Properties

Label 175.2.a.c.1.1
Level $175$
Weight $2$
Character 175.1
Self dual yes
Analytic conductor $1.397$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +1.00000 q^{3} +2.00000 q^{4} +2.00000 q^{6} -1.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} +1.00000 q^{3} +2.00000 q^{4} +2.00000 q^{6} -1.00000 q^{7} -2.00000 q^{9} -3.00000 q^{11} +2.00000 q^{12} +1.00000 q^{13} -2.00000 q^{14} -4.00000 q^{16} +7.00000 q^{17} -4.00000 q^{18} -1.00000 q^{21} -6.00000 q^{22} +6.00000 q^{23} +2.00000 q^{26} -5.00000 q^{27} -2.00000 q^{28} -5.00000 q^{29} +2.00000 q^{31} -8.00000 q^{32} -3.00000 q^{33} +14.0000 q^{34} -4.00000 q^{36} +2.00000 q^{37} +1.00000 q^{39} +2.00000 q^{41} -2.00000 q^{42} -4.00000 q^{43} -6.00000 q^{44} +12.0000 q^{46} -3.00000 q^{47} -4.00000 q^{48} +1.00000 q^{49} +7.00000 q^{51} +2.00000 q^{52} +6.00000 q^{53} -10.0000 q^{54} -10.0000 q^{58} +10.0000 q^{59} -8.00000 q^{61} +4.00000 q^{62} +2.00000 q^{63} -8.00000 q^{64} -6.00000 q^{66} +2.00000 q^{67} +14.0000 q^{68} +6.00000 q^{69} -8.00000 q^{71} +6.00000 q^{73} +4.00000 q^{74} +3.00000 q^{77} +2.00000 q^{78} -5.00000 q^{79} +1.00000 q^{81} +4.00000 q^{82} -4.00000 q^{83} -2.00000 q^{84} -8.00000 q^{86} -5.00000 q^{87} -1.00000 q^{91} +12.0000 q^{92} +2.00000 q^{93} -6.00000 q^{94} -8.00000 q^{96} +7.00000 q^{97} +2.00000 q^{98} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 2.00000 1.00000
\(5\) 0 0
\(6\) 2.00000 0.816497
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 2.00000 0.577350
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) −4.00000 −0.942809
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) −6.00000 −1.27920
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) −5.00000 −0.962250
\(28\) −2.00000 −0.377964
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −8.00000 −1.41421
\(33\) −3.00000 −0.522233
\(34\) 14.0000 2.40098
\(35\) 0 0
\(36\) −4.00000 −0.666667
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) −2.00000 −0.308607
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 12.0000 1.76930
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) −4.00000 −0.577350
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 7.00000 0.980196
\(52\) 2.00000 0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −10.0000 −1.36083
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −10.0000 −1.31306
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 4.00000 0.508001
\(63\) 2.00000 0.251976
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) −6.00000 −0.738549
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 14.0000 1.69775
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) 0 0
\(77\) 3.00000 0.341882
\(78\) 2.00000 0.226455
\(79\) −5.00000 −0.562544 −0.281272 0.959628i \(-0.590756\pi\)
−0.281272 + 0.959628i \(0.590756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 4.00000 0.441726
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) −5.00000 −0.536056
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 12.0000 1.25109
\(93\) 2.00000 0.207390
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) −8.00000 −0.816497
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 2.00000 0.202031
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 14.0000 1.38621
\(103\) −19.0000 −1.87213 −0.936063 0.351833i \(-0.885559\pi\)
−0.936063 + 0.351833i \(0.885559\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) −10.0000 −0.962250
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 4.00000 0.377964
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −10.0000 −0.928477
\(117\) −2.00000 −0.184900
\(118\) 20.0000 1.84115
\(119\) −7.00000 −0.641689
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −16.0000 −1.44857
\(123\) 2.00000 0.180334
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 4.00000 0.356348
