Properties

Label 1760.2.l.c.529.3
Level $1760$
Weight $2$
Character 1760.529
Analytic conductor $14.054$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1760,2,Mod(529,1760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1760.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0536707557\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.3
Character \(\chi\) \(=\) 1760.529
Dual form 1760.2.l.c.529.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.02021 q^{3} +(-0.177003 + 2.22905i) q^{5} -1.23027i q^{7} +6.12165 q^{9} +1.00000i q^{11} -3.80312 q^{13} +(0.534586 - 6.73220i) q^{15} -0.0304528i q^{17} +0.340188i q^{19} +3.71568i q^{21} +6.84884i q^{23} +(-4.93734 - 0.789098i) q^{25} -9.42804 q^{27} +5.57762i q^{29} +3.87751 q^{31} -3.02021i q^{33} +(2.74234 + 0.217762i) q^{35} +10.1323 q^{37} +11.4862 q^{39} -8.20176 q^{41} +5.88624 q^{43} +(-1.08355 + 13.6455i) q^{45} +1.91438i q^{47} +5.48643 q^{49} +0.0919738i q^{51} -11.1736 q^{53} +(-2.22905 - 0.177003i) q^{55} -1.02744i q^{57} -11.5516i q^{59} +2.50766i q^{61} -7.53130i q^{63} +(0.673164 - 8.47735i) q^{65} -12.1043 q^{67} -20.6849i q^{69} -11.3541 q^{71} -13.9669i q^{73} +(14.9118 + 2.38324i) q^{75} +1.23027 q^{77} -0.348432 q^{79} +10.1097 q^{81} -12.7615 q^{83} +(0.0678809 + 0.00539024i) q^{85} -16.8456i q^{87} -1.45203 q^{89} +4.67887i q^{91} -11.7109 q^{93} +(-0.758296 - 0.0602143i) q^{95} -7.37006i q^{97} +6.12165i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 56 q^{9} + 8 q^{15} + 16 q^{25} + 16 q^{39} - 32 q^{41} - 24 q^{49} + 8 q^{55} - 32 q^{65} - 48 q^{71} + 32 q^{79} + 88 q^{81} - 16 q^{89} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(991\) \(1057\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.02021 −1.74372 −0.871859 0.489757i \(-0.837085\pi\)
−0.871859 + 0.489757i \(0.837085\pi\)
\(4\) 0 0
\(5\) −0.177003 + 2.22905i −0.0791582 + 0.996862i
\(6\) 0 0
\(7\) 1.23027i 0.464999i −0.972597 0.232500i \(-0.925310\pi\)
0.972597 0.232500i \(-0.0746904\pi\)
\(8\) 0 0
\(9\) 6.12165 2.04055
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) −3.80312 −1.05480 −0.527398 0.849619i \(-0.676832\pi\)
−0.527398 + 0.849619i \(0.676832\pi\)
\(14\) 0 0
\(15\) 0.534586 6.73220i 0.138030 1.73825i
\(16\) 0 0
\(17\) 0.0304528i 0.00738589i −0.999993 0.00369295i \(-0.998824\pi\)
0.999993 0.00369295i \(-0.00117550\pi\)
\(18\) 0 0
\(19\) 0.340188i 0.0780444i 0.999238 + 0.0390222i \(0.0124243\pi\)
−0.999238 + 0.0390222i \(0.987576\pi\)
\(20\) 0 0
\(21\) 3.71568i 0.810827i
\(22\) 0 0
\(23\) 6.84884i 1.42808i 0.700104 + 0.714040i \(0.253137\pi\)
−0.700104 + 0.714040i \(0.746863\pi\)
\(24\) 0 0
\(25\) −4.93734 0.789098i −0.987468 0.157820i
\(26\) 0 0
\(27\) −9.42804 −1.81443
\(28\) 0 0
\(29\) 5.57762i 1.03574i 0.855460 + 0.517869i \(0.173275\pi\)
−0.855460 + 0.517869i \(0.826725\pi\)
\(30\) 0 0
\(31\) 3.87751 0.696420 0.348210 0.937416i \(-0.386790\pi\)
0.348210 + 0.937416i \(0.386790\pi\)
\(32\) 0 0
\(33\) 3.02021i 0.525751i
\(34\) 0 0
\(35\) 2.74234 + 0.217762i 0.463540 + 0.0368085i
\(36\) 0 0
\(37\) 10.1323 1.66575 0.832873 0.553464i \(-0.186694\pi\)
0.832873 + 0.553464i \(0.186694\pi\)
\(38\) 0 0
\(39\) 11.4862 1.83927
\(40\) 0 0
\(41\) −8.20176 −1.28090 −0.640450 0.768000i \(-0.721252\pi\)
−0.640450 + 0.768000i \(0.721252\pi\)
\(42\) 0 0
\(43\) 5.88624 0.897643 0.448821 0.893621i \(-0.351844\pi\)
0.448821 + 0.893621i \(0.351844\pi\)
\(44\) 0 0
\(45\) −1.08355 + 13.6455i −0.161526 + 2.03415i
\(46\) 0 0
\(47\) 1.91438i 0.279242i 0.990205 + 0.139621i \(0.0445884\pi\)
−0.990205 + 0.139621i \(0.955412\pi\)
\(48\) 0 0
\(49\) 5.48643 0.783776
\(50\) 0 0
\(51\) 0.0919738i 0.0128789i
\(52\) 0 0
\(53\) −11.1736 −1.53481 −0.767403 0.641165i \(-0.778451\pi\)
−0.767403 + 0.641165i \(0.778451\pi\)
\(54\) 0 0
\(55\) −2.22905 0.177003i −0.300565 0.0238671i
\(56\) 0 0
\(57\) 1.02744i 0.136087i
\(58\) 0 0
\(59\) 11.5516i 1.50390i −0.659223 0.751948i \(-0.729114\pi\)
0.659223 0.751948i \(-0.270886\pi\)
\(60\) 0 0
\(61\) 2.50766i 0.321073i 0.987030 + 0.160537i \(0.0513225\pi\)
−0.987030 + 0.160537i \(0.948678\pi\)
\(62\) 0 0
\(63\) 7.53130i 0.948854i
\(64\) 0 0
\(65\) 0.673164 8.47735i 0.0834957 1.05149i
\(66\) 0 0
\(67\) −12.1043 −1.47877 −0.739386 0.673282i \(-0.764884\pi\)
−0.739386 + 0.673282i \(0.764884\pi\)
\(68\) 0 0
\(69\) 20.6849i 2.49017i
\(70\) 0 0
\(71\) −11.3541 −1.34749 −0.673744 0.738965i \(-0.735315\pi\)
−0.673744 + 0.738965i \(0.735315\pi\)
\(72\) 0 0
\(73\) 13.9669i 1.63471i −0.576136 0.817354i \(-0.695440\pi\)
0.576136 0.817354i \(-0.304560\pi\)
