Properties

Label 1764.1
Level 1764
Weight 1
Dimension 69
Nonzero newspaces 7
Newform subspaces 14
Sturm bound 169344
Trace bound 19

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 7 \)
Newform subspaces: \( 14 \)
Sturm bound: \(169344\)
Trace bound: \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1764))\).

Total New Old
Modular forms 2614 506 2108
Cusp forms 214 69 145
Eisenstein series 2400 437 1963

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 69 0 0 0

Trace form

\( 69q - q^{7} + 3q^{8} + O(q^{10}) \) \( 69q - q^{7} + 3q^{8} + 4q^{16} + 6q^{19} + 4q^{22} + 6q^{25} + 6q^{29} + 6q^{31} + 9q^{37} + 2q^{43} - 4q^{46} + q^{49} - 3q^{50} - 4q^{58} + 7q^{61} - 15q^{64} - 2q^{67} - 6q^{73} - 2q^{79} - 24q^{85} - 4q^{88} - 3q^{91} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1764))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1764.1.c \(\chi_{1764}(197, \cdot)\) None 0 1
1764.1.d \(\chi_{1764}(685, \cdot)\) 1764.1.d.a 2 1
1764.1.g \(\chi_{1764}(883, \cdot)\) 1764.1.g.a 1 1
1764.1.g.b 2
1764.1.g.c 2
1764.1.g.d 2
1764.1.h \(\chi_{1764}(1763, \cdot)\) 1764.1.h.a 8 1
1764.1.m \(\chi_{1764}(569, \cdot)\) None 0 2
1764.1.p \(\chi_{1764}(313, \cdot)\) None 0 2
1764.1.q \(\chi_{1764}(215, \cdot)\) 1764.1.q.a 8 2
1764.1.q.b 16
1764.1.r \(\chi_{1764}(227, \cdot)\) None 0 2
1764.1.s \(\chi_{1764}(587, \cdot)\) None 0 2
1764.1.u \(\chi_{1764}(655, \cdot)\) None 0 2
1764.1.v \(\chi_{1764}(295, \cdot)\) None 0 2
1764.1.y \(\chi_{1764}(667, \cdot)\) 1764.1.y.a 2 2
1764.1.y.b 4
1764.1.y.c 4
1764.1.y.d 4
1764.1.z \(\chi_{1764}(325, \cdot)\) 1764.1.z.a 2 2
1764.1.bc \(\chi_{1764}(97, \cdot)\) None 0 2
1764.1.bd \(\chi_{1764}(1489, \cdot)\) None 0 2
1764.1.bg \(\chi_{1764}(785, \cdot)\) None 0 2
1764.1.bh \(\chi_{1764}(1145, \cdot)\) None 0 2
1764.1.bk \(\chi_{1764}(557, \cdot)\) None 0 2
1764.1.bl \(\chi_{1764}(67, \cdot)\) None 0 2
1764.1.bn \(\chi_{1764}(803, \cdot)\) None 0 2
1764.1.bp \(\chi_{1764}(251, \cdot)\) None 0 6
1764.1.bq \(\chi_{1764}(127, \cdot)\) None 0 6
1764.1.bt \(\chi_{1764}(181, \cdot)\) None 0 6
1764.1.bu \(\chi_{1764}(449, \cdot)\) None 0 6
1764.1.ca \(\chi_{1764}(47, \cdot)\) None 0 12
1764.1.cc \(\chi_{1764}(319, \cdot)\) None 0 12
1764.1.cd \(\chi_{1764}(53, \cdot)\) None 0 12
1764.1.cg \(\chi_{1764}(137, \cdot)\) None 0 12
1764.1.ch \(\chi_{1764}(29, \cdot)\) None 0 12
1764.1.ck \(\chi_{1764}(229, \cdot)\) None 0 12
1764.1.cl \(\chi_{1764}(13, \cdot)\) None 0 12
1764.1.co \(\chi_{1764}(73, \cdot)\) 1764.1.co.a 12 12
1764.1.cp \(\chi_{1764}(163, \cdot)\) None 0 12
1764.1.cs \(\chi_{1764}(43, \cdot)\) None 0 12
1764.1.ct \(\chi_{1764}(151, \cdot)\) None 0 12
1764.1.cv \(\chi_{1764}(83, \cdot)\) None 0 12
1764.1.cw \(\chi_{1764}(131, \cdot)\) None 0 12
1764.1.cx \(\chi_{1764}(143, \cdot)\) None 0 12
1764.1.cy \(\chi_{1764}(61, \cdot)\) None 0 12
1764.1.db \(\chi_{1764}(65, \cdot)\) None 0 12

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1764))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(1764)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(441))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(588))\)\(^{\oplus 2}\)