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 22.0000 1.92215 0.961074 0.276289i \(-0.0891049\pi\)
0.961074 + 0.276289i \(0.0891049\pi\)
\(132\) −6.00000 −0.522233
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 12.0000 1.02151
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) −16.0000 −1.34269
\(143\) −3.00000 −0.250873
\(144\) 8.00000 0.666667
\(145\) 0 0
\(146\) 12.0000 0.993127
\(147\) 1.00000 0.0824786
\(148\) 4.00000 0.328798
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −13.0000 −1.05792 −0.528962 0.848645i \(-0.677419\pi\)
−0.528962 + 0.848645i \(0.677419\pi\)
\(152\) 0 0
\(153\) −14.0000 −1.13183
\(154\) 6.00000 0.483494
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) −10.0000 −0.795557
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 2.00000 0.157135
\(163\) −14.0000 −1.09656 −0.548282 0.836293i \(-0.684718\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(164\) 4.00000 0.312348
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) −10.0000 −0.758098
\(175\) 0 0
\(176\) 12.0000 0.904534
\(177\) 10.0000 0.751646
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) −2.00000 −0.148250
\(183\) −8.00000 −0.591377
\(184\) 0 0
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) −21.0000 −1.53567
\(188\) −6.00000 −0.437595
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) −8.00000 −0.577350
\(193\) 16.0000 1.15171 0.575853 0.817554i \(-0.304670\pi\)
0.575853 + 0.817554i \(0.304670\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 12.0000 0.852803
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 24.0000 1.68863
\(203\) 5.00000 0.350931
\(204\) 14.0000 0.980196
\(205\) 0 0
\(206\) −38.0000 −2.64759
\(207\) −12.0000 −0.834058
\(208\) −4.00000 −0.277350
\(209\) 0 0
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 12.0000 0.824163
\(213\) −8.00000 −0.548151
\(214\) −16.0000 −1.09374
\(215\) 0 0
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 10.0000 0.677285
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 7.00000 0.470871
\(222\) 4.00000 0.268462
\(223\) 21.0000 1.40626 0.703132 0.711059i \(-0.251784\pi\)
0.703132 + 0.711059i \(0.251784\pi\)
\(224\) 8.00000 0.534522
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) 17.0000 1.12833 0.564165 0.825662i \(-0.309198\pi\)
0.564165 + 0.825662i \(0.309198\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 3.00000 0.197386
\(232\) 0 0
\(233\) 16.0000 1.04819 0.524097 0.851658i \(-0.324403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(234\) −4.00000 −0.261488
\(235\) 0 0
\(236\) 20.0000 1.30189
\(237\) −5.00000 −0.324785
\(238\) −14.0000 −0.907485
\(239\) 15.0000 0.970269 0.485135 0.874439i \(-0.338771\pi\)
0.485135 + 0.874439i \(0.338771\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) −4.00000 −0.257130
\(243\) 16.0000 1.02640
\(244\) −16.0000 −1.02430
\(245\) 0 0
\(246\) 4.00000 0.255031
\(247\) 0 0
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 4.00000 0.251976
\(253\) −18.0000 −1.13165
\(254\) 4.00000 0.250982
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) −8.00000 −0.498058
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) 10.0000 0.618984
\(262\) 44.0000 2.71833
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) −28.0000 −1.69775
\(273\) −1.00000 −0.0605228
\(274\) 24.0000 1.44989
\(275\) 0 0
\(276\) 12.0000 0.722315
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) −20.0000 −1.19952
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 7.00000 0.417585 0.208792 0.977960i \(-0.433047\pi\)
0.208792 + 0.977960i \(0.433047\pi\)
\(282\) −6.00000 −0.357295
\(283\) 11.0000 0.653882 0.326941 0.945045i \(-0.393982\pi\)
0.326941 + 0.945045i \(0.393982\pi\)
\(284\) −16.0000 −0.949425