\(74\) 0 0
\(75\) 14.9118 + 2.38324i 1.72187 + 0.275193i
\(76\) 0 0
\(77\) 1.23027 0.140203
\(78\) 0 0
\(79\) −0.348432 −0.0392016 −0.0196008 0.999808i \(-0.506240\pi\)
−0.0196008 + 0.999808i \(0.506240\pi\)
\(80\) 0 0
\(81\) 10.1097 1.12330
\(82\) 0 0
\(83\) −12.7615 −1.40076 −0.700379 0.713772i \(-0.746985\pi\)
−0.700379 + 0.713772i \(0.746985\pi\)
\(84\) 0 0
\(85\) 0.0678809 + 0.00539024i 0.00736272 + 0.000584654i
\(86\) 0 0
\(87\) 16.8456i 1.80604i
\(88\) 0 0
\(89\) −1.45203 −0.153914 −0.0769572 0.997034i \(-0.524520\pi\)
−0.0769572 + 0.997034i \(0.524520\pi\)
\(90\) 0 0
\(91\) 4.67887i 0.490479i
\(92\) 0 0
\(93\) −11.7109 −1.21436
\(94\) 0 0
\(95\) −0.758296 0.0602143i −0.0777995 0.00617785i
\(96\) 0 0
\(97\) 7.37006i 0.748316i −0.927365 0.374158i \(-0.877932\pi\)
0.927365 0.374158i \(-0.122068\pi\)
\(98\) 0 0
\(99\) 6.12165i 0.615249i
\(100\) 0 0
\(101\) 6.14874i 0.611823i 0.952060 + 0.305911i \(0.0989611\pi\)
−0.952060 + 0.305911i \(0.901039\pi\)
\(102\) 0 0
\(103\) 0.0287339i 0.00283124i −0.999999 0.00141562i \(-0.999549\pi\)
0.999999 0.00141562i \(-0.000450605\pi\)
\(104\) 0 0
\(105\) −8.28243 0.657686i −0.808283 0.0641836i
\(106\) 0 0
\(107\) 0.0702483 0.00679116 0.00339558 0.999994i \(-0.498919\pi\)
0.00339558 + 0.999994i \(0.498919\pi\)
\(108\) 0 0
\(109\) 5.22488i 0.500453i −0.968187 0.250226i \(-0.919495\pi\)
0.968187 0.250226i \(-0.0805051\pi\)
\(110\) 0 0
\(111\) −30.6018 −2.90459
\(112\) 0 0
\(113\) 8.06929i 0.759095i 0.925172 + 0.379547i \(0.123920\pi\)
−0.925172 + 0.379547i \(0.876080\pi\)
\(114\) 0 0
\(115\) −15.2664 1.21227i −1.42360 0.113044i
\(116\) 0 0
\(117\) −23.2814 −2.15236
\(118\) 0 0
\(119\) −0.0374652 −0.00343443
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 24.7710 2.23353
\(124\) 0 0
\(125\) 2.63286 10.8659i 0.235491 0.971877i
\(126\) 0 0
\(127\) 4.90985i 0.435679i 0.975985 + 0.217839i \(0.0699009\pi\)
−0.975985 + 0.217839i \(0.930099\pi\)
\(128\) 0 0
\(129\) −17.7777 −1.56524
\(130\) 0 0
\(131\) 19.0414i 1.66366i −0.555033 0.831828i \(-0.687294\pi\)
0.555033 0.831828i \(-0.312706\pi\)
\(132\) 0 0
\(133\) 0.418523 0.0362906
\(134\) 0 0
\(135\) 1.66879 21.0156i 0.143627 1.80873i
\(136\) 0 0
\(137\) 9.81605i 0.838642i 0.907838 + 0.419321i \(0.137732\pi\)
−0.907838 + 0.419321i \(0.862268\pi\)
\(138\) 0 0
\(139\) 21.1605i 1.79481i −0.441208 0.897405i \(-0.645450\pi\)
0.441208 0.897405i \(-0.354550\pi\)
\(140\) 0 0
\(141\) 5.78184i 0.486919i
\(142\) 0 0
\(143\) 3.80312i 0.318033i
\(144\) 0 0
\(145\) −12.4328 0.987256i −1.03249 0.0819872i
\(146\) 0 0
\(147\) −16.5702 −1.36668
\(148\) 0 0
\(149\) 11.8241i 0.968670i −0.874883 0.484335i \(-0.839062\pi\)
0.874883 0.484335i \(-0.160938\pi\)
\(150\) 0 0
\(151\) −10.9659 −0.892393 −0.446196 0.894935i \(-0.647222\pi\)
−0.446196 + 0.894935i \(0.647222\pi\)
\(152\) 0 0
\(153\) 0.186422i 0.0150713i
\(154\) 0 0
\(155\) −0.686330 + 8.64316i −0.0551274 + 0.694235i
\(156\) 0 0
\(157\) −6.37368 −0.508675 −0.254337 0.967116i \(-0.581857\pi\)
−0.254337 + 0.967116i \(0.581857\pi\)
\(158\) 0 0
\(159\) 33.7465 2.67627
\(160\) 0 0
\(161\) 8.42593 0.664056
\(162\) 0 0
\(163\) −1.22308 −0.0957991 −0.0478995 0.998852i \(-0.515253\pi\)
−0.0478995 + 0.998852i \(0.515253\pi\)
\(164\) 0 0
\(165\) 6.73220 + 0.534586i 0.524101 + 0.0416175i
\(166\) 0 0
\(167\) 0.0712766i 0.00551555i 0.999996 + 0.00275778i \(0.000877829\pi\)
−0.999996 + 0.00275778i \(0.999122\pi\)
\(168\) 0 0
\(169\) 1.46371 0.112593
\(170\) 0 0
\(171\) 2.08251i 0.159254i
\(172\) 0 0
\(173\) 17.4588 1.32737 0.663686 0.748012i \(-0.268991\pi\)
0.663686 + 0.748012i \(0.268991\pi\)
\(174\) 0 0
\(175\) −0.970805 + 6.07427i −0.0733860 + 0.459172i
\(176\) 0 0
\(177\) 34.8884i 2.62237i
\(178\) 0 0
\(179\) 4.21685i 0.315182i −0.987504 0.157591i \(-0.949627\pi\)
0.987504 0.157591i \(-0.0503727\pi\)
\(180\) 0 0
\(181\) 14.8896i 1.10673i −0.832938 0.553367i \(-0.813343\pi\)
0.832938 0.553367i \(-0.186657\pi\)
\(182\) 0 0
\(183\) 7.57366i 0.559861i
\(184\) 0 0
\(185\) −1.79346 + 22.5855i −0.131857 + 1.66052i
\(186\) 0 0
\(187\) 0.0304528 0.00222693
\(188\) 0 0
\(189\) 11.5990i 0.843707i
\(190\) 0 0
\(191\) 15.8442 1.14645 0.573225 0.819398i \(-0.305692\pi\)
0.573225 + 0.819398i \(0.305692\pi\)
\(192\) 0 0
\(193\) 22.2998i 1.60518i −0.596533 0.802589i \(-0.703456\pi\)
0.596533 0.802589i \(-0.296544\pi\)
\(194\) 0 0
\(195\) −2.03309 + 25.6033i −0.145593 + 1.83349i
\(196\) 0 0
\(197\) −14.4317 −1.02821 −0.514107 0.857726i \(-0.671876\pi\)
−0.514107 + 0.857726i \(0.671876\pi\)
\(198\) 0 0
