Properties

Label 1764.3.bk.f.557.2
Level $1764$
Weight $3$
Character 1764.557
Analytic conductor $48.066$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,3,Mod(557,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.557"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1764.bk (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.0655186332\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.92844527616.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 13x^{6} - 2x^{5} + 239x^{4} - 200x^{3} - 50x^{2} - 288x + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 557.2
Root \(1.10191 - 0.0588384i\) of defining polynomial
Character \(\chi\) \(=\) 1764.557
Dual form 1764.3.bk.f.1745.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70382 + 0.983702i) q^{5} +(12.7265 + 7.34766i) q^{11} +7.21767 q^{13} +(-10.4895 - 6.05613i) q^{17} +(-9.17349 - 15.8890i) q^{19} +(32.0018 - 18.4762i) q^{23} +(-10.5647 + 18.2985i) q^{25} +1.96740i q^{29} +(0.891165 - 1.54354i) q^{31} +(9.82651 + 17.0200i) q^{37} -45.7456i q^{41} +10.3470 q^{43} +(-33.0681 + 19.0919i) q^{47} +(-19.8084 - 11.4364i) q^{53} -28.9116 q^{55} +(96.4342 + 55.6763i) q^{59} +(22.7382 + 39.3836i) q^{61} +(-12.2976 + 7.10004i) q^{65} +(-4.43534 + 7.68223i) q^{67} -79.9945i q^{71} +(-69.9116 + 121.091i) q^{73} +(14.1088 + 24.4372i) q^{79} -21.0928i q^{83} +23.8297 q^{85} +(111.502 - 64.3757i) q^{89} +(31.2600 + 18.0480i) q^{95} +177.517 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 112 q^{13} + 8 q^{19} + 24 q^{25} - 20 q^{31} + 160 q^{37} - 80 q^{43} + 40 q^{55} - 8 q^{61} - 144 q^{67} - 288 q^{73} + 140 q^{79} + 896 q^{85} + 552 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.70382 + 0.983702i −0.340764 + 0.196740i −0.660610 0.750729i \(-0.729702\pi\)
0.319846 + 0.947470i \(0.396369\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 12.7265 + 7.34766i 1.15696 + 0.667969i 0.950573 0.310502i \(-0.100497\pi\)
0.206384 + 0.978471i \(0.433830\pi\)
\(12\) 0 0
\(13\) 7.21767 0.555205 0.277603 0.960696i \(-0.410460\pi\)
0.277603 + 0.960696i \(0.410460\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −10.4895 6.05613i −0.617031 0.356243i 0.158681 0.987330i \(-0.449276\pi\)
−0.775712 + 0.631087i \(0.782609\pi\)
\(18\) 0 0
\(19\) −9.17349 15.8890i −0.482816 0.836261i 0.516990 0.855992i \(-0.327053\pi\)
−0.999805 + 0.0197305i \(0.993719\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 32.0018 18.4762i 1.39138 0.803314i 0.397912 0.917423i \(-0.369735\pi\)
0.993468 + 0.114110i \(0.0364015\pi\)
\(24\) 0 0
\(25\) −10.5647 + 18.2985i −0.422586 + 0.731941i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.96740i 0.0678415i 0.999425 + 0.0339208i \(0.0107994\pi\)
−0.999425 + 0.0339208i \(0.989201\pi\)
\(30\) 0 0
\(31\) 0.891165 1.54354i 0.0287473 0.0497917i −0.851294 0.524689i \(-0.824182\pi\)
0.880041 + 0.474898i \(0.157515\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.82651 + 17.0200i 0.265581 + 0.460000i 0.967716 0.252044i \(-0.0811028\pi\)
−0.702135 + 0.712044i \(0.747769\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 45.7456i 1.11575i −0.829927 0.557873i \(-0.811618\pi\)
0.829927 0.557873i \(-0.188382\pi\)
\(42\) 0 0
\(43\) 10.3470 0.240628 0.120314 0.992736i \(-0.461610\pi\)
0.120314 + 0.992736i \(0.461610\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −33.0681 + 19.0919i −0.703577 + 0.406210i −0.808678 0.588251i \(-0.799817\pi\)
0.105101 + 0.994462i \(0.466483\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −19.8084 11.4364i −0.373743 0.215781i 0.301349 0.953514i \(-0.402563\pi\)
−0.675093 + 0.737733i \(0.735896\pi\)
\(54\) 0 0
\(55\) −28.9116 −0.525666
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 96.4342 + 55.6763i 1.63448 + 0.943666i 0.982689 + 0.185265i \(0.0593144\pi\)
0.651789 + 0.758401i \(0.274019\pi\)
\(60\) 0 0
\(61\) 22.7382 + 39.3836i 0.372757 + 0.645633i 0.989989 0.141148i \(-0.0450793\pi\)
−0.617232 + 0.786781i \(0.711746\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.2976 + 7.10004i −0.189194 + 0.109231i
\(66\) 0 0
\(67\) −4.43534 + 7.68223i −0.0661991 + 0.114660i −0.897225 0.441573i \(-0.854421\pi\)
0.831026 + 0.556233i \(0.187754\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 79.9945i 1.12668i −0.826224 0.563342i \(-0.809516\pi\)
0.826224 0.563342i \(-0.190484\pi\)
\(72\) 0 0
\(73\) −69.9116 + 121.091i −0.957694 + 1.65877i −0.229614 + 0.973282i \(0.573746\pi\)