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) −2.00000 −0.118056
\(288\) 16.0000 0.942809
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 7.00000 0.410347
\(292\) 12.0000 0.702247
\(293\) −9.00000 −0.525786 −0.262893 0.964825i \(-0.584677\pi\)
−0.262893 + 0.964825i \(0.584677\pi\)
\(294\) 2.00000 0.116642
\(295\) 0 0
\(296\) 0 0
\(297\) 15.0000 0.870388
\(298\) 20.0000 1.15857
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) −26.0000 −1.49613
\(303\) 12.0000 0.689382
\(304\) 0 0
\(305\) 0 0
\(306\) −28.0000 −1.60065
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 6.00000 0.341882
\(309\) −19.0000 −1.08087
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 21.0000 1.18699 0.593495 0.804838i \(-0.297748\pi\)
0.593495 + 0.804838i \(0.297748\pi\)
\(314\) −36.0000 −2.03160
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 12.0000 0.672927
\(319\) 15.0000 0.839839
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) −12.0000 −0.668734
\(323\) 0 0
\(324\) 2.00000 0.111111
\(325\) 0 0
\(326\) −28.0000 −1.55078
\(327\) 5.00000 0.276501
\(328\) 0 0
\(329\) 3.00000 0.165395
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) −8.00000 −0.439057
\(333\) −4.00000 −0.219199
\(334\) −6.00000 −0.328305
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) −24.0000 −1.30543
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) −10.0000 −0.536056
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 24.0000 1.27920
\(353\) 11.0000 0.585471 0.292735 0.956193i \(-0.405434\pi\)
0.292735 + 0.956193i \(0.405434\pi\)
\(354\) 20.0000 1.06299
\(355\) 0 0
\(356\) 0 0
\(357\) −7.00000 −0.370479
\(358\) −40.0000 −2.11407
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −36.0000 −1.89212
\(363\) −2.00000 −0.104973
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) −16.0000 −0.836333
\(367\) −3.00000 −0.156599 −0.0782994 0.996930i \(-0.524949\pi\)
−0.0782994 + 0.996930i \(0.524949\pi\)
\(368\) −24.0000 −1.25109
\(369\) −4.00000 −0.208232
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 4.00000 0.207390
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) −42.0000 −2.17177
\(375\) 0 0
\(376\) 0 0
\(377\) −5.00000 −0.257513
\(378\) 10.0000 0.514344
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) −6.00000 −0.306987
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 32.0000 1.62876
\(387\) 8.00000 0.406663
\(388\) 14.0000 0.710742
\(389\) 5.00000 0.253510 0.126755 0.991934i \(-0.459544\pi\)
0.126755 + 0.991934i \(0.459544\pi\)
\(390\) 0 0
\(391\) 42.0000 2.12403
\(392\) 0 0
\(393\) 22.0000 1.10975
\(394\) 4.00000 0.201517
\(395\) 0 0
\(396\) 12.0000 0.603023
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) 0 0
\(401\) −3.00000 −0.149813 −0.0749064 0.997191i \(-0.523866\pi\)
−0.0749064 + 0.997191i \(0.523866\pi\)
\(402\) 4.00000 0.199502
\(403\) 2.00000 0.0996271
\(404\) 24.0000 1.19404
\(405\) 0 0
\(406\) 10.0000 0.496292
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 20.0000 0.988936 0.494468 0.869196i \(-0.335363\pi\)
0.494468 + 0.869196i \(0.335363\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) −38.0000 −1.87213
\(413\) −10.0000 −0.492068
\(414\) −24.0000 −1.17954
\(415\) 0 0
\(416\) −8.00000 −0.392232
\(417\) −10.0000 −0.489702
\(418\) 0 0
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) −3.00000 −0.146211 −0.0731055 0.997324i \(-0.523291\pi\)
−0.0731055 + 0.997324i \(0.523291\pi\)
\(422\) −26.0000 −1.26566
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) 0 0
\(426\) −16.0000 −0.775203
\(427\) 8.00000 0.387147
\(428\) −16.0000 −0.773389
\(429\) −3.00000 −0.144841
\(430\) 0 0
\(431\) −23.0000 −1.10787 −0.553936 0.832560i \(-0.686875\pi\)
−0.553936 + 0.832560i \(0.686875\pi\)
\(432\) 20.0000 0.962250
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) 10.0000 0.478913
\(437\) 0 0
