Properties

Label 1764.1.co.a
Level 17641764
Weight 11
Character orbit 1764.co
Analytic conductor 0.8800.880
Analytic rank 00
Dimension 1212
Projective image D42D_{42}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,1,Mod(73,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 0, 37])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.73"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1764=223272 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1764.co (of order 4242, degree 1212, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8803506822850.880350682285
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ21)\Q(\zeta_{21})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+x9x8+x6x4+x3x+1 x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D42D_{42}
Projective field: Galois closure of Q[x]/(x42)\mathbb{Q}[x]/(x^{42} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ4216q7+(ζ4210ζ428)q13+(ζ4212+ζ422)q19ζ425q25+(ζ424+ζ423)q31+(ζ4214ζ426)q37++(ζ4212+ζ429)q97+O(q100) q - \zeta_{42}^{16} q^{7} + (\zeta_{42}^{10} - \zeta_{42}^{8}) q^{13} + ( - \zeta_{42}^{12} + \zeta_{42}^{2}) q^{19} - \zeta_{42}^{5} q^{25} + (\zeta_{42}^{4} + \zeta_{42}^{3}) q^{31} + ( - \zeta_{42}^{14} - \zeta_{42}^{6}) q^{37} + \cdots + (\zeta_{42}^{12} + \zeta_{42}^{9}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12qq7+3q19+q25+3q31+8q372q43+q49+7q61q673q73q793q91+O(q100) 12 q - q^{7} + 3 q^{19} + q^{25} + 3 q^{31} + 8 q^{37} - 2 q^{43} + q^{49} + 7 q^{61} - q^{67} - 3 q^{73} - q^{79} - 3 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1764Z)×\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times.

nn 785785 883883 10811081
χ(n)\chi(n) 11 11 ζ4219\zeta_{42}^{19}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
73.1
0.365341 0.930874i
0.365341 + 0.930874i
0.826239 0.563320i
−0.988831 0.149042i
−0.733052 0.680173i
−0.733052 + 0.680173i
0.0747301 + 0.997204i
0.955573 + 0.294755i
0.826239 + 0.563320i
0.0747301 0.997204i
0.955573 0.294755i
−0.988831 + 0.149042i
0 0 0 0 0 −0.955573 + 0.294755i 0 0 0
145.1 0 0 0 0 0 −0.955573 0.294755i 0 0 0
397.1 0 0 0 0 0 0.988831 0.149042i 0 0 0
577.1 0 0 0 0 0 0.733052 0.680173i 0 0 0
649.1 0 0 0 0 0 −0.826239 + 0.563320i 0 0 0
829.1 0 0 0 0 0 −0.826239 0.563320i 0 0 0
1081.1 0 0 0 0 0 −0.365341 + 0.930874i 0 0 0
1153.1 0 0 0 0 0 −0.0747301 + 0.997204i 0 0 0
1333.1 0 0 0 0 0 0.988831 + 0.149042i 0 0 0
1405.1 0 0 0 0 0 −0.365341 0.930874i 0 0 0
1585.1 0 0 0 0 0 −0.0747301 0.997204i 0 0 0
1657.1 0 0 0 0 0 0.733052 + 0.680173i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
49.h odd 42 1 inner
147.o even 42 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.1.co.a 12
3.b odd 2 1 CM 1764.1.co.a 12
49.h odd 42 1 inner 1764.1.co.a 12
147.o even 42 1 inner 1764.1.co.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1764.1.co.a 12 1.a even 1 1 trivial
1764.1.co.a 12 3.b odd 2 1 CM
1764.1.co.a 12 49.h odd 42 1 inner
1764.1.co.a 12 147.o even 42 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(1764,[χ])S_{1}^{\mathrm{new}}(1764, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T123T10++1 T^{12} - 3 T^{10} + \cdots + 1 Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T123T11++1 T^{12} - 3 T^{11} + \cdots + 1 Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 T123T11++1 T^{12} - 3 T^{11} + \cdots + 1 Copy content Toggle raw display
3737 T128T11++1 T^{12} - 8 T^{11} + \cdots + 1 Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T127T11++49 T^{12} - 7 T^{11} + \cdots + 49 Copy content Toggle raw display
6767 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T12+3T11++1 T^{12} + 3 T^{11} + \cdots + 1 Copy content Toggle raw display
7979 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 (T6+7T4+14T2+7)2 (T^{6} + 7 T^{4} + 14 T^{2} + 7)^{2} Copy content Toggle raw display
show more
show less