Properties

Label 1760.2.l.c
Level $1760$
Weight $2$
Character orbit 1760.l
Analytic conductor $14.054$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1760,2,Mod(529,1760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1760.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0536707557\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 56 q + 56 q^{9} + 8 q^{15} + 16 q^{25} + 16 q^{39} - 32 q^{41} - 24 q^{49} + 8 q^{55} - 32 q^{65} - 48 q^{71} + 32 q^{79} + 88 q^{81} - 16 q^{89} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1 0 −3.29264 0 −1.69658 1.45657i 0 3.97318i 0 7.84147 0
529.2 0 −3.29264 0 −1.69658 + 1.45657i 0 3.97318i 0 7.84147 0
529.3 0 −3.02021 0 −0.177003 + 2.22905i 0 1.23027i 0 6.12165 0
529.4 0 −3.02021 0 −0.177003 2.22905i 0 1.23027i 0 6.12165 0
529.5 0 −2.84044 0 2.20930 + 0.344972i 0 1.82515i 0 5.06811 0
529.6 0 −2.84044 0 2.20930 0.344972i 0 1.82515i 0 5.06811 0
529.7 0 −2.58970 0 0.464619 2.18727i 0 1.54883i 0 3.70654 0
529.8 0 −2.58970 0 0.464619 + 2.18727i 0 1.54883i 0 3.70654 0
529.9 0 −2.45029 0 −1.88833 1.19759i 0 4.10058i 0 3.00393 0
529.10 0 −2.45029 0 −1.88833 + 1.19759i 0 4.10058i 0 3.00393 0
529.11 0 −2.29285 0 −2.06667 0.853738i 0 0.918608i 0 2.25717 0
529.12 0 −2.29285 0 −2.06667 + 0.853738i 0 0.918608i 0 2.25717 0
529.13 0 −2.02800 0 1.17627 1.90168i 0 1.20527i 0 1.11278 0
529.14 0 −2.02800 0 1.17627 + 1.90168i 0 1.20527i 0 1.11278 0
529.15 0 −1.55031 0 2.09467 + 0.782535i 0 3.88217i 0 −0.596534 0
529.16 0 −1.55031 0 2.09467 0.782535i 0 3.88217i 0 −0.596534 0
529.17 0 −1.10235 0 −1.70933 1.44159i 0 3.87299i 0 −1.78481 0
529.18 0 −1.10235 0 −1.70933 + 1.44159i 0 3.87299i 0 −1.78481 0
529.19 0 −0.955334 0 2.20319 + 0.382012i 0 0.432693i 0 −2.08734 0
529.20 0 −0.955334 0 2.20319 0.382012i 0 0.432693i 0 −2.08734 0
See all 56 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 529.56
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1760.2.l.c 56
4.b odd 2 1 440.2.l.c 56
5.b even 2 1 inner 1760.2.l.c 56
8.b even 2 1 inner 1760.2.l.c 56
8.d odd 2 1 440.2.l.c 56
20.d odd 2 1 440.2.l.c 56
40.e odd 2 1 440.2.l.c 56
40.f even 2 1 inner 1760.2.l.c 56
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.2.l.c 56 4.b odd 2 1
440.2.l.c 56 8.d odd 2 1
440.2.l.c 56 20.d odd 2 1
440.2.l.c 56 40.e odd 2 1
1760.2.l.c 56 1.a even 1 1 trivial
1760.2.l.c 56 5.b even 2 1 inner
1760.2.l.c 56 8.b even 2 1 inner
1760.2.l.c 56 40.f even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{28} - 56 T_{3}^{26} + 1368 T_{3}^{24} - 19172 T_{3}^{22} + 170574 T_{3}^{20} - 1007388 T_{3}^{18} + \cdots + 20736 \) acting on \(S_{2}^{\mathrm{new}}(1760, [\chi])\). Copy content Toggle raw display