−0.728080 + 0.685493i \(0.759587\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 14.1088 + 24.4372i 0.178593 + 0.309332i 0.941399 0.337296i \(-0.109512\pi\)
−0.762806 + 0.646627i \(0.776179\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 21.0928i 0.254130i −0.991894 0.127065i \(-0.959444\pi\)
0.991894 0.127065i \(-0.0405557\pi\)
\(84\) 0 0
\(85\) 23.8297 0.280350
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 111.502 64.3757i 1.25283 0.723322i 0.281160 0.959661i \(-0.409281\pi\)
0.971671 + 0.236339i \(0.0759474\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 31.2600 + 18.0480i 0.329053 + 0.189979i
\(96\) 0 0
\(97\) 177.517 1.83008 0.915038 0.403369i \(-0.132161\pi\)
0.915038 + 0.403369i \(0.132161\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 164.008 + 94.6898i 1.62384 + 0.937523i 0.985880 + 0.167451i \(0.0535537\pi\)
0.637957 + 0.770072i \(0.279780\pi\)
\(102\) 0 0
\(103\) −29.0000 50.2295i −0.281553 0.487665i 0.690214 0.723605i \(-0.257516\pi\)
−0.971768 + 0.235940i \(0.924183\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 123.487 71.2951i 1.15408 0.666309i 0.204203 0.978929i \(-0.434540\pi\)
0.949879 + 0.312619i \(0.101206\pi\)
\(108\) 0 0
\(109\) 50.6056 87.6515i 0.464272 0.804142i −0.534897 0.844918i \(-0.679649\pi\)
0.999168 + 0.0407752i \(0.0129827\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 39.7229i 0.351530i −0.984432 0.175765i \(-0.943760\pi\)
0.984432 0.175765i \(-0.0562399\pi\)
\(114\) 0 0
\(115\) −36.3502 + 62.9604i −0.316089 + 0.547482i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 47.4763 + 82.2314i 0.392366 + 0.679598i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 90.7550i 0.726040i
\(126\) 0 0
\(127\) 152.558 1.20125 0.600623 0.799532i \(-0.294919\pi\)
0.600623 + 0.799532i \(0.294919\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −163.845 + 94.5961i −1.25073 + 0.722108i −0.971254 0.238046i \(-0.923493\pi\)
−0.279473 + 0.960153i \(0.590160\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 128.007 + 73.9049i 0.934358 + 0.539452i 0.888187 0.459482i \(-0.151965\pi\)
0.0461706 + 0.998934i \(0.485298\pi\)
\(138\) 0 0
\(139\) 133.823 0.962758 0.481379 0.876513i \(-0.340136\pi\)
0.481379 + 0.876513i \(0.340136\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 91.8559 + 53.0330i 0.642349 + 0.370860i
\(144\) 0 0
\(145\) −1.93534 3.35211i −0.0133472 0.0231180i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 146.969 84.8528i 0.986372 0.569482i 0.0821839 0.996617i \(-0.473811\pi\)
0.904188 + 0.427135i \(0.140477\pi\)
\(150\) 0 0
\(151\) −91.4968 + 158.477i −0.605939 + 1.04952i 0.385963 + 0.922514i \(0.373869\pi\)
−0.991902 + 0.127003i \(0.959464\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.50656i 0.0226230i
\(156\) 0 0
\(157\) 12.3470 21.3856i 0.0786432 0.136214i −0.824022 0.566558i \(-0.808275\pi\)
0.902665 + 0.430344i \(0.141608\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 128.520 + 222.604i 0.788469 + 1.36567i 0.926904 + 0.375297i \(0.122459\pi\)
−0.138435 + 0.990371i \(0.544207\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 130.358i 0.780584i −0.920691 0.390292i \(-0.872374\pi\)
0.920691 0.390292i \(-0.127626\pi\)
\(168\) 0 0
\(169\) −116.905 −0.691747
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −133.014 + 76.7958i −0.768868 + 0.443906i −0.832471 0.554069i \(-0.813074\pi\)
0.0636026 + 0.997975i \(0.479741\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 134.822 + 77.8397i 0.753197 + 0.434859i 0.826848 0.562426i \(-0.190132\pi\)
−0.0736508 + 0.997284i \(0.523465\pi\)
\(180\) 0 0
\(181\) −240.599 −1.32928 −0.664639 0.747165i \(-0.731415\pi\)
−0.664639 + 0.747165i \(0.731415\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −33.4852 19.3327i −0.181001 0.104501i
\(186\) 0 0
\(187\) −88.9968 154.147i −0.475919 0.824315i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 171.565 99.0529i 0.898244 0.518602i 0.0216141 0.999766i \(-0.493119\pi\)
0.876630 + 0.481165i \(0.159786\pi\)
\(192\) 0 0
\(193\) −143.235 + 248.090i −0.742150 + 1.28544i 0.209365 + 0.977838i \(0.432860\pi\)
−0.951515 + 0.307604i \(0.900473\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 304.480i 1.54558i −0.634661 0.772791i \(-0.718860\pi\)
0.634661 0.772791i \(-0.281140\pi\)
\(198\) 0 0
\(199\) −132.041 + 228.702i −0.663522 + 1.14925i 0.316161 + 0.948705i \(0.397606\pi\)
