Properties

Label 1764.1.q.b.1403.3
Level $1764$
Weight $1$
Character 1764.1403
Analytic conductor $0.880$
Analytic rank $0$
Dimension $16$
Projective image $D_{8}$
CM discriminant -4
Inner twists $16$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1764.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.880350682285\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{48})\)
Defining polynomial: \(x^{16} - x^{8} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.38423222208.1

Embedding invariants

Embedding label 1403.3
Root \(0.793353 - 0.608761i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1403
Dual form 1764.1.q.b.215.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(0.382683 + 0.662827i) q^{5} +1.00000i q^{8} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(0.382683 + 0.662827i) q^{5} +1.00000i q^{8} +(-0.662827 - 0.382683i) q^{10} -1.84776i q^{13} +(-0.500000 - 0.866025i) q^{16} +(0.923880 - 1.60021i) q^{17} +0.765367 q^{20} +(0.207107 - 0.358719i) q^{25} +(0.923880 + 1.60021i) q^{26} +(0.866025 + 0.500000i) q^{32} +1.84776i q^{34} +(0.707107 + 1.22474i) q^{37} +(-0.662827 + 0.382683i) q^{40} -1.84776 q^{41} +0.414214i q^{50} +(-1.60021 - 0.923880i) q^{52} +(1.22474 + 0.707107i) q^{53} +(0.662827 - 0.382683i) q^{61} -1.00000 q^{64} +(1.22474 - 0.707107i) q^{65} +(-0.923880 - 1.60021i) q^{68} +(0.662827 + 0.382683i) q^{73} +(-1.22474 - 0.707107i) q^{74} +(0.382683 - 0.662827i) q^{80} +(1.60021 - 0.923880i) q^{82} +1.41421 q^{85} +(-0.382683 - 0.662827i) q^{89} +0.765367i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 8q^{4} + O(q^{10}) \) \( 16q + 8q^{4} - 8q^{16} - 8q^{25} - 16q^{64} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.500000 0.866025i
\(5\) 0.382683 + 0.662827i 0.382683 + 0.662827i 0.991445 0.130526i \(-0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 1.00000i
\(9\) 0 0
\(10\) −0.662827 0.382683i −0.662827 0.382683i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) 0.923880 1.60021i 0.923880 1.60021i 0.130526 0.991445i \(-0.458333\pi\)
0.793353 0.608761i \(-0.208333\pi\)
\(18\) 0 0
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0.765367 0.765367
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 0.207107 0.358719i 0.207107 0.358719i
\(26\) 0.923880 + 1.60021i 0.923880 + 1.60021i
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(33\) 0 0
\(34\) 1.84776i 1.84776i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.662827 + 0.382683i −0.662827 + 0.382683i
\(41\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.414214i 0.414214i
\(51\) 0 0
\(52\) −1.60021 0.923880i −1.60021 0.923880i
\(53\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 0.662827 0.382683i 0.662827 0.382683i −0.130526 0.991445i \(-0.541667\pi\)
0.793353 + 0.608761i \(0.208333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 1.22474 0.707107i 1.22474 0.707107i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) −0.923880 1.60021i −0.923880 1.60021i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0.662827 + 0.382683i 0.662827 + 0.382683i 0.793353 0.608761i \(-0.208333\pi\)
−0.130526 + 0.991445i \(0.541667\pi\)
\(74\) −1.22474 0.707107i −1.22474 0.707107i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0.382683 0.662827i 0.382683 0.662827i
\(81\) 0 0
\(82\) 1.60021 0.923880i 1.60021 0.923880i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 1.41421 1.41421
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.382683 0.662827i −0.382683 0.662827i 0.608761 0.793353i \(-0.291667\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.207107 0.358719i −0.207107 0.358719i
\(101\) −0.382683 + 0.662827i −0.382683 + 0.662827i −0.991445 0.130526i \(-0.958333\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(102\) 0 0
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 1.84776 1.84776
\(105\) 0 0
\(106\) −1.41421 −1.41421
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(122\) −0.382683 + 0.662827i −0.382683 + 0.662827i
\(123\) 0 0
\(124\) 0 0
\(125\) 1.08239 1.08239
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.866025 0.500000i 0.866025 0.500000i
\(129\) 0 0
\(130\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.60021 + 0.923880i 1.60021 + 0.923880i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −0.765367 −0.765367
\(147\) 0 0
\(148\) 1.41421 1.41421
\(149\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(150\) 0 0
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.60021 + 0.923880i 1.60021 + 0.923880i 0.991445 + 0.130526i \(0.0416667\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.765367i 0.765367i
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) −0.923880 + 1.60021i −0.923880 + 1.60021i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −2.41421 −2.41421
\(170\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(171\) 0 0
\(172\) 0 0
\(173\) −0.923880 1.60021i −0.923880 1.60021i −0.793353 0.608761i \(-0.791667\pi\)