\(199\) −7.01349 −0.497173 −0.248587 0.968610i \(-0.579966\pi\)
−0.248587 + 0.968610i \(0.579966\pi\)
\(200\) 0 0
\(201\) 36.5574 2.57856
\(202\) 0 0
\(203\) 6.86199 0.481617
\(204\) 0 0
\(205\) 1.45174 18.2821i 0.101394 1.27688i
\(206\) 0 0
\(207\) 41.9262i 2.91407i
\(208\) 0 0
\(209\) −0.340188 −0.0235313
\(210\) 0 0
\(211\) 23.4999i 1.61780i 0.587946 + 0.808900i \(0.299937\pi\)
−0.587946 + 0.808900i \(0.700063\pi\)
\(212\) 0 0
\(213\) 34.2919 2.34964
\(214\) 0 0
\(215\) −1.04188 + 13.1207i −0.0710558 + 0.894826i
\(216\) 0 0
\(217\) 4.77039i 0.323835i
\(218\) 0 0
\(219\) 42.1831i 2.85047i
\(220\) 0 0
\(221\) 0.115816i 0.00779061i
\(222\) 0 0
\(223\) 0.819775i 0.0548962i −0.999623 0.0274481i \(-0.991262\pi\)
0.999623 0.0274481i \(-0.00873810\pi\)
\(224\) 0 0
\(225\) −30.2247 4.83058i −2.01498 0.322039i
\(226\) 0 0
\(227\) −0.715564 −0.0474937 −0.0237468 0.999718i \(-0.507560\pi\)
−0.0237468 + 0.999718i \(0.507560\pi\)
\(228\) 0 0
\(229\) 25.1232i 1.66018i −0.557626 0.830092i \(-0.688288\pi\)
0.557626 0.830092i \(-0.311712\pi\)
\(230\) 0 0
\(231\) −3.71568 −0.244474
\(232\) 0 0
\(233\) 13.6856i 0.896574i −0.893890 0.448287i \(-0.852034\pi\)
0.893890 0.448287i \(-0.147966\pi\)
\(234\) 0 0
\(235\) −4.26726 0.338852i −0.278365 0.0221043i
\(236\) 0 0
\(237\) 1.05234 0.0683566
\(238\) 0 0
\(239\) −18.5024 −1.19682 −0.598412 0.801189i \(-0.704201\pi\)
−0.598412 + 0.801189i \(0.704201\pi\)
\(240\) 0 0
\(241\) −28.7403 −1.85133 −0.925664 0.378346i \(-0.876493\pi\)
−0.925664 + 0.378346i \(0.876493\pi\)
\(242\) 0 0
\(243\) −2.24918 −0.144285
\(244\) 0 0
\(245\) −0.971115 + 12.2295i −0.0620423 + 0.781316i
\(246\) 0 0
\(247\) 1.29377i 0.0823209i
\(248\) 0 0
\(249\) 38.5424 2.44252
\(250\) 0 0
\(251\) 10.0246i 0.632745i −0.948635 0.316372i \(-0.897535\pi\)
0.948635 0.316372i \(-0.102465\pi\)
\(252\) 0 0
\(253\) −6.84884 −0.430583
\(254\) 0 0
\(255\) −0.205014 0.0162797i −0.0128385 0.00101947i
\(256\) 0 0
\(257\) 4.52077i 0.281998i 0.990010 + 0.140999i \(0.0450314\pi\)
−0.990010 + 0.140999i \(0.954969\pi\)
\(258\) 0 0
\(259\) 12.4655i 0.774570i
\(260\) 0 0
\(261\) 34.1443i 2.11348i
\(262\) 0 0
\(263\) 22.0727i 1.36106i 0.732721 + 0.680529i \(0.238250\pi\)
−0.732721 + 0.680529i \(0.761750\pi\)
\(264\) 0 0
\(265\) 1.97775 24.9064i 0.121492 1.52999i
\(266\) 0 0
\(267\) 4.38542 0.268383
\(268\) 0 0
\(269\) 29.1556i 1.77765i 0.458248 + 0.888824i \(0.348477\pi\)
−0.458248 + 0.888824i \(0.651523\pi\)
\(270\) 0 0
\(271\) −13.9674 −0.848456 −0.424228 0.905555i \(-0.639455\pi\)
−0.424228 + 0.905555i \(0.639455\pi\)
\(272\) 0 0
\(273\) 14.1312i 0.855257i
\(274\) 0 0
\(275\) 0.789098 4.93734i 0.0475844 0.297733i
\(276\) 0 0
\(277\) −4.58067 −0.275226 −0.137613 0.990486i \(-0.543943\pi\)
−0.137613 + 0.990486i \(0.543943\pi\)
\(278\) 0 0
\(279\) 23.7367 1.42108
\(280\) 0 0
\(281\) 5.31591 0.317121 0.158560 0.987349i \(-0.449315\pi\)
0.158560 + 0.987349i \(0.449315\pi\)
\(282\) 0 0
\(283\) 9.48374 0.563750 0.281875 0.959451i \(-0.409044\pi\)
0.281875 + 0.959451i \(0.409044\pi\)
\(284\) 0 0
\(285\) 2.29021 + 0.181860i 0.135660 + 0.0107724i
\(286\) 0 0
\(287\) 10.0904i 0.595617i
\(288\) 0 0
\(289\) 16.9991 0.999945
\(290\) 0 0
\(291\) 22.2591i 1.30485i
\(292\) 0 0
\(293\) −12.5808 −0.734980 −0.367490 0.930027i \(-0.619783\pi\)
−0.367490 + 0.930027i \(0.619783\pi\)
\(294\) 0 0
\(295\) 25.7492 + 2.04468i 1.49918 + 0.119046i
\(296\) 0 0
\(297\) 9.42804i 0.547070i
\(298\) 0 0
\(299\) 26.0469i 1.50633i
\(300\) 0 0
\(301\) 7.24167i 0.417403i
\(302\) 0 0
\(303\) 18.5705i 1.06685i
\(304\) 0 0
\(305\) −5.58971 0.443864i −0.320066 0.0254156i
\(306\) 0 0
\(307\) −15.0059 −0.856433 −0.428217 0.903676i \(-0.640858\pi\)
−0.428217 + 0.903676i \(0.640858\pi\)
\(308\) 0 0
\(309\) 0.0867823i 0.00493687i
\(310\) 0 0
\(311\) −0.515721 −0.0292439 −0.0146219 0.999893i \(-0.504654\pi\)
−0.0146219 + 0.999893i \(0.504654\pi\)
\(312\) 0 0
\(313\) 16.7399i 0.946195i 0.881010 + 0.473097i \(0.156864\pi\)
−0.881010 + 0.473097i \(0.843136\pi\)
\(314\) 0 0
\(315\) 16.7876 + 1.33306i 0.945877 + 0.0751096i
\(316\) 0 0
\(317\) −11.3238 −0.636010 −0.318005 0.948089i \(-0.603013\pi\)
−0.318005 + 0.948089i \(0.603013\pi\)
\(318\) 0 0
\(319\) −5.57762 −0.312287
\(320\) 0 0
\(321\) −0.212164 −0.0118419
\(322\) 0 0
\(323\) 0.0103597 0.000576427
\(324\) 0 0
\(325\) 18.7773 + 3.00103i 1.04158 + 0.166467i
\(326\) 0 0
\(327\) 15.7802i 0.872649i
\(328\) 0 0
\(329\) 2.35521 0.129847
\(330\) 0 0
\(331\) 26.8748i 1.47717i 0.674160 + 0.738586i \(0.264506\pi\)
−0.674160 + 0.738586i \(0.735494\pi\)
\(332\) 0 0