−0.979684 + 0.200549i \(0.935727\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 45.0000 + 77.9423i 0.219512 + 0.380206i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 269.615i 1.29002i
\(210\) 0 0
\(211\) −72.3470 −0.342877 −0.171438 0.985195i \(-0.554841\pi\)
−0.171438 + 0.985195i \(0.554841\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −17.6294 + 10.1784i −0.0819974 + 0.0473412i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −75.7099 43.7111i −0.342579 0.197788i
\(222\) 0 0
\(223\) 291.347 1.30649 0.653244 0.757147i \(-0.273407\pi\)
0.653244 + 0.757147i \(0.273407\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 221.891 + 128.109i 0.977495 + 0.564357i 0.901513 0.432752i \(-0.142458\pi\)
0.0759819 + 0.997109i \(0.475791\pi\)
\(228\) 0 0
\(229\) 85.4353 + 147.978i 0.373080 + 0.646194i 0.990038 0.140803i \(-0.0449683\pi\)
−0.616958 + 0.786996i \(0.711635\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 219.863 126.938i 0.943617 0.544798i 0.0525250 0.998620i \(-0.483273\pi\)
0.891092 + 0.453822i \(0.149940\pi\)
\(234\) 0 0
\(235\) 37.5615 65.0583i 0.159836 0.276844i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 239.234i 1.00098i 0.865743 + 0.500489i \(0.166847\pi\)
−0.865743 + 0.500489i \(0.833153\pi\)
\(240\) 0 0
\(241\) 37.1940 64.4219i 0.154332 0.267311i −0.778484 0.627665i \(-0.784011\pi\)
0.932816 + 0.360354i \(0.117344\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −66.2113 114.681i −0.268062 0.464297i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 140.368i 0.559237i −0.960111 0.279618i \(-0.909792\pi\)
0.960111 0.279618i \(-0.0902079\pi\)
\(252\) 0 0
\(253\) 543.028 2.14636
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 175.088 101.087i 0.681278 0.393336i −0.119059 0.992887i \(-0.537988\pi\)
0.800336 + 0.599551i \(0.204654\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.75007 1.01041i −0.00665427 0.00384185i 0.496669 0.867940i \(-0.334556\pi\)
−0.503323 + 0.864098i \(0.667890\pi\)
\(264\) 0 0
\(265\) 45.0000 0.169811
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 214.160 + 123.645i 0.796135 + 0.459648i 0.842118 0.539294i \(-0.181309\pi\)
−0.0459832 + 0.998942i \(0.514642\pi\)
\(270\) 0 0
\(271\) −7.72088 13.3729i −0.0284903 0.0493467i 0.851429 0.524470i \(-0.175737\pi\)
−0.879919 + 0.475124i \(0.842403\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −268.903 + 155.251i −0.977829 + 0.564550i
\(276\) 0 0
\(277\) 178.347 308.906i 0.643852 1.11518i −0.340713 0.940167i \(-0.610669\pi\)
0.984565 0.175017i \(-0.0559981\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 228.487i 0.813121i −0.913624 0.406560i \(-0.866728\pi\)
0.913624 0.406560i \(-0.133272\pi\)
\(282\) 0 0
\(283\) −161.085 + 279.008i −0.569205 + 0.985893i 0.427439 + 0.904044i \(0.359416\pi\)
−0.996645 + 0.0818487i \(0.973918\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −71.1466 123.230i −0.246182 0.426400i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 493.605i 1.68466i 0.538963 + 0.842329i \(0.318816\pi\)
−0.538963 + 0.842329i \(0.681184\pi\)
\(294\) 0 0
\(295\) −219.076 −0.742629
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 230.978 133.355i 0.772502 0.446004i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −77.4835 44.7351i −0.254044 0.146673i
\(306\) 0 0
\(307\) −115.300 −0.375569 −0.187784 0.982210i \(-0.560131\pi\)
−0.187784 + 0.982210i \(0.560131\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 200.750 + 115.903i 0.645498 + 0.372679i 0.786729 0.617298i \(-0.211773\pi\)
−0.141231 + 0.989977i \(0.545106\pi\)
\(312\) 0 0
\(313\) −77.4116 134.081i −0.247322 0.428374i 0.715460 0.698653i \(-0.246217\pi\)
−0.962782 + 0.270280i \(0.912884\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 106.715 61.6120i 0.336641 0.194360i −0.322145 0.946690i \(-0.604404\pi\)
0.658786 + 0.752331i \(0.271070\pi\)
\(318\) 0 0
\(319\) −14.4558 + 25.0382i −0.0453161 + 0.0784897i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 222.223i 0.687998i
\(324\) 0 0
\(325\) −76.2522 + 132.073i −0.234622 + 0.406378i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −199.653 345.809i −0.603181 1.04474i −0.992336 0.123568i \(-0.960566\pi\)
0.389155 0.921172i \(-0.372767\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 17.4522i 0.0520962i
\(336\) 0 0
\(337\) −99.1767 −0.294293 −0.147146 0.989115i \(-0.547009\pi\)
