982774i \(-0.440833\pi\)
0.184809 + 0.982774i \(0.440833\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 411.951i 0.532925i 0.963845 + 0.266462i \(0.0858548\pi\)
−0.963845 + 0.266462i \(0.914145\pi\)
\(774\) 0 0
\(775\) 37.6594 0.0485928
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 839.293i 1.07740i
\(780\) 0 0
\(781\) −1175.55 −1.50518
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 48.5830i − 0.0618892i
\(786\) 0 0
\(787\) −49.2177 −0.0625383 −0.0312692 0.999511i \(-0.509955\pi\)
−0.0312692 + 0.999511i \(0.509955\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −328.233 −0.413913
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 22.4979i − 0.0282283i −0.999900 0.0141141i \(-0.995507\pi\)
0.999900 0.0141141i \(-0.00449282\pi\)
\(798\) 0 0
\(799\) 462.492 0.578838
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 2054.75i − 2.55884i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 364.733i 0.450844i 0.974261 + 0.225422i \(0.0723761\pi\)
−0.974261 + 0.225422i \(0.927624\pi\)
\(810\) 0 0
\(811\) −1084.15 −1.33681 −0.668404 0.743799i \(-0.733022\pi\)
−0.668404 + 0.743799i \(0.733022\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 505.704i 0.620495i
\(816\) 0 0
\(817\) −189.836 −0.232358
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 943.218i − 1.14886i −0.818552 0.574432i \(-0.805223\pi\)
0.818552 0.574432i \(-0.194777\pi\)
\(822\) 0 0
\(823\) 714.013 0.867573 0.433787 0.901016i \(-0.357177\pi\)
0.433787 + 0.901016i \(0.357177\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 186.864i 0.225954i 0.993598 + 0.112977i \(0.0360386\pi\)
−0.993598 + 0.112977i \(0.963961\pi\)
\(828\) 0 0
\(829\) 950.567 1.14664 0.573322 0.819330i \(-0.305655\pi\)
0.573322 + 0.819330i \(0.305655\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −256.466 −0.307145
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 338.622i 0.403602i 0.979427 + 0.201801i \(0.0646794\pi\)
−0.979427 + 0.201801i \(0.935321\pi\)
\(840\) 0 0
\(841\) 837.129 0.995398
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 230.000i 0.272189i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 726.227i 0.853380i
\(852\) 0 0
\(853\) −1048.53 −1.22923 −0.614613 0.788829i \(-0.710688\pi\)
−0.614613 + 0.788829i \(0.710688\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 141.479i 0.165087i 0.996587 + 0.0825433i \(0.0263043\pi\)
−0.996587 + 0.0825433i \(0.973696\pi\)
\(858\) 0 0
\(859\) −161.325 −0.187806 −0.0939029 0.995581i \(-0.529934\pi\)
−0.0939029 + 0.995581i \(0.529934\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1281.73i − 1.48521i −0.669732 0.742603i \(-0.733591\pi\)
0.669732 0.742603i \(-0.266409\pi\)
\(864\) 0 0
\(865\) −302.177 −0.349337
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 414.668i − 0.477178i
\(870\) 0 0
\(871\) −64.0256 −0.0735082
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1019.95 −1.16300 −0.581499 0.813547i \(-0.697533\pi\)
−0.581499 + 0.813547i \(0.697533\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 461.497i 0.523833i 0.965090 + 0.261917i \(0.0843546\pi\)
−0.965090 + 0.261917i \(0.915645\pi\)
\(882\) 0 0
\(883\) −449.836 −0.509441 −0.254720 0.967015i \(-0.581983\pi\)
−0.254720 + 0.967015i \(0.581983\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 66.2363i − 0.0746745i −0.999303 0.0373372i \(-0.988112\pi\)
0.999303 0.0373372i \(-0.0118876\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 700.557i 0.784499i
\(894\) 0 0
\(895\) 306.284 0.342217
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 3.50656i − 0.00390052i
\(900\) 0 0
\(901\) 277.041 0.307482
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 473.356i − 0.523045i
\(906\) 0 0