\(333\) 62.0266 3.39904
\(334\) 0 0
\(335\) 2.14249 26.9810i 0.117057 1.47413i
\(336\) 0 0
\(337\) 2.32186i 0.126480i 0.997998 + 0.0632400i \(0.0201433\pi\)
−0.997998 + 0.0632400i \(0.979857\pi\)
\(338\) 0 0
\(339\) 24.3709i 1.32365i
\(340\) 0 0
\(341\) 3.87751i 0.209979i
\(342\) 0 0
\(343\) 15.3617i 0.829454i
\(344\) 0 0
\(345\) 46.1077 + 3.66129i 2.48236 + 0.197117i
\(346\) 0 0
\(347\) 27.5505 1.47899 0.739495 0.673162i \(-0.235064\pi\)
0.739495 + 0.673162i \(0.235064\pi\)
\(348\) 0 0
\(349\) 21.2033i 1.13499i 0.823378 + 0.567493i \(0.192087\pi\)
−0.823378 + 0.567493i \(0.807913\pi\)
\(350\) 0 0
\(351\) 35.8559 1.91385
\(352\) 0 0
\(353\) 11.3136i 0.602165i 0.953598 + 0.301082i \(0.0973479\pi\)
−0.953598 + 0.301082i \(0.902652\pi\)
\(354\) 0 0
\(355\) 2.00972 25.3090i 0.106665 1.34326i
\(356\) 0 0
\(357\) 0.113153 0.00598868
\(358\) 0 0
\(359\) 6.31172 0.333120 0.166560 0.986031i \(-0.446734\pi\)
0.166560 + 0.986031i \(0.446734\pi\)
\(360\) 0 0
\(361\) 18.8843 0.993909
\(362\) 0 0
\(363\) 3.02021 0.158520
\(364\) 0 0
\(365\) 31.1330 + 2.47219i 1.62958 + 0.129400i
\(366\) 0 0
\(367\) 0.106810i 0.00557546i −0.999996 0.00278773i \(-0.999113\pi\)
0.999996 0.00278773i \(-0.000887363\pi\)
\(368\) 0 0
\(369\) −50.2083 −2.61374
\(370\) 0 0
\(371\) 13.7465i 0.713683i
\(372\) 0 0
\(373\) −21.0446 −1.08965 −0.544824 0.838551i \(-0.683403\pi\)
−0.544824 + 0.838551i \(0.683403\pi\)
\(374\) 0 0
\(375\) −7.95180 + 32.8173i −0.410629 + 1.69468i
\(376\) 0 0
\(377\) 21.2124i 1.09249i
\(378\) 0 0
\(379\) 14.8971i 0.765211i 0.923912 + 0.382606i \(0.124973\pi\)
−0.923912 + 0.382606i \(0.875027\pi\)
\(380\) 0 0
\(381\) 14.8288i 0.759701i
\(382\) 0 0
\(383\) 12.7457i 0.651276i −0.945494 0.325638i \(-0.894421\pi\)
0.945494 0.325638i \(-0.105579\pi\)
\(384\) 0 0
\(385\) −0.217762 + 2.74234i −0.0110982 + 0.139763i
\(386\) 0 0
\(387\) 36.0335 1.83169
\(388\) 0 0
\(389\) 21.5588i 1.09307i −0.837435 0.546536i \(-0.815946\pi\)
0.837435 0.546536i \(-0.184054\pi\)
\(390\) 0 0
\(391\) 0.208566 0.0105477
\(392\) 0 0
\(393\) 57.5090i 2.90095i
\(394\) 0 0
\(395\) 0.0616735 0.776672i 0.00310313 0.0390786i
\(396\) 0 0
\(397\) −8.35200 −0.419175 −0.209588 0.977790i \(-0.567212\pi\)
−0.209588 + 0.977790i \(0.567212\pi\)
\(398\) 0 0
\(399\) −1.26403 −0.0632805
\(400\) 0 0
\(401\) −4.96500 −0.247940 −0.123970 0.992286i \(-0.539563\pi\)
−0.123970 + 0.992286i \(0.539563\pi\)
\(402\) 0 0
\(403\) −14.7466 −0.734581
\(404\) 0 0
\(405\) −1.78944 + 22.5350i −0.0889181 + 1.11977i
\(406\) 0 0
\(407\) 10.1323i 0.502241i
\(408\) 0 0
\(409\) 5.94435 0.293929 0.146965 0.989142i \(-0.453050\pi\)
0.146965 + 0.989142i \(0.453050\pi\)
\(410\) 0 0
\(411\) 29.6465i 1.46235i
\(412\) 0 0
\(413\) −14.2117 −0.699310
\(414\) 0 0
\(415\) 2.25883 28.4461i 0.110881 1.39636i
\(416\) 0 0
\(417\) 63.9091i 3.12964i
\(418\) 0 0
\(419\) 4.16751i 0.203596i 0.994805 + 0.101798i \(0.0324596\pi\)
−0.994805 + 0.101798i \(0.967540\pi\)
\(420\) 0 0
\(421\) 2.30672i 0.112423i 0.998419 + 0.0562113i \(0.0179020\pi\)
−0.998419 + 0.0562113i \(0.982098\pi\)
\(422\) 0 0
\(423\) 11.7192i 0.569807i
\(424\) 0 0
\(425\) −0.0240303 + 0.150356i −0.00116564 + 0.00729333i
\(426\) 0 0
\(427\) 3.08511 0.149299
\(428\) 0 0
\(429\) 11.4862i 0.554559i
\(430\) 0 0
\(431\) −23.5127 −1.13257 −0.566284 0.824210i \(-0.691619\pi\)
−0.566284 + 0.824210i \(0.691619\pi\)
\(432\) 0 0
\(433\) 17.0454i 0.819148i 0.912277 + 0.409574i \(0.134323\pi\)
−0.912277 + 0.409574i \(0.865677\pi\)
\(434\) 0 0
\(435\) 37.5496 + 2.98172i 1.80037 + 0.142962i
\(436\) 0 0
\(437\) −2.32989 −0.111454
\(438\) 0 0
\(439\) −10.5695 −0.504457 −0.252228 0.967668i \(-0.581163\pi\)
−0.252228 + 0.967668i \(0.581163\pi\)
\(440\) 0 0
\(441\) 33.5860 1.59933
\(442\) 0 0
\(443\) 31.8419 1.51285 0.756427 0.654078i \(-0.226943\pi\)
0.756427 + 0.654078i \(0.226943\pi\)
\(444\) 0 0
\(445\) 0.257013 3.23664i 0.0121836 0.153431i
\(446\) 0 0
\(447\) 35.7113i 1.68909i
\(448\) 0 0
\(449\) −24.8757 −1.17396 −0.586979 0.809602i \(-0.699683\pi\)
−0.586979 + 0.809602i \(0.699683\pi\)
\(450\) 0 0
\(451\) 8.20176i 0.386206i
\(452\) 0 0
\(453\) 33.1193 1.55608
\(454\) 0 0
\(455\) −10.4294 0.828175i −0.488940 0.0388254i
\(456\) 0 0
\(457\) 19.9744i 0.934361i 0.884162 + 0.467180i \(0.154730\pi\)
−0.884162 + 0.467180i \(0.845270\pi\)
\(458\) 0 0
\(459\) 0.287110i 0.0134012i
\(460\) 0 0
\(461\) 5.43282i 0.253032i 0.991965 + 0.126516i \(0.0403794\pi\)
−0.991965 + 0.126516i \(0.959621\pi\)
\(462\) 0 0
\(463\) 7.01967i 0.326232i −0.986607 0.163116i \(-0.947846\pi\)