\(438\) 12.0000 0.573382
\(439\) 30.0000 1.43182 0.715911 0.698192i \(-0.246012\pi\)
0.715911 + 0.698192i \(0.246012\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 14.0000 0.665912
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) 42.0000 1.98876
\(447\) 10.0000 0.472984
\(448\) 8.00000 0.377964
\(449\) −5.00000 −0.235965 −0.117982 0.993016i \(-0.537643\pi\)
−0.117982 + 0.993016i \(0.537643\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 12.0000 0.564433
\(453\) −13.0000 −0.610793
\(454\) 34.0000 1.59570
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0000 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) −20.0000 −0.934539
\(459\) −35.0000 −1.63366
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 6.00000 0.279145
\(463\) 36.0000 1.67306 0.836531 0.547920i \(-0.184580\pi\)
0.836531 + 0.547920i \(0.184580\pi\)
\(464\) 20.0000 0.928477
\(465\) 0 0
\(466\) 32.0000 1.48237
\(467\) 27.0000 1.24941 0.624705 0.780860i \(-0.285219\pi\)
0.624705 + 0.780860i \(0.285219\pi\)
\(468\) −4.00000 −0.184900
\(469\) −2.00000 −0.0923514
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) −10.0000 −0.459315
\(475\) 0 0
\(476\) −14.0000 −0.641689
\(477\) −12.0000 −0.549442
\(478\) 30.0000 1.37217
\(479\) −30.0000 −1.37073 −0.685367 0.728197i \(-0.740358\pi\)
−0.685367 + 0.728197i \(0.740358\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 44.0000 2.00415
\(483\) −6.00000 −0.273009
\(484\) −4.00000 −0.181818
\(485\) 0 0
\(486\) 32.0000 1.45155
\(487\) 42.0000 1.90320 0.951601 0.307337i \(-0.0994378\pi\)
0.951601 + 0.307337i \(0.0994378\pi\)
\(488\) 0 0
\(489\) −14.0000 −0.633102
\(490\) 0 0
\(491\) 7.00000 0.315906 0.157953 0.987447i \(-0.449511\pi\)
0.157953 + 0.987447i \(0.449511\pi\)
\(492\) 4.00000 0.180334
\(493\) −35.0000 −1.57632
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 8.00000 0.358849
\(498\) −8.00000 −0.358489
\(499\) −35.0000 −1.56682 −0.783408 0.621508i \(-0.786520\pi\)
−0.783408 + 0.621508i \(0.786520\pi\)
\(500\) 0 0
\(501\) −3.00000 −0.134030
\(502\) −36.0000 −1.60676
\(503\) −9.00000 −0.401290 −0.200645 0.979664i \(-0.564304\pi\)
−0.200645 + 0.979664i \(0.564304\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −36.0000 −1.60040
\(507\) −12.0000 −0.532939
\(508\) 4.00000 0.177471
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) −6.00000 −0.265424
\(512\) 32.0000 1.41421
\(513\) 0 0
\(514\) 44.0000 1.94076
\(515\) 0 0
\(516\) −8.00000 −0.352180
\(517\) 9.00000 0.395820
\(518\) −4.00000 −0.175750
\(519\) −9.00000 −0.395056
\(520\) 0 0
\(521\) −28.0000 −1.22670 −0.613351 0.789810i \(-0.710179\pi\)
−0.613351 + 0.789810i \(0.710179\pi\)
\(522\) 20.0000 0.875376
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 44.0000 1.92215
\(525\) 0 0
\(526\) −48.0000 −2.09290
\(527\) 14.0000 0.609850
\(528\) 12.0000 0.522233
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −20.0000 −0.867926
\(532\) 0 0
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −20.0000 −0.863064
\(538\) 20.0000 0.862261
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) 27.0000 1.16082 0.580410 0.814324i \(-0.302892\pi\)
0.580410 + 0.814324i \(0.302892\pi\)
\(542\) −16.0000 −0.687259
\(543\) −18.0000 −0.772454
\(544\) −56.0000 −2.40098
\(545\) 0 0
\(546\) −2.00000 −0.0855921
\(547\) 32.0000 1.36822 0.684111 0.729378i \(-0.260191\pi\)
0.684111 + 0.729378i \(0.260191\pi\)
\(548\) 24.0000 1.02523
\(549\) 16.0000 0.682863
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 5.00000 0.212622
\(554\) 4.00000 0.169944
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) −8.00000 −0.338667
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) −21.0000 −0.886621
\(562\) 14.0000 0.590554
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) −6.00000 −0.252646
\(565\) 0 0