−0.130526 0.991445i \(-0.541667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0.662827 + 0.382683i 0.662827 + 0.382683i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.541196 + 0.937379i −0.541196 + 0.937379i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(194\) −0.382683 0.662827i −0.382683 0.662827i
\(195\) 0 0
\(196\) 0 0
\(197\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 0.358719 + 0.207107i 0.358719 + 0.207107i
\(201\) 0 0
\(202\) 0.765367i 0.765367i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.707107 1.22474i −0.707107 1.22474i
\(206\) 0 0
\(207\) 0 0
\(208\) −1.60021 + 0.923880i −1.60021 + 0.923880i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 1.22474 0.707107i 1.22474 0.707107i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.41421i 1.41421i
\(219\) 0 0
\(220\) 0 0
\(221\) −2.95680 1.70711i −2.95680 1.70711i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) −0.662827 + 0.382683i −0.662827 + 0.382683i −0.793353 0.608761i \(-0.791667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1.60021 0.923880i −1.60021 0.923880i −0.991445 0.130526i \(-0.958333\pi\)
−0.608761 0.793353i \(-0.708333\pi\)
\(242\) −0.866025 0.500000i −0.866025 0.500000i
\(243\) 0 0
\(244\) 0.765367i 0.765367i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.937379 + 0.541196i −0.937379 + 0.541196i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) 0.923880 + 1.60021i 0.923880 + 1.60021i 0.793353 + 0.608761i \(0.208333\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.41421i 1.41421i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 1.08239i 1.08239i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.923880 + 1.60021i −0.923880 + 1.60021i −0.130526 + 0.991445i \(0.541667\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) −1.84776 −1.84776
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(282\) 0 0
\(283\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.20711 2.09077i −1.20711 2.09077i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.662827 0.382683i 0.662827 0.382683i
\(293\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(297\) 0 0
\(298\) 0.707107 1.22474i 0.707107 1.22474i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.507306 + 0.292893i 0.507306 + 0.292893i
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) −1.60021 + 0.923880i −1.60021 + 0.923880i −0.608761 + 0.793353i \(0.708333\pi\)
−0.991445 + 0.130526i \(0.958333\pi\)
\(314\) −1.84776 −1.84776
\(315\) 0 0
\(316\) 0 0
\(317\) −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.382683 0.662827i −0.382683 0.662827i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.662827 0.382683i −0.662827 0.382683i
\(326\) 0 0
\(327\) 0 0
\(328\) 1.84776i 1.84776i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 2.09077 1.20711i 2.09077 1.20711i
\(339\) 0 0
\(340\) 0.707107 1.22474i 0.707107 1.22474i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 1.60021 + 0.923880i 1.60021 + 0.923880i
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.382683 0.662827i 0.382683 0.662827i −0.608761 0.793353i \(-0.708333\pi\)
0.991445 + 0.130526i \(0.0416667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.765367 −0.765367
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 0.500000 0.866025i 0.500000 0.866025i
\(362\) 0.382683 + 0.662827i 0.382683 + 0.662827i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.585786i 0.585786i
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 1.08239i 1.08239i
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.662827 + 0.382683i 0.662827 + 0.382683i
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −0.707107 1.22474i −0.707107 1.22474i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.662827 + 0.382683i −0.662827 + 0.382683i −0.793353 0.608761i \(-0.791667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.414214 −0.414214
\(401\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.382683 + 0.662827i 0.382683 + 0.662827i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.662827 0.382683i −0.662827 0.382683i 0.130526 0.991445i \(-0.458333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(410\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.923880 1.60021i 0.923880 1.60021i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(425\) −0.382683 0.662827i −0.382683 0.662827i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 0 0
\(433\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3.41421 3.41421
\(443\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 0 0
\(445\) 0.292893 0.507306i 0.292893 0.507306i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.22474 0.707107i −1.22474 0.707107i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(458\) 0.382683 0.662827i 0.382683 0.662827i
\(459\) 0 0
\(460\) 0 0
\(461\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 2.26303 1.30656i 2.26303 1.30656i
\(482\) 1.84776 1.84776
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) −0.507306 + 0.292893i −0.507306 + 0.292893i
\(486\) 0 0