−0.147146 + 0.989115i \(0.547009\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 22.6829 13.0960i 0.0665187 0.0384046i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −152.718 88.1720i −0.440110 0.254098i 0.263534 0.964650i \(-0.415112\pi\)
−0.703644 + 0.710552i \(0.748445\pi\)
\(348\) 0 0
\(349\) 132.517 0.379706 0.189853 0.981813i \(-0.439199\pi\)
0.189853 + 0.981813i \(0.439199\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −477.650 275.772i −1.35312 0.781223i −0.364433 0.931230i \(-0.618737\pi\)
−0.988685 + 0.150007i \(0.952070\pi\)
\(354\) 0 0
\(355\) 78.6908 + 136.296i 0.221664 + 0.383934i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −516.827 + 298.390i −1.43963 + 0.831170i −0.997824 0.0659412i \(-0.978995\pi\)
−0.441805 + 0.897111i \(0.645662\pi\)
\(360\) 0 0
\(361\) 12.1940 21.1206i 0.0337783 0.0585058i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 275.089i 0.753668i
\(366\) 0 0
\(367\) 107.367 185.966i 0.292554 0.506719i −0.681859 0.731484i \(-0.738828\pi\)
0.974413 + 0.224765i \(0.0721614\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 313.688 + 543.323i 0.840985 + 1.45663i 0.889062 + 0.457786i \(0.151357\pi\)
−0.0480770 + 0.998844i \(0.515309\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.2001i 0.0376660i
\(378\) 0 0
\(379\) −471.375 −1.24373 −0.621867 0.783123i \(-0.713626\pi\)
−0.621867 + 0.783123i \(0.713626\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −481.359 + 277.913i −1.25681 + 0.725621i −0.972454 0.233097i \(-0.925114\pi\)
−0.284359 + 0.958718i \(0.591781\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −256.988 148.372i −0.660637 0.381419i 0.131883 0.991265i \(-0.457898\pi\)
−0.792520 + 0.609846i \(0.791231\pi\)
\(390\) 0 0
\(391\) −447.577 −1.14470
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −48.0779 27.7578i −0.121716 0.0702729i
\(396\) 0 0
\(397\) 126.177 + 218.544i 0.317825 + 0.550490i 0.980034 0.198830i \(-0.0637141\pi\)
−0.662209 + 0.749320i \(0.730381\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 223.954 129.300i 0.558489 0.322444i −0.194050 0.980992i \(-0.562162\pi\)
0.752539 + 0.658548i \(0.228829\pi\)
\(402\) 0 0
\(403\) 6.43213 11.1408i 0.0159606 0.0276446i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 288.807i 0.709600i
\(408\) 0 0
\(409\) 369.399 639.818i 0.903176 1.56435i 0.0798280 0.996809i \(-0.474563\pi\)
0.823348 0.567537i \(-0.192104\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 20.7490 + 35.9384i 0.0499976 + 0.0865985i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 410.238i 0.979088i −0.871979 0.489544i \(-0.837163\pi\)
0.871979 0.489544i \(-0.162837\pi\)
\(420\) 0 0
\(421\) 543.722 1.29150 0.645751 0.763548i \(-0.276545\pi\)
0.645751 + 0.763548i \(0.276545\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 221.636 127.962i 0.521498 0.301087i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 516.618 + 298.270i 1.19865 + 0.692041i 0.960254 0.279127i \(-0.0900451\pi\)
0.238396 + 0.971168i \(0.423378\pi\)
\(432\) 0 0
\(433\) −137.918 −0.318517 −0.159259 0.987237i \(-0.550910\pi\)
−0.159259 + 0.987237i \(0.550910\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −587.136 338.983i −1.34356 0.775705i
\(438\) 0 0
\(439\) −39.0269 67.5966i −0.0888995 0.153979i 0.818147 0.575010i \(-0.195002\pi\)
−0.907046 + 0.421031i \(0.861668\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −170.568 + 98.4775i −0.385030 + 0.222297i −0.680004 0.733208i \(-0.738022\pi\)
0.294975 + 0.955505i \(0.404689\pi\)
\(444\) 0 0
\(445\) −126.653 + 219.369i −0.284614 + 0.492965i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 484.317i 1.07866i 0.842096 + 0.539328i \(0.181322\pi\)
−0.842096 + 0.539328i \(0.818678\pi\)
\(450\) 0 0
\(451\) 336.123 582.182i 0.745284 1.29087i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −32.5474 56.3737i −0.0712197 0.123356i 0.828216 0.560408i \(-0.189356\pi\)
−0.899436 + 0.437052i \(0.856022\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 674.620i 1.46338i 0.681636 + 0.731692i \(0.261269\pi\)
−0.681636 + 0.731692i \(0.738731\pi\)
\(462\) 0 0
\(463\) −412.965 −0.891934 −0.445967 0.895049i \(-0.647140\pi\)
−0.445967 + 0.895049i \(0.647140\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −533.981 + 308.294i −1.14343 + 0.660159i −0.947277 0.320415i \(-0.896178\pi\)
−0.196151 + 0.980574i \(0.562844\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 131.681 + 76.0262i 0.278396 + 0.160732i