0.986607 0.163116i \(-0.0521545\pi\)
\(464\) 0 0
\(465\) 2.07286 26.1041i 0.0961266 1.21055i
\(466\) 0 0
\(467\) −6.97230 −0.322640 −0.161320 0.986902i \(-0.551575\pi\)
−0.161320 + 0.986902i \(0.551575\pi\)
\(468\) 0 0
\(469\) 14.8915i 0.687627i
\(470\) 0 0
\(471\) 19.2498 0.886985
\(472\) 0 0
\(473\) 5.88624i 0.270650i
\(474\) 0 0
\(475\) 0.268441 1.67962i 0.0123169 0.0770663i
\(476\) 0 0
\(477\) −68.4006 −3.13185
\(478\) 0 0
\(479\) 28.1631 1.28680 0.643402 0.765529i \(-0.277523\pi\)
0.643402 + 0.765529i \(0.277523\pi\)
\(480\) 0 0
\(481\) −38.5345 −1.75702
\(482\) 0 0
\(483\) −25.4481 −1.15793
\(484\) 0 0
\(485\) 16.4282 + 1.30452i 0.745968 + 0.0592354i
\(486\) 0 0
\(487\) 13.8662i 0.628336i −0.949367 0.314168i \(-0.898275\pi\)
0.949367 0.314168i \(-0.101725\pi\)
\(488\) 0 0
\(489\) 3.69396 0.167047
\(490\) 0 0
\(491\) 32.5993i 1.47119i −0.677423 0.735594i \(-0.736903\pi\)
0.677423 0.735594i \(-0.263097\pi\)
\(492\) 0 0
\(493\) 0.169854 0.00764985
\(494\) 0 0
\(495\) −13.6455 1.08355i −0.613319 0.0487020i
\(496\) 0 0
\(497\) 13.9687i 0.626581i
\(498\) 0 0
\(499\) 1.61926i 0.0724880i 0.999343 + 0.0362440i \(0.0115394\pi\)
−0.999343 + 0.0362440i \(0.988461\pi\)
\(500\) 0 0
\(501\) 0.215270i 0.00961757i
\(502\) 0 0
\(503\) 9.41640i 0.419856i 0.977717 + 0.209928i \(0.0673230\pi\)
−0.977717 + 0.209928i \(0.932677\pi\)
\(504\) 0 0
\(505\) −13.7059 1.08835i −0.609903 0.0484308i
\(506\) 0 0
\(507\) −4.42072 −0.196331
\(508\) 0 0
\(509\) 0.257770i 0.0114254i 0.999984 + 0.00571272i \(0.00181842\pi\)
−0.999984 + 0.00571272i \(0.998182\pi\)
\(510\) 0 0
\(511\) −17.1831 −0.760137
\(512\) 0 0
\(513\) 3.20730i 0.141606i
\(514\) 0 0
\(515\) 0.0640493 + 0.00508599i 0.00282235 + 0.000224116i
\(516\) 0 0
\(517\) −1.91438 −0.0841945
\(518\) 0 0
\(519\) −52.7293 −2.31456
\(520\) 0 0
\(521\) −3.74585 −0.164108 −0.0820542 0.996628i \(-0.526148\pi\)
−0.0820542 + 0.996628i \(0.526148\pi\)
\(522\) 0 0
\(523\) 2.51018 0.109762 0.0548812 0.998493i \(-0.482522\pi\)
0.0548812 + 0.998493i \(0.482522\pi\)
\(524\) 0 0
\(525\) 2.93203 18.3456i 0.127964 0.800666i
\(526\) 0 0
\(527\) 0.118081i 0.00514369i
\(528\) 0 0
\(529\) −23.9065 −1.03941
\(530\) 0 0
\(531\) 70.7151i 3.06878i
\(532\) 0 0
\(533\) 31.1923 1.35109
\(534\) 0 0
\(535\) −0.0124342 + 0.156587i −0.000537576 + 0.00676985i
\(536\) 0 0
\(537\) 12.7358i 0.549588i
\(538\) 0 0
\(539\) 5.48643i 0.236317i
\(540\) 0 0
\(541\) 30.4550i 1.30936i −0.755906 0.654680i \(-0.772803\pi\)
0.755906 0.654680i \(-0.227197\pi\)
\(542\) 0 0
\(543\) 44.9696i 1.92983i
\(544\) 0 0
\(545\) 11.6465 + 0.924820i 0.498883 + 0.0396150i
\(546\) 0 0
\(547\) −42.7674 −1.82860 −0.914301 0.405036i \(-0.867259\pi\)
−0.914301 + 0.405036i \(0.867259\pi\)
\(548\) 0 0
\(549\) 15.3510i 0.655166i
\(550\) 0 0
\(551\) −1.89744 −0.0808336
\(552\) 0 0
\(553\) 0.428666i 0.0182287i
\(554\) 0 0
\(555\) 5.41661 68.2129i 0.229922 2.89548i
\(556\) 0 0
\(557\) 43.3665 1.83750 0.918749 0.394843i \(-0.129201\pi\)
0.918749 + 0.394843i \(0.129201\pi\)
\(558\) 0 0
\(559\) −22.3861 −0.946830
\(560\) 0 0
\(561\) −0.0919738 −0.00388314
\(562\) 0 0
\(563\) −21.7140 −0.915138 −0.457569 0.889174i \(-0.651280\pi\)
−0.457569 + 0.889174i \(0.651280\pi\)
\(564\) 0 0
\(565\) −17.9869 1.42829i −0.756713 0.0600886i
\(566\) 0 0
\(567\) 12.4376i 0.522332i
\(568\) 0 0
\(569\) −31.6955 −1.32875 −0.664373 0.747401i \(-0.731301\pi\)
−0.664373 + 0.747401i \(0.731301\pi\)
\(570\) 0 0
\(571\) 3.41171i 0.142776i 0.997449 + 0.0713878i \(0.0227428\pi\)
−0.997449 + 0.0713878i \(0.977257\pi\)
\(572\) 0 0
\(573\) −47.8529 −1.99908
\(574\) 0 0
\(575\) 5.40440 33.8150i 0.225379 1.41018i
\(576\) 0 0
\(577\) 23.5647i 0.981013i −0.871438 0.490506i \(-0.836812\pi\)
0.871438 0.490506i \(-0.163188\pi\)
\(578\) 0 0
\(579\) 67.3501i 2.79898i
\(580\) 0 0
\(581\) 15.7001i 0.651351i
\(582\) 0 0
\(583\) 11.1736i 0.462761i
\(584\) 0 0
\(585\) 4.12088 51.8954i 0.170377 2.14561i
\(586\) 0 0
\(587\) 14.4902 0.598075 0.299038 0.954241i \(-0.403334\pi\)
0.299038 + 0.954241i \(0.403334\pi\)
\(588\) 0 0
\(589\) 1.31908i 0.0543517i
\(590\) 0 0
\(591\) 43.5866 1.79291
\(592\) 0 0
\(593\) 17.5719i 0.721592i 0.932645 + 0.360796i \(0.117495\pi\)
−0.932645 + 0.360796i \(0.882505\pi\)
\(594\) 0 0
\(595\) 0.00663147 0.0835120i 0.000271864 0.00342366i
\(596\) 0 0
\(597\) 21.1822 0.866930
\(598\) 0 0
\(599\) 14.3427 0.586026 0.293013 0.956108i \(-0.405342\pi\)
0.293013 + 0.956108i \(0.405342\pi\)
\(600\) 0 0
\(601\) 4.23245 0.172645 0.0863226 0.996267i \(-0.472488\pi\)
0.0863226 + 0.996267i \(0.472488\pi\)
\(602\) 0 0
