Newspace parameters
Level: | \( N \) | \(=\) | \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1764.q (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.880350682285\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{48})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} - x^{8} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{6} \) |
Twist minimal: | yes |
Projective image: | \(D_{8}\) |
Projective field: | Galois closure of 8.0.38423222208.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).
\(n\) | \(785\) | \(883\) | \(1081\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(\zeta_{48}^{8}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
215.1 |
|
−0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.923880 | + | 1.60021i | 0 | 0 | − | 1.00000i | 0 | 1.60021 | − | 0.923880i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
215.2 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.382683 | + | 0.662827i | 0 | 0 | − | 1.00000i | 0 | 0.662827 | − | 0.382683i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
215.3 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.382683 | − | 0.662827i | 0 | 0 | − | 1.00000i | 0 | −0.662827 | + | 0.382683i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
215.4 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.923880 | − | 1.60021i | 0 | 0 | − | 1.00000i | 0 | −1.60021 | + | 0.923880i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
215.5 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.923880 | + | 1.60021i | 0 | 0 | 1.00000i | 0 | −1.60021 | + | 0.923880i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
215.6 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.382683 | + | 0.662827i | 0 | 0 | 1.00000i | 0 | −0.662827 | + | 0.382683i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
215.7 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.382683 | − | 0.662827i | 0 | 0 | 1.00000i | 0 | 0.662827 | − | 0.382683i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
215.8 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.923880 | − | 1.60021i | 0 | 0 | 1.00000i | 0 | 1.60021 | − | 0.923880i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1403.1 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.923880 | − | 1.60021i | 0 | 0 | 1.00000i | 0 | 1.60021 | + | 0.923880i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1403.2 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.382683 | − | 0.662827i | 0 | 0 | 1.00000i | 0 | 0.662827 | + | 0.382683i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1403.3 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.382683 | + | 0.662827i | 0 | 0 | 1.00000i | 0 | −0.662827 | − | 0.382683i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1403.4 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.923880 | + | 1.60021i | 0 | 0 | 1.00000i | 0 | −1.60021 | − | 0.923880i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1403.5 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.923880 | − | 1.60021i | 0 | 0 | − | 1.00000i | 0 | −1.60021 | − | 0.923880i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1403.6 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.382683 | − | 0.662827i | 0 | 0 | − | 1.00000i | 0 | −0.662827 | − | 0.382683i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1403.7 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.382683 | + | 0.662827i | 0 | 0 | − | 1.00000i | 0 | 0.662827 | + | 0.382683i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1403.8 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.923880 | + | 1.60021i | 0 | 0 | − | 1.00000i | 0 | 1.60021 | + | 0.923880i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-1}) \) |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