\(474\) 0 0
\(475\) 387.659 0.816125
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −394.835 227.958i −0.824290 0.475904i 0.0276033 0.999619i \(-0.491212\pi\)
−0.851894 + 0.523715i \(0.824546\pi\)
\(480\) 0 0
\(481\) 70.9245 + 122.845i 0.147452 + 0.255395i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −302.458 + 174.624i −0.623624 + 0.360050i
\(486\) 0 0
\(487\) −231.143 + 400.352i −0.474627 + 0.822078i −0.999578 0.0290544i \(-0.990750\pi\)
0.524951 + 0.851133i \(0.324084\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 59.9592i 0.122117i 0.998134 + 0.0610583i \(0.0194475\pi\)
−0.998134 + 0.0610583i \(0.980552\pi\)
\(492\) 0 0
\(493\) 11.9149 20.6371i 0.0241681 0.0418603i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −279.517 484.138i −0.560155 0.970217i −0.997482 0.0709144i \(-0.977408\pi\)
0.437328 0.899302i \(-0.355925\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 726.214i 1.44377i 0.692015 + 0.721883i \(0.256723\pi\)
−0.692015 + 0.721883i \(0.743277\pi\)
\(504\) 0 0
\(505\) −372.586 −0.737795
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 776.051 448.054i 1.52466 0.880262i 0.525086 0.851049i \(-0.324033\pi\)
0.999573 0.0292131i \(-0.00930016\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 98.8217 + 57.0547i 0.191887 + 0.110786i
\(516\) 0 0
\(517\) −561.123 −1.08534
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −654.489 377.869i −1.25622 0.725277i −0.283880 0.958860i \(-0.591622\pi\)
−0.972337 + 0.233583i \(0.924955\pi\)
\(522\) 0 0
\(523\) −388.337 672.620i −0.742519 1.28608i −0.951345 0.308128i \(-0.900298\pi\)
0.208826 0.977953i \(-0.433036\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.6958 + 10.7940i −0.0354759 + 0.0204820i
\(528\) 0 0
\(529\) 418.241 724.415i 0.790626 1.36941i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 330.176i 0.619468i
\(534\) 0 0
\(535\) −140.266 + 242.948i −0.262180 + 0.454109i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −283.208 490.531i −0.523490 0.906711i −0.999626 0.0273397i \(-0.991296\pi\)
0.476136 0.879372i \(-0.342037\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 199.123i 0.365364i
\(546\) 0 0
\(547\) 189.476 0.346392 0.173196 0.984887i \(-0.444591\pi\)
0.173196 + 0.984887i \(0.444591\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 31.2600 18.0480i 0.0567332 0.0327549i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −597.556 344.999i −1.07281 0.619387i −0.143863 0.989598i \(-0.545952\pi\)
−0.928948 + 0.370210i \(0.879286\pi\)
\(558\) 0 0
\(559\) 74.6812 0.133598
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −157.146 90.7283i −0.279123 0.161152i 0.353903 0.935282i \(-0.384854\pi\)
−0.633026 + 0.774130i \(0.718187\pi\)
\(564\) 0 0
\(565\) 39.0755 + 67.6808i 0.0691602 + 0.119789i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −810.707 + 468.062i −1.42479 + 0.822605i −0.996703 0.0811314i \(-0.974147\pi\)
−0.428090 + 0.903736i \(0.640813\pi\)
\(570\) 0 0
\(571\) 345.467 598.366i 0.605020 1.04793i −0.387028 0.922068i \(-0.626498\pi\)
0.992048 0.125858i \(-0.0401684\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 780.780i 1.35788i
\(576\) 0 0
\(577\) 371.017 642.621i 0.643011 1.11373i −0.341746 0.939792i \(-0.611018\pi\)
0.984757 0.173935i \(-0.0556483\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −168.061 291.091i −0.288270 0.499298i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 237.160i 0.404020i 0.979383 + 0.202010i \(0.0647473\pi\)
−0.979383 + 0.202010i \(0.935253\pi\)
\(588\) 0 0
\(589\) −32.7004 −0.0555185
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 245.200 141.566i 0.413490 0.238729i −0.278798 0.960350i \(-0.589936\pi\)
0.692288 + 0.721621i \(0.256603\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −535.140 308.963i −0.893389 0.515798i −0.0183392 0.999832i \(-0.505838\pi\)
−0.875049 + 0.484034i \(0.839171\pi\)
\(600\) 0 0
\(601\) 81.6120 0.135794 0.0678969 0.997692i \(-0.478371\pi\)
0.0678969 + 0.997692i \(0.478371\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −161.782 93.4051i −0.267409 0.154389i
\(606\) 0 0
\(607\) 209.708 + 363.225i 0.345483 + 0.598394i 0.985441 0.170016i \(-0.0543818\pi\)
−0.639959 + 0.768409i \(0.721049\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −238.675 + 137.799i −0.390630 + 0.225530i
\(612\) 0 0