\(566\) 22.0000 0.924729
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) −6.00000 −0.250873
\(573\) −3.00000 −0.125327
\(574\) −4.00000 −0.166957
\(575\) 0 0
\(576\) 16.0000 0.666667
\(577\) −43.0000 −1.79011 −0.895057 0.445952i \(-0.852865\pi\)
−0.895057 + 0.445952i \(0.852865\pi\)
\(578\) 64.0000 2.66205
\(579\) 16.0000 0.664937
\(580\) 0 0
\(581\) 4.00000 0.165948
\(582\) 14.0000 0.580319
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 2.00000 0.0824786
\(589\) 0 0
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) −8.00000 −0.328798
\(593\) 41.0000 1.68367 0.841834 0.539736i \(-0.181476\pi\)
0.841834 + 0.539736i \(0.181476\pi\)
\(594\) 30.0000 1.23091
\(595\) 0 0
\(596\) 20.0000 0.819232
\(597\) −10.0000 −0.409273
\(598\) 12.0000 0.490716
\(599\) 25.0000 1.02147 0.510736 0.859738i \(-0.329373\pi\)
0.510736 + 0.859738i \(0.329373\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 8.00000 0.326056
\(603\) −4.00000 −0.162893
\(604\) −26.0000 −1.05792
\(605\) 0 0
\(606\) 24.0000 0.974933
\(607\) 27.0000 1.09590 0.547948 0.836512i \(-0.315409\pi\)
0.547948 + 0.836512i \(0.315409\pi\)
\(608\) 0 0
\(609\) 5.00000 0.202610
\(610\) 0 0
\(611\) −3.00000 −0.121367
\(612\) −28.0000 −1.13183
\(613\) −44.0000 −1.77714 −0.888572 0.458738i \(-0.848302\pi\)
−0.888572 + 0.458738i \(0.848302\pi\)
\(614\) 14.0000 0.564994
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) −38.0000 −1.52858
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) −30.0000 −1.20386
\(622\) 24.0000 0.962312
\(623\) 0 0
\(624\) −4.00000 −0.160128
\(625\) 0 0
\(626\) 42.0000 1.67866
\(627\) 0 0
\(628\) −36.0000 −1.43656
\(629\) 14.0000 0.558217
\(630\) 0 0
\(631\) 37.0000 1.47295 0.736473 0.676467i \(-0.236490\pi\)
0.736473 + 0.676467i \(0.236490\pi\)
\(632\) 0 0
\(633\) −13.0000 −0.516704
\(634\) 24.0000 0.953162
\(635\) 0 0
\(636\) 12.0000 0.475831
\(637\) 1.00000 0.0396214
\(638\) 30.0000 1.18771
\(639\) 16.0000 0.632950
\(640\) 0 0
\(641\) 22.0000 0.868948 0.434474 0.900684i \(-0.356934\pi\)
0.434474 + 0.900684i \(0.356934\pi\)
\(642\) −16.0000 −0.631470
\(643\) 1.00000 0.0394362 0.0197181 0.999806i \(-0.493723\pi\)
0.0197181 + 0.999806i \(0.493723\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 0 0
\(647\) −8.00000 −0.314512 −0.157256 0.987558i \(-0.550265\pi\)
−0.157256 + 0.987558i \(0.550265\pi\)
\(648\) 0 0
\(649\) −30.0000 −1.17760
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) −28.0000 −1.09656
\(653\) −4.00000 −0.156532 −0.0782660 0.996933i \(-0.524938\pi\)
−0.0782660 + 0.996933i \(0.524938\pi\)
\(654\) 10.0000 0.391031
\(655\) 0 0
\(656\) −8.00000 −0.312348
\(657\) −12.0000 −0.468165
\(658\) 6.00000 0.233904
\(659\) −15.0000 −0.584317 −0.292159 0.956370i \(-0.594373\pi\)
−0.292159 + 0.956370i \(0.594373\pi\)
\(660\) 0 0
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) 24.0000 0.932786
\(663\) 7.00000 0.271857
\(664\) 0 0
\(665\) 0 0
\(666\) −8.00000 −0.309994
\(667\) −30.0000 −1.16160
\(668\) −6.00000 −0.232147
\(669\) 21.0000 0.811907
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 8.00000 0.308607
\(673\) −24.0000 −0.925132 −0.462566 0.886585i \(-0.653071\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) −36.0000 −1.38667
\(675\) 0 0
\(676\) −24.0000 −0.923077
\(677\) −43.0000 −1.65262 −0.826312 0.563212i \(-0.809565\pi\)
−0.826312 + 0.563212i \(0.809565\pi\)
\(678\) 12.0000 0.460857
\(679\) −7.00000 −0.268635
\(680\) 0 0
\(681\) 17.0000 0.651441
\(682\) −12.0000 −0.459504
\(683\) 16.0000 0.612223 0.306111 0.951996i \(-0.400972\pi\)
0.306111 + 0.951996i \(0.400972\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2.00000 −0.0763604
\(687\) −10.0000 −0.381524
\(688\) 16.0000 0.609994
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) −18.0000 −0.684257
\(693\) −6.00000 −0.227921