\(603\) −74.0981 −3.01751
\(604\) 0 0
\(605\) 0.177003 2.22905i 0.00719620 0.0906238i
\(606\) 0 0
\(607\) 30.7964i 1.24999i −0.780629 0.624994i \(-0.785101\pi\)
0.780629 0.624994i \(-0.214899\pi\)
\(608\) 0 0
\(609\) −20.7246 −0.839805
\(610\) 0 0
\(611\) 7.28063i 0.294543i
\(612\) 0 0
\(613\) −22.6121 −0.913296 −0.456648 0.889648i \(-0.650950\pi\)
−0.456648 + 0.889648i \(0.650950\pi\)
\(614\) 0 0
\(615\) −4.38455 + 55.2159i −0.176802 + 2.22652i
\(616\) 0 0
\(617\) 22.0095i 0.886071i 0.896504 + 0.443036i \(0.146098\pi\)
−0.896504 + 0.443036i \(0.853902\pi\)
\(618\) 0 0
\(619\) 24.0876i 0.968162i 0.875023 + 0.484081i \(0.160846\pi\)
−0.875023 + 0.484081i \(0.839154\pi\)
\(620\) 0 0
\(621\) 64.5711i 2.59115i
\(622\) 0 0
\(623\) 1.78639i 0.0715701i
\(624\) 0 0
\(625\) 23.7546 + 7.79209i 0.950186 + 0.311684i
\(626\) 0 0
\(627\) 1.02744 0.0410319
\(628\) 0 0
\(629\) 0.308558i 0.0123030i
\(630\) 0 0
\(631\) −9.81595 −0.390767 −0.195383 0.980727i \(-0.562595\pi\)
−0.195383 + 0.980727i \(0.562595\pi\)
\(632\) 0 0
\(633\) 70.9746i 2.82099i
\(634\) 0 0
\(635\) −10.9443 0.869059i −0.434312 0.0344875i
\(636\) 0 0
\(637\) −20.8655 −0.826723
\(638\) 0 0
\(639\) −69.5061 −2.74962
\(640\) 0 0
\(641\) −26.6019 −1.05071 −0.525357 0.850882i \(-0.676068\pi\)
−0.525357 + 0.850882i \(0.676068\pi\)
\(642\) 0 0
\(643\) 17.1963 0.678157 0.339078 0.940758i \(-0.389885\pi\)
0.339078 + 0.940758i \(0.389885\pi\)
\(644\) 0 0
\(645\) 3.14670 39.6273i 0.123901 1.56032i
\(646\) 0 0
\(647\) 21.0574i 0.827850i 0.910311 + 0.413925i \(0.135842\pi\)
−0.910311 + 0.413925i \(0.864158\pi\)
\(648\) 0 0
\(649\) 11.5516 0.453442
\(650\) 0 0
\(651\) 14.4076i 0.564677i
\(652\) 0 0
\(653\) −19.3219 −0.756124 −0.378062 0.925780i \(-0.623409\pi\)
−0.378062 + 0.925780i \(0.623409\pi\)
\(654\) 0 0
\(655\) 42.4443 + 3.37039i 1.65844 + 0.131692i
\(656\) 0 0
\(657\) 85.5008i 3.33570i
\(658\) 0 0
\(659\) 40.3740i 1.57275i −0.617750 0.786374i \(-0.711956\pi\)
0.617750 0.786374i \(-0.288044\pi\)
\(660\) 0 0
\(661\) 41.4368i 1.61170i 0.592117 + 0.805852i \(0.298292\pi\)
−0.592117 + 0.805852i \(0.701708\pi\)
\(662\) 0 0
\(663\) 0.349787i 0.0135846i
\(664\) 0 0
\(665\) −0.0740799 + 0.932910i −0.00287270 + 0.0361767i
\(666\) 0 0
\(667\) −38.2002 −1.47912
\(668\) 0 0
\(669\) 2.47589i 0.0957235i
\(670\) 0 0
\(671\) −2.50766 −0.0968072
\(672\) 0 0
\(673\) 21.4755i 0.827821i −0.910318 0.413910i \(-0.864163\pi\)
0.910318 0.413910i \(-0.135837\pi\)
\(674\) 0 0
\(675\) 46.5494 + 7.43965i 1.79169 + 0.286352i
\(676\) 0 0
\(677\) 32.9052 1.26465 0.632325 0.774703i \(-0.282101\pi\)
0.632325 + 0.774703i \(0.282101\pi\)
\(678\) 0 0
\(679\) −9.06718 −0.347967
\(680\) 0 0
\(681\) 2.16115 0.0828156
\(682\) 0 0
\(683\) 0.0734613 0.00281092 0.00140546 0.999999i \(-0.499553\pi\)
0.00140546 + 0.999999i \(0.499553\pi\)
\(684\) 0 0
\(685\) −21.8805 1.73747i −0.836010 0.0663854i
\(686\) 0 0
\(687\) 75.8771i 2.89489i
\(688\) 0 0
\(689\) 42.4944 1.61891
\(690\) 0 0
\(691\) 17.0275i 0.647758i 0.946099 + 0.323879i \(0.104987\pi\)
−0.946099 + 0.323879i \(0.895013\pi\)
\(692\) 0 0
\(693\) 7.53130 0.286090
\(694\) 0 0
\(695\) 47.1678 + 3.74547i 1.78918 + 0.142074i
\(696\) 0 0
\(697\) 0.249767i 0.00946059i
\(698\) 0 0
\(699\) 41.3334i 1.56337i
\(700\) 0 0
\(701\) 18.5032i 0.698855i 0.936963 + 0.349428i \(0.113624\pi\)
−0.936963 + 0.349428i \(0.886376\pi\)
\(702\) 0 0
\(703\) 3.44690i 0.130002i
\(704\) 0 0
\(705\) 12.8880 + 1.02340i 0.485391 + 0.0385436i
\(706\) 0 0
\(707\) 7.56463 0.284497
\(708\) 0 0
\(709\) 37.1678i 1.39587i 0.716162 + 0.697934i \(0.245897\pi\)
−0.716162 + 0.697934i \(0.754103\pi\)
\(710\) 0 0
\(711\) −2.13298 −0.0799929
\(712\) 0 0
\(713\) 26.5564i 0.994545i
\(714\) 0 0
\(715\) 8.47735 + 0.673164i 0.317035 + 0.0251749i
\(716\) 0 0
\(717\) 55.8812 2.08692
\(718\) 0 0
\(719\) −31.5730 −1.17748 −0.588738 0.808324i \(-0.700375\pi\)
−0.588738 + 0.808324i \(0.700375\pi\)
\(720\) 0 0
\(721\) −0.0353505 −0.00131652
\(722\) 0 0
\(723\) 86.8018 3.22819
\(724\) 0 0
\(725\) 4.40129 27.5386i 0.163460 1.02276i
\(726\) 0 0
\(727\) 9.05786i 0.335938i −0.985792 0.167969i \(-0.946279\pi\)
0.985792 0.167969i \(-0.0537208\pi\)
\(728\) 0 0
\(729\) −23.5360 −0.871704
\(730\) 0 0
\(731\) 0.179253i 0.00662989i
\(732\) 0 0
\(733\) 20.8006 0.768287 0.384143 0.923273i \(-0.374497\pi\)
0.384143 + 0.923273i \(0.374497\pi\)
\(734\) 0 0
\(735\) 2.93297 36.9357i 0.108184 1.36240i
\(736\) 0 0
\(737\) 12.1043i 0.445866i
\(738\) 0 0
\(739\) 33.3544i 1.22696i 0.789710 + 0.613481i \(0.210231\pi\)
−0.789710 + 0.613481i \(0.789769\pi\)