\(613\) 30.2209 52.3441i 0.0493000 0.0853900i −0.840322 0.542087i \(-0.817634\pi\)
0.889622 + 0.456697i \(0.150968\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 254.598i 0.412639i 0.978485 + 0.206319i \(0.0661486\pi\)
−0.978485 + 0.206319i \(0.933851\pi\)
\(618\) 0 0
\(619\) −248.596 + 430.581i −0.401609 + 0.695607i −0.993920 0.110102i \(-0.964882\pi\)
0.592311 + 0.805709i \(0.298216\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −174.841 302.833i −0.279745 0.484532i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 238.042i 0.378446i
\(630\) 0 0
\(631\) −599.183 −0.949577 −0.474789 0.880100i \(-0.657475\pi\)
−0.474789 + 0.880100i \(0.657475\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −259.932 + 150.072i −0.409342 + 0.236334i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −667.795 385.552i −1.04180 0.601484i −0.121459 0.992596i \(-0.538757\pi\)
−0.920343 + 0.391112i \(0.872090\pi\)
\(642\) 0 0
\(643\) −1169.35 −1.81858 −0.909292 0.416159i \(-0.863376\pi\)
−0.909292 + 0.416159i \(0.863376\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 126.349 + 72.9479i 0.195285 + 0.112748i 0.594454 0.804129i \(-0.297368\pi\)
−0.399169 + 0.916877i \(0.630701\pi\)
\(648\) 0 0
\(649\) 818.181 + 1417.13i 1.26068 + 2.18356i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −336.117 + 194.057i −0.514728 + 0.297178i −0.734775 0.678311i \(-0.762712\pi\)
0.220047 + 0.975489i \(0.429379\pi\)
\(654\) 0 0
\(655\) 186.109 322.350i 0.284136 0.492137i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 271.395i 0.411829i 0.978570 + 0.205914i \(0.0660168\pi\)
−0.978570 + 0.205914i \(0.933983\pi\)
\(660\) 0 0
\(661\) 263.221 455.912i 0.398216 0.689731i −0.595290 0.803511i \(-0.702963\pi\)
0.993506 + 0.113781i \(0.0362961\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.3502 + 62.9604i 0.0544980 + 0.0943934i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 668.289i 0.995960i
\(672\) 0 0
\(673\) 714.022 1.06095 0.530477 0.847699i \(-0.322013\pi\)
0.530477 + 0.847699i \(0.322013\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 809.595 467.420i 1.19586 0.690428i 0.236228 0.971698i \(-0.424089\pi\)
0.959629 + 0.281270i \(0.0907556\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −341.692 197.276i −0.500281 0.288837i 0.228548 0.973533i \(-0.426602\pi\)
−0.728830 + 0.684695i \(0.759935\pi\)
\(684\) 0 0
\(685\) −290.802 −0.424528
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −142.971 82.5441i −0.207504 0.119803i
\(690\) 0 0
\(691\) −543.940 942.131i −0.787178 1.36343i −0.927689 0.373353i \(-0.878208\pi\)
0.140512 0.990079i \(-0.455125\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −228.011 + 131.642i −0.328074 + 0.189413i
\(696\) 0 0
\(697\) −277.041 + 479.849i −0.397476 + 0.688449i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 670.592i 0.956621i −0.878191 0.478311i \(-0.841249\pi\)
0.878191 0.478311i \(-0.158751\pi\)
\(702\) 0 0
\(703\) 180.287 312.266i 0.256453 0.444190i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −648.981 1124.07i −0.915347 1.58543i −0.806393 0.591380i \(-0.798583\pi\)
−0.108954 0.994047i \(-0.534750\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 65.8614i 0.0923723i
\(714\) 0 0
\(715\) −208.675 −0.291853
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 34.5171 19.9285i 0.0480071 0.0277169i −0.475804 0.879551i \(-0.657843\pi\)
0.523811 + 0.851834i \(0.324510\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −36.0006 20.7850i −0.0496560 0.0286689i
\(726\) 0 0
\(727\) −282.627 −0.388758 −0.194379 0.980926i \(-0.562269\pi\)
−0.194379 + 0.980926i \(0.562269\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −108.535 62.6627i −0.148475 0.0857219i
\(732\) 0 0
\(733\) −31.1197 53.9009i −0.0424553 0.0735347i 0.844017 0.536317i \(-0.180185\pi\)
−0.886472 + 0.462782i \(0.846851\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −112.893 + 65.1788i −0.153179 + 0.0884380i
\(738\) 0 0
\(739\) −626.116 + 1084.47i −0.847248 + 1.46748i 0.0364060 + 0.999337i \(0.488409\pi\)
−0.883654 + 0.468140i \(0.844924\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 230.602i 0.310366i 0.987886 + 0.155183i \(0.0495967\pi\)
−0.987886 + 0.155183i \(0.950403\pi\)
\(744\) 0 0
\(745\) −166.940 + 289.148i −0.224080 + 0.388118i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 355.844 + 616.340i 0.473827 + 0.820692i 0.999551 0.0299632i \(-0.00953901\pi\)
