Properties

Label 1764.1.g.c
Level $1764$
Weight $1$
Character orbit 1764.g
Analytic conductor $0.880$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -7, -84, 12
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,1,Mod(883,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.883"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1764.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.880350682285\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{3}, \sqrt{-7})\)
Artin image: $D_4:C_2$
Artin field: Galois closure of 8.0.1372257936.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - i q^{2} - q^{4} + i q^{8} + 2 i q^{11} + q^{16} + 2 q^{22} + 2 i q^{23} - q^{25} - i q^{32} + 2 q^{37} - 2 i q^{44} + 2 q^{46} + i q^{50} - q^{64} - 2 i q^{71} - 2 i q^{74} - 2 q^{88} - 2 i q^{92} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{16} + 4 q^{22} - 2 q^{25} + 4 q^{37} + 4 q^{46} - 2 q^{64} - 4 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 0 1.00000i 0 0
883.2 1.00000i 0 −1.00000 0 0 0 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
12.b even 2 1 RM by \(\Q(\sqrt{3}) \)
84.h odd 2 1 CM by \(\Q(\sqrt{-21}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
21.c even 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.1.g.c 2
3.b odd 2 1 inner 1764.1.g.c 2
4.b odd 2 1 inner 1764.1.g.c 2
7.b odd 2 1 CM 1764.1.g.c 2
7.c even 3 2 1764.1.y.c 4
7.d odd 6 2 1764.1.y.c 4
12.b even 2 1 RM 1764.1.g.c 2
21.c even 2 1 inner 1764.1.g.c 2
21.g even 6 2 1764.1.y.c 4
21.h odd 6 2 1764.1.y.c 4
28.d even 2 1 inner 1764.1.g.c 2
28.f even 6 2 1764.1.y.c 4
28.g odd 6 2 1764.1.y.c 4
84.h odd 2 1 CM 1764.1.g.c 2
84.j odd 6 2 1764.1.y.c 4
84.n even 6 2 1764.1.y.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1764.1.g.c 2 1.a even 1 1 trivial
1764.1.g.c 2 3.b odd 2 1 inner
1764.1.g.c 2 4.b odd 2 1 inner
1764.1.g.c 2 7.b odd 2 1 CM
1764.1.g.c 2 12.b even 2 1 RM
1764.1.g.c 2 21.c even 2 1 inner
1764.1.g.c 2 28.d even 2 1 inner
1764.1.g.c 2 84.h odd 2 1 CM
1764.1.y.c 4 7.c even 3 2
1764.1.y.c 4 7.d odd 6 2
1764.1.y.c 4 21.g even 6 2
1764.1.y.c 4 21.h odd 6 2
1764.1.y.c 4 28.f even 6 2
1764.1.y.c 4 28.g odd 6 2
1764.1.y.c 4 84.j odd 6 2
1764.1.y.c 4 84.n even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1764, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11}^{2} + 4 \) Copy content Toggle raw display
\( T_{29} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 4 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 4 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less