\(487\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0.382683 + 0.662827i 0.382683 + 0.662827i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0.541196 0.937379i 0.541196 0.937379i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −0.585786 −0.585786
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.923880 + 1.60021i 0.923880 + 1.60021i 0.793353 + 0.608761i \(0.208333\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) −1.60021 0.923880i −1.60021 0.923880i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(521\) −0.382683 + 0.662827i −0.382683 + 0.662827i −0.991445 0.130526i \(-0.958333\pi\)
0.608761 + 0.793353i \(0.291667\pi\)
\(522\) 0 0
\(523\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.500000 0.866025i 0.500000 0.866025i
\(530\) −0.541196 0.937379i −0.541196 0.937379i
\(531\) 0 0
\(532\) 0 0
\(533\) 3.41421i 3.41421i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 1.84776i 1.84776i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.60021 0.923880i 1.60021 0.923880i
\(545\) −1.08239 −1.08239
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0.937379 0.541196i 0.937379 0.541196i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −0.662827 0.382683i −0.662827 0.382683i 0.130526 0.991445i \(-0.458333\pi\)
−0.793353 + 0.608761i \(0.791667\pi\)
\(578\) 2.09077 + 1.20711i 2.09077 + 1.20711i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −0.382683 + 0.662827i −0.382683 + 0.662827i
\(585\) 0 0
\(586\) −0.662827 + 0.382683i −0.662827 + 0.382683i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.707107 1.22474i 0.707107 1.22474i
\(593\) −0.923880 1.60021i −0.923880 1.60021i −0.793353 0.608761i \(-0.791667\pi\)
−0.130526 0.991445i \(-0.541667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.41421i 1.41421i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.382683 + 0.662827i −0.382683 + 0.662827i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −0.585786 −0.585786
\(611\) 0 0
\(612\) 0 0
\(613\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.207107 + 0.358719i 0.207107 + 0.358719i
\(626\) 0.923880 1.60021i 0.923880 1.60021i
\(627\) 0 0
\(628\) 1.60021 0.923880i 1.60021 0.923880i
\(629\) 2.61313 2.61313
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.707107 1.22474i 0.707107 1.22474i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.662827 + 0.382683i 0.662827 + 0.382683i
\(641\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0.765367 0.765367
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.923880 + 1.60021i 0.923880 + 1.60021i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −1.60021 0.923880i −1.60021 0.923880i −0.991445 0.130526i \(-0.958333\pi\)
−0.608761 0.793353i \(-0.708333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 1.22474 0.707107i 1.22474 0.707107i
\(675\) 0 0
\(676\) −1.20711 + 2.09077i −1.20711 + 2.09077i
\(677\) 0.923880 + 1.60021i 0.923880 + 1.60021i 0.793353 + 0.608761i \(0.208333\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.41421i 1.41421i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.30656 2.26303i 1.30656 2.26303i
\(690\) 0 0
\(691\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) −1.84776 −1.84776
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.70711 + 2.95680i −1.70711 + 2.95680i
\(698\) −0.923880 1.60021i −0.923880 1.60021i
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.765367i 0.765367i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.662827 0.382683i 0.662827 0.382683i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) −0.662827 0.382683i −0.662827 0.382683i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −0.292893 0.507306i −0.292893 0.507306i
\(731\) 0 0
\(732\) 0 0
\(733\) −0.662827 + 0.382683i −0.662827 + 0.382683i −0.793353 0.608761i \(-0.791667\pi\)
0.130526 + 0.991445i \(0.458333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0.541196 + 0.937379i 0.541196 + 0.937379i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −0.937379 0.541196i −0.937379 0.541196i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.382683 + 0.662827i 0.382683 + 0.662827i 0.991445 0.130526i \(-0.0416667\pi\)
−0.608761 + 0.793353i \(0.708333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.923880 1.60021i 0.923880 1.60021i 0.130526 0.991445i \(-0.458333\pi\)
0.793353 0.608761i \(-0.208333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.765367 −0.765367
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.41421i 1.41421i
\(786\) 0 0
\(787\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(788\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −0.707107 1.22474i −0.707107 1.22474i
\(794\) 0.382683 0.662827i 0.382683 0.662827i
\(795\) 0 0
\(796\) 0 0
\(797\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.358719 0.207107i 0.358719 0.207107i
\(801\) 0 0
\(802\) 1.00000 1.73205i 1.00000 1.73205i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −0.662827 0.382683i −0.662827 0.382683i
\(809\) −1.22474 0.707107i −1.22474 0.707107i