−0.525724 + 0.850655i \(0.676206\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 360.022i 0.476851i
\(756\) 0 0
\(757\) −1073.10 −1.41757 −0.708783 0.705427i \(-0.750755\pi\)
−0.708783 + 0.705427i \(0.750755\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 378.238 218.376i 0.497027 0.286959i −0.230458 0.973082i \(-0.574022\pi\)
0.727485 + 0.686124i \(0.240689\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 696.030 + 401.853i 0.907471 + 0.523928i
\(768\) 0 0
\(769\) −284.237 −0.369619 −0.184809 0.982774i \(-0.559167\pi\)
−0.184809 + 0.982774i \(0.559167\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −356.760 205.975i −0.461526 0.266462i 0.251159 0.967946i \(-0.419188\pi\)
−0.712686 + 0.701483i \(0.752521\pi\)
\(774\) 0 0
\(775\) 18.8297 + 32.6140i 0.0242964 + 0.0420826i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −726.849 + 419.647i −0.933054 + 0.538699i
\(780\) 0 0
\(781\) 587.773 1018.05i 0.752590 1.30352i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 48.5830i 0.0618892i
\(786\) 0 0
\(787\) −24.6088 + 42.6238i −0.0312692 + 0.0541598i −0.881237 0.472676i \(-0.843288\pi\)
0.849967 + 0.526835i \(0.176622\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 164.116 + 284.258i 0.206956 + 0.358459i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.4979i 0.0282283i −0.999900 0.0141141i \(-0.995507\pi\)
0.999900 0.0141141i \(-0.00449282\pi\)
\(798\) 0 0
\(799\) 462.492 0.578838
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1779.46 + 1027.37i −2.21602 + 1.27942i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 315.868 + 182.367i 0.390443 + 0.225422i 0.682352 0.731024i \(-0.260957\pi\)
−0.291909 + 0.956446i \(0.594291\pi\)
\(810\) 0 0
\(811\) 1084.15 1.33681 0.668404 0.743799i \(-0.266978\pi\)
0.668404 + 0.743799i \(0.266978\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −437.952 252.852i −0.537365 0.310248i
\(816\) 0 0
\(817\) −94.9181 164.403i −0.116179 0.201228i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 816.851 471.609i 0.994946 0.574432i 0.0881970 0.996103i \(-0.471889\pi\)
0.906749 + 0.421671i \(0.138556\pi\)
\(822\) 0 0
\(823\) −357.006 + 618.353i −0.433787 + 0.751341i −0.997196 0.0748376i \(-0.976156\pi\)
0.563409 + 0.826178i \(0.309490\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 186.864i 0.225954i −0.993598 0.112977i \(-0.963961\pi\)
0.993598 0.112977i \(-0.0360386\pi\)
\(828\) 0 0
\(829\) 475.284 823.215i 0.573322 0.993022i −0.422900 0.906176i \(-0.638988\pi\)
0.996222 0.0868458i \(-0.0276788\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 128.233 + 222.106i 0.153572 + 0.265995i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 338.622i 0.403602i 0.979427 + 0.201801i \(0.0646794\pi\)
−0.979427 + 0.201801i \(0.935321\pi\)
\(840\) 0 0
\(841\) 837.129 0.995398
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 199.186 115.000i 0.235723 0.136095i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 628.931 + 363.113i 0.739049 + 0.426690i
\(852\) 0 0
\(853\) 1048.53 1.22923 0.614613 0.788829i \(-0.289312\pi\)
0.614613 + 0.788829i \(0.289312\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −122.525 70.7396i −0.142969 0.0825433i 0.426809 0.904342i \(-0.359638\pi\)
−0.569778 + 0.821798i \(0.692971\pi\)
\(858\) 0 0
\(859\) −80.6626 139.712i −0.0939029 0.162645i 0.815247 0.579113i \(-0.196601\pi\)
−0.909150 + 0.416468i \(0.863268\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1110.01 640.866i 1.28623 0.742603i 0.308246 0.951307i \(-0.400258\pi\)
0.977979 + 0.208704i \(0.0669245\pi\)
\(864\) 0 0
\(865\) 151.088 261.693i 0.174669 0.302535i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 414.668i 0.477178i
\(870\) 0 0
\(871\) −32.0128 + 55.4478i −0.0367541 + 0.0636600i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 509.974 + 883.301i 0.581499 + 1.00719i 0.995302 + 0.0968190i \(0.0308668\pi\)
−0.413803 + 0.910366i \(0.635800\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 461.497i 0.523833i 0.965090 + 0.261917i \(0.0843546\pi\)
−0.965090 + 0.261917i \(0.915645\pi\)
\(882\) 0 0
\(883\) −449.836 −0.509441 −0.254720 0.967015i \(-0.581983\pi\)
−0.254720 + 0.967015i \(0.581983\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −57.3623 + 33.1181i −0.0646700 + 0.0373372i −0.531986 0.846753i \(-0.678554\pi\)
0.467316 + 0.884090i \(0.345221\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 606.700 + 350.279i 0.679396 + 0.392249i