\(907\) −1672.32 −1.84379 −0.921897 0.387435i \(-0.873361\pi\)
−0.921897 + 0.387435i \(0.873361\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 780.445i − 0.856690i −0.903615 0.428345i \(-0.859097\pi\)
0.903615 0.428345i \(-0.140903\pi\)
\(912\) 0 0
\(913\) 309.965 0.339502
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −134.884 −0.146772 −0.0733860 0.997304i \(-0.523381\pi\)
−0.0733860 + 0.997304i \(0.523381\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 577.374i − 0.625541i
\(924\) 0 0
\(925\) −415.255 −0.448924
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 92.7894i − 0.0998810i −0.998752 0.0499405i \(-0.984097\pi\)
0.998752 0.0499405i \(-0.0159032\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 350.185i 0.374530i
\(936\) 0 0
\(937\) 80.1421 0.0855306 0.0427653 0.999085i \(-0.486383\pi\)
0.0427653 + 0.999085i \(0.486383\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 425.991i 0.452700i 0.974046 + 0.226350i \(0.0726793\pi\)
−0.974046 + 0.226350i \(0.927321\pi\)
\(942\) 0 0
\(943\) −1690.41 −1.79259
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.2648i 0.0330146i 0.999864 + 0.0165073i \(0.00525468\pi\)
−0.999864 + 0.0165073i \(0.994745\pi\)
\(948\) 0 0
\(949\) 1009.20 1.06343
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 972.394i 1.02035i 0.860070 + 0.510175i \(0.170419\pi\)
−0.860070 + 0.510175i \(0.829581\pi\)
\(954\) 0 0
\(955\) −389.754 −0.408120
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −957.823 −0.996694
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 563.602i − 0.584044i
\(966\) 0 0
\(967\) 348.533 0.360427 0.180213 0.983628i \(-0.442321\pi\)
0.180213 + 0.983628i \(0.442321\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 567.202i 0.584142i 0.956397 + 0.292071i \(0.0943444\pi\)
−0.956397 + 0.292071i \(0.905656\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 200.154i − 0.204866i −0.994740 0.102433i \(-0.967337\pi\)
0.994740 0.102433i \(-0.0326627\pi\)
\(978\) 0 0
\(979\) −1892.04 −1.93263
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1871.18i − 1.90354i −0.306815 0.951769i \(-0.599263\pi\)
0.306815 0.951769i \(-0.400737\pi\)
\(984\) 0 0
\(985\) 599.035 0.608157
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 382.347i − 0.386599i
\(990\) 0 0
\(991\) 1616.61 1.63130 0.815648 0.578548i \(-0.196381\pi\)
0.815648 + 0.578548i \(0.196381\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 519.556i 0.522167i
\(996\) 0 0
\(997\) −1201.39 −1.20500 −0.602501 0.798118i \(-0.705829\pi\)
−0.602501 + 0.798118i \(0.705829\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.3.c.e.197.2 4
3.2 odd 2 inner 1764.3.c.e.197.3 4
7.2 even 3 252.3.bk.b.53.2 8
7.3 odd 6 1764.3.bk.f.1745.2 8
7.4 even 3 252.3.bk.b.233.3 yes 8
7.5 odd 6 1764.3.bk.f.557.3 8
7.6 odd 2 1764.3.c.g.197.3 4
21.2 odd 6 252.3.bk.b.53.3 yes 8
21.5 even 6 1764.3.bk.f.557.2 8
21.11 odd 6 252.3.bk.b.233.2 yes 8
21.17 even 6 1764.3.bk.f.1745.3 8
21.20 even 2 1764.3.c.g.197.2 4
28.11 odd 6 1008.3.dc.d.737.3 8
28.23 odd 6 1008.3.dc.d.305.2 8
84.11 even 6 1008.3.dc.d.737.2 8
84.23 even 6 1008.3.dc.d.305.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.bk.b.53.2 8 7.2 even 3
252.3.bk.b.53.3 yes 8 21.2 odd 6
252.3.bk.b.233.2 yes 8 21.11 odd 6
252.3.bk.b.233.3 yes 8 7.4 even 3
1008.3.dc.d.305.2 8 28.23 odd 6
1008.3.dc.d.305.3 8 84.23 even 6
1008.3.dc.d.737.2 8 84.11 even 6
1008.3.dc.d.737.3 8 28.11 odd 6
1764.3.c.e.197.2 4 1.1 even 1 trivial
1764.3.c.e.197.3 4 3.2 odd 2 inner
1764.3.c.g.197.2 4 21.20 even 2
1764.3.c.g.197.3 4 7.6 odd 2
1764.3.bk.f.557.2 8 21.5 even 6
1764.3.bk.f.557.3 8 7.5 odd 6
1764.3.bk.f.1745.2 8 7.3 odd 6
1764.3.bk.f.1745.3 8 21.17 even 6