Properties

Label 1760.2.l
Level $1760$
Weight $2$
Character orbit 1760.l
Rep. character $\chi_{1760}(529,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $3$
Sturm bound $576$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.l (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(576\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1760, [\chi])\).

Total New Old
Modular forms 304 60 244
Cusp forms 272 60 212
Eisenstein series 32 0 32

Trace form

\( 60 q + 60 q^{9} + 4 q^{25} + 40 q^{31} - 8 q^{41} - 60 q^{49} - 24 q^{65} - 72 q^{71} + 16 q^{79} + 44 q^{81} - 56 q^{89} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1760, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1760.2.l.a 1760.l 40.f $2$ $14.054$ \(\Q(\sqrt{-1}) \) None 440.2.l.a \(0\) \(-4\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 q^{3}+(2 i+1)q^{5}+4 i q^{7}+q^{9}+\cdots\)
1760.2.l.b 1760.l 40.f $2$ $14.054$ \(\Q(\sqrt{-1}) \) None 440.2.l.a \(0\) \(4\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 q^{3}+(2 i-1)q^{5}-4 i q^{7}+q^{9}+\cdots\)
1760.2.l.c 1760.l 40.f $56$ $14.054$ None 440.2.l.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1760, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1760, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 3}\)