\(894\) 0 0
\(895\) −306.284 −0.342217
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.03677 + 1.75328i 0.00337795 + 0.00195026i
\(900\) 0 0
\(901\) 138.520 + 239.925i 0.153741 + 0.266287i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 409.938 236.678i 0.452970 0.261523i
\(906\) 0 0
\(907\) 836.161 1448.27i 0.921897 1.59677i 0.125420 0.992104i \(-0.459972\pi\)
0.796477 0.604669i \(-0.206695\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 780.445i 0.856690i 0.903615 + 0.428345i \(0.140903\pi\)
−0.903615 + 0.428345i \(0.859097\pi\)
\(912\) 0 0
\(913\) 154.983 268.438i 0.169751 0.294017i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 67.4418 + 116.813i 0.0733860 + 0.127108i 0.900383 0.435098i \(-0.143286\pi\)
−0.826997 + 0.562206i \(0.809953\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 577.374i 0.625541i
\(924\) 0 0
\(925\) −415.255 −0.448924
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −80.3580 + 46.3947i −0.0864995 + 0.0499405i −0.542626 0.839975i \(-0.682570\pi\)
0.456126 + 0.889915i \(0.349237\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 303.269 + 175.093i 0.324352 + 0.187265i
\(936\) 0 0
\(937\) −80.1421 −0.0855306 −0.0427653 0.999085i \(-0.513617\pi\)
−0.0427653 + 0.999085i \(0.513617\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −368.919 212.995i −0.392050 0.226350i 0.290998 0.956724i \(-0.406013\pi\)
−0.683048 + 0.730374i \(0.739346\pi\)
\(942\) 0 0
\(943\) −845.205 1463.94i −0.896294 1.55243i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.0761 + 15.6324i −0.0285915 + 0.0165073i −0.514228 0.857654i \(-0.671921\pi\)
0.485636 + 0.874161i \(0.338588\pi\)
\(948\) 0 0
\(949\) −504.599 + 873.991i −0.531717 + 0.920960i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 972.394i 1.02035i −0.860070 0.510175i \(-0.829581\pi\)
0.860070 0.510175i \(-0.170419\pi\)
\(954\) 0 0
\(955\) −194.877 + 337.537i −0.204060 + 0.353442i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 478.912 + 829.499i 0.498347 + 0.863163i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 563.602i 0.584044i
\(966\) 0 0
\(967\) 348.533 0.360427 0.180213 0.983628i \(-0.442321\pi\)
0.180213 + 0.983628i \(0.442321\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 491.211 283.601i 0.505882 0.292071i −0.225257 0.974299i \(-0.572322\pi\)
0.731139 + 0.682228i \(0.238989\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −173.338 100.077i −0.177419 0.102433i 0.408661 0.912686i \(-0.365996\pi\)
−0.586079 + 0.810254i \(0.699329\pi\)
\(978\) 0 0
\(979\) 1892.04 1.93263
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1620.49 + 935.589i 1.64851 + 0.951769i 0.977664 + 0.210175i \(0.0674035\pi\)
0.670849 + 0.741594i \(0.265930\pi\)
\(984\) 0 0
\(985\) 299.517 + 518.779i 0.304078 + 0.526679i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 331.122 191.173i 0.334805 0.193300i
\(990\) 0 0
\(991\) −808.307 + 1400.03i −0.815648 + 1.41274i 0.0932135 + 0.995646i \(0.470286\pi\)
−0.908862 + 0.417098i \(0.863047\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 519.556i 0.522167i
\(996\) 0 0
\(997\) −600.694 + 1040.43i −0.602501 + 1.04356i 0.389940 + 0.920840i \(0.372496\pi\)
−0.992441 + 0.122723i \(0.960837\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.3.bk.f.557.2 8
3.2 odd 2 inner 1764.3.bk.f.557.3 8
7.2 even 3 inner 1764.3.bk.f.1745.3 8
7.3 odd 6 1764.3.c.e.197.3 4
7.4 even 3 1764.3.c.g.197.2 4
7.5 odd 6 252.3.bk.b.233.2 yes 8
7.6 odd 2 252.3.bk.b.53.3 yes 8
21.2 odd 6 inner 1764.3.bk.f.1745.2 8
21.5 even 6 252.3.bk.b.233.3 yes 8
21.11 odd 6 1764.3.c.g.197.3 4
21.17 even 6 1764.3.c.e.197.2 4
21.20 even 2 252.3.bk.b.53.2 8
28.19 even 6 1008.3.dc.d.737.2 8
28.27 even 2 1008.3.dc.d.305.3 8
84.47 odd 6 1008.3.dc.d.737.3 8
84.83 odd 2 1008.3.dc.d.305.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.bk.b.53.2 8 21.20 even 2
252.3.bk.b.53.3 yes 8 7.6 odd 2
252.3.bk.b.233.2 yes 8 7.5 odd 6
252.3.bk.b.233.3 yes 8 21.5 even 6
1008.3.dc.d.305.2 8 84.83 odd 2
1008.3.dc.d.305.3 8 28.27 even 2
1008.3.dc.d.737.2 8 28.19 even 6
1008.3.dc.d.737.3 8 84.47 odd 6
1764.3.c.e.197.2 4 21.17 even 6
1764.3.c.e.197.3 4 7.3 odd 6
1764.3.c.g.197.2 4 7.4 even 3
1764.3.c.g.197.3 4 21.11 odd 6
1764.3.bk.f.557.2 8 1.1 even 1 trivial
1764.3.bk.f.557.3 8 3.2 odd 2 inner
1764.3.bk.f.1745.2 8 21.2 odd 6 inner
1764.3.bk.f.1745.3 8 7.2 even 3 inner