\(740\) 0 0
\(741\) 3.90747i 0.143544i
\(742\) 0 0
\(743\) 42.4956i 1.55901i −0.626394 0.779507i \(-0.715470\pi\)
0.626394 0.779507i \(-0.284530\pi\)
\(744\) 0 0
\(745\) 26.3566 + 2.09291i 0.965630 + 0.0766782i
\(746\) 0 0
\(747\) −78.1215 −2.85832
\(748\) 0 0
\(749\) 0.0864245i 0.00315788i
\(750\) 0 0
\(751\) −7.99715 −0.291820 −0.145910 0.989298i \(-0.546611\pi\)
−0.145910 + 0.989298i \(0.546611\pi\)
\(752\) 0 0
\(753\) 30.2763i 1.10333i
\(754\) 0 0
\(755\) 1.94100 24.4436i 0.0706402 0.889593i
\(756\) 0 0
\(757\) −9.94886 −0.361597 −0.180799 0.983520i \(-0.557868\pi\)
−0.180799 + 0.983520i \(0.557868\pi\)
\(758\) 0 0
\(759\) 20.6849 0.750814
\(760\) 0 0
\(761\) −20.2801 −0.735151 −0.367576 0.929994i \(-0.619812\pi\)
−0.367576 + 0.929994i \(0.619812\pi\)
\(762\) 0 0
\(763\) −6.42803 −0.232710
\(764\) 0 0
\(765\) 0.415543 + 0.0329972i 0.0150240 + 0.00119302i
\(766\) 0 0
\(767\) 43.9323i 1.58630i
\(768\) 0 0
\(769\) 23.3928 0.843565 0.421782 0.906697i \(-0.361405\pi\)
0.421782 + 0.906697i \(0.361405\pi\)
\(770\) 0 0
\(771\) 13.6537i 0.491725i
\(772\) 0 0
\(773\) −1.69226 −0.0608665 −0.0304332 0.999537i \(-0.509689\pi\)
−0.0304332 + 0.999537i \(0.509689\pi\)
\(774\) 0 0
\(775\) −19.1446 3.05973i −0.687693 0.109909i
\(776\) 0 0
\(777\) 37.6485i 1.35063i
\(778\) 0 0
\(779\) 2.79014i 0.0999670i
\(780\) 0 0
\(781\) 11.3541i 0.406283i
\(782\) 0 0
\(783\) 52.5860i 1.87927i
\(784\) 0 0
\(785\) 1.12816 14.2073i 0.0402658 0.507079i
\(786\) 0 0
\(787\) 17.3403 0.618116 0.309058 0.951043i \(-0.399986\pi\)
0.309058 + 0.951043i \(0.399986\pi\)
\(788\) 0 0
\(789\) 66.6640i 2.37330i
\(790\) 0 0
\(791\) 9.92742 0.352978
\(792\) 0 0
\(793\) 9.53694i 0.338667i
\(794\) 0 0
\(795\) −5.97323 + 75.2226i −0.211849 + 2.66787i
\(796\) 0 0
\(797\) −10.7430 −0.380538 −0.190269 0.981732i \(-0.560936\pi\)
−0.190269 + 0.981732i \(0.560936\pi\)
\(798\) 0 0
\(799\) 0.0582984 0.00206245
\(800\) 0 0
\(801\) −8.88880 −0.314070
\(802\) 0 0
\(803\) 13.9669 0.492883
\(804\) 0 0
\(805\) −1.49142 + 18.7818i −0.0525655 + 0.661973i
\(806\) 0 0
\(807\) 88.0560i 3.09972i
\(808\) 0 0
\(809\) 18.1558 0.638325 0.319162 0.947700i \(-0.396598\pi\)
0.319162 + 0.947700i \(0.396598\pi\)
\(810\) 0 0
\(811\) 15.5321i 0.545405i −0.962098 0.272702i \(-0.912083\pi\)
0.962098 0.272702i \(-0.0879174\pi\)
\(812\) 0 0
\(813\) 42.1843 1.47947
\(814\) 0 0
\(815\) 0.216489 2.72631i 0.00758328 0.0954985i
\(816\) 0 0
\(817\) 2.00243i 0.0700560i
\(818\) 0 0
\(819\) 28.6424i 1.00085i
\(820\) 0 0
\(821\) 32.7264i 1.14216i 0.820895 + 0.571079i \(0.193475\pi\)
−0.820895 + 0.571079i \(0.806525\pi\)
\(822\) 0 0
\(823\) 23.7463i 0.827744i −0.910335 0.413872i \(-0.864176\pi\)
0.910335 0.413872i \(-0.135824\pi\)
\(824\) 0 0
\(825\) −2.38324 + 14.9118i −0.0829738 + 0.519162i
\(826\) 0 0
\(827\) −19.8970 −0.691887 −0.345943 0.938255i \(-0.612441\pi\)
−0.345943 + 0.938255i \(0.612441\pi\)
\(828\) 0 0
\(829\) 15.9190i 0.552888i −0.961030 0.276444i \(-0.910844\pi\)
0.961030 0.276444i \(-0.0891560\pi\)
\(830\) 0 0
\(831\) 13.8346 0.479916
\(832\) 0 0
\(833\) 0.167077i 0.00578888i
\(834\) 0 0
\(835\) −0.158879 0.0126162i −0.00549825 0.000436601i
\(836\) 0 0
\(837\) −36.5573 −1.26360
\(838\) 0 0
\(839\) −21.0800 −0.727763 −0.363881 0.931445i \(-0.618549\pi\)
−0.363881 + 0.931445i \(0.618549\pi\)
\(840\) 0 0
\(841\) −2.10986 −0.0727538
\(842\) 0 0
\(843\) −16.0552 −0.552969
\(844\) 0 0
\(845\) −0.259082 + 3.26269i −0.00891269 + 0.112240i
\(846\) 0 0
\(847\) 1.23027i 0.0422726i
\(848\) 0 0
\(849\) −28.6429 −0.983021
\(850\) 0 0
\(851\) 69.3947i 2.37882i
\(852\) 0 0
\(853\) −38.3248 −1.31222 −0.656109 0.754666i \(-0.727799\pi\)
−0.656109 + 0.754666i \(0.727799\pi\)
\(854\) 0 0
\(855\) −4.64202 0.368611i −0.158754 0.0126062i
\(856\) 0 0
\(857\) 39.9567i 1.36490i −0.730934 0.682448i \(-0.760915\pi\)
0.730934 0.682448i \(-0.239085\pi\)
\(858\) 0 0
\(859\) 27.8648i 0.950736i −0.879787 0.475368i \(-0.842315\pi\)
0.879787 0.475368i \(-0.157685\pi\)
\(860\) 0 0
\(861\) 30.4751i 1.03859i
\(862\) 0 0
\(863\) 3.95489i 0.134626i −0.997732 0.0673130i \(-0.978557\pi\)
0.997732 0.0673130i \(-0.0214426\pi\)
\(864\) 0 0
\(865\) −3.09027 + 38.9167i −0.105072 + 1.32321i
\(866\) 0 0
\(867\) −51.3407 −1.74362
\(868\) 0 0
\(869\) 0.348432i 0.0118197i
\(870\) 0 0
\(871\) 46.0340 1.55980
\(872\) 0 0
\(873\) 45.1170i 1.52698i
\(874\) 0 0
\(875\) −13.3680 3.23914i −0.451922 0.109503i
\(876\) 0 0
\(877\) −11.8619 −0.400548 −0.200274 0.979740i \(-0.564183\pi\)
−0.200274 + 0.979740i \(0.564183\pi\)
\(878\) 0 0
