Defining parameters
| Level: | \( N \) | \(=\) | \( 1760 = 2^{5} \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1760.l (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1760, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 304 | 60 | 244 |
| Cusp forms | 272 | 60 | 212 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1760, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1760.2.l.a | $2$ | $14.054$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-4\) | \(2\) | \(0\) | \(q-2 q^{3}+(2 i+1)q^{5}+4 i q^{7}+q^{9}+\cdots\) |
| 1760.2.l.b | $2$ | $14.054$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(4\) | \(-2\) | \(0\) | \(q+2 q^{3}+(2 i-1)q^{5}-4 i q^{7}+q^{9}+\cdots\) |
| 1760.2.l.c | $56$ | $14.054$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(1760, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1760, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 3}\)