7.d | odd | 6 | 1 | inner |
12.b | even | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
21.h | odd | 6 | 1 | inner |
28.d | even | 2 | 1 | inner |
28.f | even | 6 | 1 | inner |
28.g | odd | 6 | 1 | inner |
84.h | odd | 2 | 1 | inner |
84.j | odd | 6 | 1 | inner |
84.n | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1764.1.q.b | 16 | |
3.b | odd | 2 | 1 | inner | 1764.1.q.b | 16 | |
4.b | odd | 2 | 1 | CM | 1764.1.q.b | 16 | |
7.b | odd | 2 | 1 | inner | 1764.1.q.b | 16 | |
7.c | even | 3 | 1 | 1764.1.h.a | ✓ | 8 | |
7.c | even | 3 | 1 | inner | 1764.1.q.b | 16 | |
7.d | odd | 6 | 1 | 1764.1.h.a | ✓ | 8 | |
7.d | odd | 6 | 1 | inner | 1764.1.q.b | 16 | |
12.b | even | 2 | 1 | inner | 1764.1.q.b | 16 | |
21.c | even | 2 | 1 | inner | 1764.1.q.b | 16 | |
21.g | even | 6 | 1 | 1764.1.h.a | ✓ | 8 | |
21.g | even | 6 | 1 | inner | 1764.1.q.b | 16 | |
21.h | odd | 6 | 1 | 1764.1.h.a | ✓ | 8 | |
21.h | odd | 6 | 1 | inner | 1764.1.q.b | 16 | |
28.d | even | 2 | 1 | inner | 1764.1.q.b | 16 | |
28.f | even | 6 | 1 | 1764.1.h.a | ✓ | 8 | |
28.f | even | 6 | 1 | inner | 1764.1.q.b | 16 | |
28.g | odd | 6 | 1 | 1764.1.h.a | ✓ | 8 | |
28.g | odd | 6 | 1 | inner | 1764.1.q.b | 16 | |
84.h | odd | 2 | 1 | inner | 1764.1.q.b | 16 | |
84.j | odd | 6 | 1 | 1764.1.h.a | ✓ | 8 | |
84.j | odd | 6 | 1 | inner | 1764.1.q.b | 16 | |
84.n | even | 6 | 1 | 1764.1.h.a | ✓ | 8 | |
84.n | even | 6 | 1 | inner | 1764.1.q.b | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1764.1.h.a | ✓ | 8 | 7.c | even | 3 | 1 | |
1764.1.h.a | ✓ | 8 | 7.d | odd | 6 | 1 | |
1764.1.h.a | ✓ | 8 | 21.g | even | 6 | 1 | |
1764.1.h.a | ✓ | 8 | 21.h | odd | 6 | 1 | |
1764.1.h.a | ✓ | 8 | 28.f | even | 6 | 1 | |
1764.1.h.a | ✓ | 8 | 28.g | odd | 6 | 1 | |
1764.1.h.a | ✓ | 8 | 84.j | odd | 6 | 1 | |
1764.1.h.a | ✓ | 8 | 84.n | even | 6 | 1 | |
1764.1.q.b | 16 | 1.a | even | 1 | 1 | trivial | |
1764.1.q.b | 16 | 3.b | odd | 2 | 1 | inner | |
1764.1.q.b | 16 | 4.b | odd | 2 | 1 | CM | |
1764.1.q.b | 16 | 7.b | odd | 2 | 1 | inner | |
1764.1.q.b | 16 | 7.c | even | 3 | 1 | inner | |
1764.1.q.b | 16 | 7.d | odd | 6 | 1 | inner | |
1764.1.q.b | 16 | 12.b | even | 2 | 1 | inner | |
1764.1.q.b | 16 | 21.c | even | 2 | 1 | inner | |
1764.1.q.b | 16 | 21.g | even | 6 | 1 | inner | |
1764.1.q.b | 16 | 21.h | odd | 6 | 1 | inner | |
1764.1.q.b | 16 | 28.d | even | 2 | 1 | inner | |
1764.1.q.b | 16 | 28.f | even | 6 | 1 | inner | |
1764.1.q.b | 16 | 28.g | odd | 6 | 1 | inner | |
1764.1.q.b | 16 | 84.h | odd | 2 | 1 | inner | |
1764.1.q.b | 16 | 84.j | odd | 6 | 1 | inner | |
1764.1.q.b | 16 | 84.n | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 4T_{5}^{6} + 14T_{5}^{4} + 8T_{5}^{2} + 4 \)
acting on \(S_{1}^{\mathrm{new}}(1764, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - T^{2} + 1)^{4} \)
$3$
\( T^{16} \)
$5$
\( (T^{8} + 4 T^{6} + 14 T^{4} + 8 T^{2} + 4)^{2} \)
$7$
\( T^{16} \)
$11$
\( T^{16} \)
$13$
\( (T^{4} + 4 T^{2} + 2)^{4} \)
$17$
\( (T^{8} + 4 T^{6} + 14 T^{4} + 8 T^{2} + 4)^{2} \)
$19$
\( T^{16} \)
$23$
\( T^{16} \)
$29$
\( T^{16} \)
$31$
\( T^{16} \)
$37$
\( (T^{4} + 2 T^{2} + 4)^{4} \)
$41$
\( (T^{4} - 4 T^{2} + 2)^{4} \)
$43$
\( T^{16} \)
$47$
\( T^{16} \)
$53$
\( (T^{4} - 2 T^{2} + 4)^{4} \)
$59$
\( T^{16} \)
$61$
\( (T^{8} - 4 T^{6} + 14 T^{4} - 8 T^{2} + 4)^{2} \)
$67$
\( T^{16} \)
$71$
\( T^{16} \)
$73$
\( (T^{8} - 4 T^{6} + 14 T^{4} - 8 T^{2} + 4)^{2} \)
$79$
\( T^{16} \)
$83$
\( T^{16} \)
$89$
\( (T^{8} + 4 T^{6} + 14 T^{4} + 8 T^{2} + 4)^{2} \)
$97$
\( (T^{4} + 4 T^{2} + 2)^{4} \)
show more
show less