\(879\) 37.9967 1.28160
\(880\) 0 0
\(881\) 35.7527 1.20454 0.602270 0.798292i \(-0.294263\pi\)
0.602270 + 0.798292i \(0.294263\pi\)
\(882\) 0 0
\(883\) 42.2030 1.42024 0.710122 0.704079i \(-0.248640\pi\)
0.710122 + 0.704079i \(0.248640\pi\)
\(884\) 0 0
\(885\) −77.7679 6.17535i −2.61414 0.207582i
\(886\) 0 0
\(887\) 41.6257i 1.39766i −0.715290 0.698828i \(-0.753705\pi\)
0.715290 0.698828i \(-0.246295\pi\)
\(888\) 0 0
\(889\) 6.04045 0.202590
\(890\) 0 0
\(891\) 10.1097i 0.338687i
\(892\) 0 0
\(893\) −0.651250 −0.0217932
\(894\) 0 0
\(895\) 9.39957 + 0.746395i 0.314193 + 0.0249492i
\(896\) 0 0
\(897\) 78.6671i 2.62662i
\(898\) 0 0
\(899\) 21.6273i 0.721309i
\(900\) 0 0
\(901\) 0.340266i 0.0113359i
\(902\) 0 0
\(903\) 21.8714i 0.727833i
\(904\) 0 0
\(905\) 33.1896 + 2.63550i 1.10326 + 0.0876071i
\(906\) 0 0
\(907\) −9.58417 −0.318237 −0.159119 0.987259i \(-0.550865\pi\)
−0.159119 + 0.987259i \(0.550865\pi\)
\(908\) 0 0
\(909\) 37.6405i 1.24846i
\(910\) 0 0
\(911\) 36.7150 1.21642 0.608211 0.793775i \(-0.291887\pi\)
0.608211 + 0.793775i \(0.291887\pi\)
\(912\) 0 0
\(913\) 12.7615i 0.422344i
\(914\) 0 0
\(915\) 16.8821 + 1.34056i 0.558104 + 0.0443176i
\(916\) 0 0
\(917\) −23.4261 −0.773599
\(918\) 0 0
\(919\) 18.2182 0.600965 0.300482 0.953787i \(-0.402852\pi\)
0.300482 + 0.953787i \(0.402852\pi\)
\(920\) 0 0
\(921\) 45.3210 1.49338
\(922\) 0 0
\(923\) 43.1811 1.42132
\(924\) 0 0
\(925\) −50.0268 7.99541i −1.64487 0.262887i
\(926\) 0 0
\(927\) 0.175899i 0.00577728i
\(928\) 0 0
\(929\) −9.03564 −0.296450 −0.148225 0.988954i \(-0.547356\pi\)
−0.148225 + 0.988954i \(0.547356\pi\)
\(930\) 0 0
\(931\) 1.86642i 0.0611693i
\(932\) 0 0
\(933\) 1.55758 0.0509930
\(934\) 0 0
\(935\) −0.00539024 + 0.0678809i −0.000176280 + 0.00221994i
\(936\) 0 0
\(937\) 17.5696i 0.573974i −0.957935 0.286987i \(-0.907346\pi\)
0.957935 0.286987i \(-0.0926536\pi\)
\(938\) 0 0
\(939\) 50.5579i 1.64990i
\(940\) 0 0
\(941\) 19.7859i 0.645001i −0.946569 0.322501i \(-0.895477\pi\)
0.946569 0.322501i \(-0.104523\pi\)
\(942\) 0 0
\(943\) 56.1725i 1.82923i
\(944\) 0 0
\(945\) −25.8549 2.05307i −0.841059 0.0667863i
\(946\) 0 0
\(947\) −19.5398 −0.634957 −0.317478 0.948265i \(-0.602836\pi\)
−0.317478 + 0.948265i \(0.602836\pi\)
\(948\) 0 0
\(949\) 53.1180i 1.72428i
\(950\) 0 0
\(951\) 34.2003 1.10902
\(952\) 0 0
\(953\) 0.995459i 0.0322461i −0.999870 0.0161230i \(-0.994868\pi\)
0.999870 0.0161230i \(-0.00513235\pi\)
\(954\) 0 0
\(955\) −2.80448 + 35.3176i −0.0907509 + 1.14285i
\(956\) 0 0
\(957\) 16.8456 0.544540
\(958\) 0 0
\(959\) 12.0764 0.389968
\(960\) 0 0
\(961\) −15.9650 −0.514999
\(962\) 0 0
\(963\) 0.430035 0.0138577
\(964\) 0 0
\(965\) 49.7075 + 3.94714i 1.60014 + 0.127063i
\(966\) 0 0
\(967\) 53.1391i 1.70884i −0.519583 0.854420i \(-0.673913\pi\)
0.519583 0.854420i \(-0.326087\pi\)
\(968\) 0 0
\(969\) −0.0312884 −0.00100513
\(970\) 0 0
\(971\) 53.2228i 1.70800i 0.520271 + 0.854001i \(0.325831\pi\)
−0.520271 + 0.854001i \(0.674169\pi\)
\(972\) 0 0
\(973\) −26.0332 −0.834585
\(974\) 0 0
\(975\) −56.7113 9.06374i −1.81622 0.290272i
\(976\) 0 0
\(977\) 50.2443i 1.60746i −0.594997 0.803728i \(-0.702847\pi\)
0.594997 0.803728i \(-0.297153\pi\)
\(978\) 0 0
\(979\) 1.45203i 0.0464069i
\(980\) 0 0
\(981\) 31.9849i 1.02120i
\(982\) 0 0
\(983\) 27.0658i 0.863266i 0.902049 + 0.431633i \(0.142062\pi\)
−0.902049 + 0.431633i \(0.857938\pi\)
\(984\) 0 0
\(985\) 2.55445 32.1689i 0.0813915 1.02499i
\(986\) 0 0
\(987\) −7.11323 −0.226417
\(988\) 0 0
\(989\) 40.3139i 1.28191i
\(990\) 0 0
\(991\) 29.4884 0.936729 0.468365 0.883535i \(-0.344843\pi\)
0.468365 + 0.883535i \(0.344843\pi\)
\(992\) 0 0
\(993\) 81.1674i 2.57577i
\(994\) 0 0
\(995\) 1.24141 15.6334i 0.0393554 0.495613i
\(996\) 0 0
\(997\) 1.74831 0.0553695 0.0276848 0.999617i \(-0.491187\pi\)
0.0276848 + 0.999617i \(0.491187\pi\)
\(998\) 0 0
\(999\) −95.5280 −3.02237
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1760.2.l.c.529.3 56
4.3 odd 2 440.2.l.c.309.41 yes 56
5.4 even 2 inner 1760.2.l.c.529.54 56
8.3 odd 2 440.2.l.c.309.15 56
8.5 even 2 inner 1760.2.l.c.529.53 56
20.19 odd 2 440.2.l.c.309.16 yes 56
40.19 odd 2 440.2.l.c.309.42 yes 56
40.29 even 2 inner 1760.2.l.c.529.4 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.l.c.309.15 56 8.3 odd 2
440.2.l.c.309.16 yes 56 20.19 odd 2
440.2.l.c.309.41 yes 56 4.3 odd 2
440.2.l.c.309.42 yes 56 40.19 odd 2
1760.2.l.c.529.3 56 1.1 even 1 trivial
1760.2.l.c.529.4 56 40.29 even 2 inner
1760.2.l.c.529.53 56 8.5 even 2 inner
1760.2.l.c.529.54 56 5.4 even 2 inner