\(694\) −36.0000 −1.36654
\(695\) 0 0
\(696\) 0 0
\(697\) 14.0000 0.530288
\(698\) −40.0000 −1.51402
\(699\) 16.0000 0.605176
\(700\) 0 0
\(701\) −13.0000 −0.491003 −0.245502 0.969396i \(-0.578953\pi\)
−0.245502 + 0.969396i \(0.578953\pi\)
\(702\) −10.0000 −0.377426
\(703\) 0 0
\(704\) 24.0000 0.904534
\(705\) 0 0
\(706\) 22.0000 0.827981
\(707\) −12.0000 −0.451306
\(708\) 20.0000 0.751646
\(709\) 35.0000 1.31445 0.657226 0.753693i \(-0.271730\pi\)
0.657226 + 0.753693i \(0.271730\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 0 0
\(713\) 12.0000 0.449404
\(714\) −14.0000 −0.523937
\(715\) 0 0
\(716\) −40.0000 −1.49487
\(717\) 15.0000 0.560185
\(718\) −40.0000 −1.49279
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 19.0000 0.707597
\(722\) −38.0000 −1.41421
\(723\) 22.0000 0.818189
\(724\) −36.0000 −1.33793
\(725\) 0 0
\(726\) −4.00000 −0.148454
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −28.0000 −1.03562
\(732\) −16.0000 −0.591377
\(733\) 1.00000 0.0369358 0.0184679 0.999829i \(-0.494121\pi\)
0.0184679 + 0.999829i \(0.494121\pi\)
\(734\) −6.00000 −0.221464
\(735\) 0 0
\(736\) −48.0000 −1.76930
\(737\) −6.00000 −0.221013
\(738\) −8.00000 −0.294484
\(739\) −35.0000 −1.28750 −0.643748 0.765238i \(-0.722621\pi\)
−0.643748 + 0.765238i \(0.722621\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.0000 −0.440534
\(743\) −14.0000 −0.513610 −0.256805 0.966463i \(-0.582670\pi\)
−0.256805 + 0.966463i \(0.582670\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −48.0000 −1.75740
\(747\) 8.00000 0.292705
\(748\) −42.0000 −1.53567
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) −33.0000 −1.20419 −0.602094 0.798426i \(-0.705667\pi\)
−0.602094 + 0.798426i \(0.705667\pi\)
\(752\) 12.0000 0.437595
\(753\) −18.0000 −0.655956
\(754\) −10.0000 −0.364179
\(755\) 0 0
\(756\) 10.0000 0.363696
\(757\) 32.0000 1.16306 0.581530 0.813525i \(-0.302454\pi\)
0.581530 + 0.813525i \(0.302454\pi\)
\(758\) 40.0000 1.45287
\(759\) −18.0000 −0.653359
\(760\) 0 0
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 4.00000 0.144905
\(763\) −5.00000 −0.181012
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) 10.0000 0.361079
\(768\) 16.0000 0.577350
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 22.0000 0.792311
\(772\) 32.0000 1.15171
\(773\) 21.0000 0.755318 0.377659 0.925945i \(-0.376729\pi\)
0.377659 + 0.925945i \(0.376729\pi\)
\(774\) 16.0000 0.575108
\(775\) 0 0
\(776\) 0 0
\(777\) −2.00000 −0.0717496
\(778\) 10.0000 0.358517
\(779\) 0 0
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 84.0000 3.00383
\(783\) 25.0000 0.893427
\(784\) −4.00000 −0.142857
\(785\) 0 0
\(786\) 44.0000 1.56943
\(787\) 17.0000 0.605985 0.302992 0.952993i \(-0.402014\pi\)
0.302992 + 0.952993i \(0.402014\pi\)
\(788\) 4.00000 0.142494
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 14.0000 0.496841
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) −13.0000 −0.460484 −0.230242 0.973133i \(-0.573952\pi\)
−0.230242 + 0.973133i \(0.573952\pi\)
\(798\) 0 0
\(799\) −21.0000 −0.742927
\(800\) 0 0
\(801\) 0 0
\(802\) −6.00000 −0.211867
\(803\) −18.0000 −0.635206
\(804\) 4.00000 0.141069
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) 10.0000 0.352017
\(808\) 0 0
\(809\) 45.0000 1.58212 0.791058 0.611741i \(-0.209531\pi\)
0.791058 + 0.611741i \(0.209531\pi\)
\(810\) 0 0
\(811\) −38.0000 −1.33436 −0.667180 0.744896i \(-0.732499\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 10.0000 0.350931
\(813\) −8.00000 −0.280572
\(814\) −12.0000 −0.420600
\(815\) 0 0
\(816\) −28.0000 −0.980196
\(817\) 0 0
\(818\) 40.0000 1.39857
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) −23.0000 −0.802706 −0.401353 0.915924i \(-0.631460\pi\)
−0.401353 + 0.915924i \(0.631460\pi\)
\(822\) 24.0000 0.837096
\(823\) 26.0000 0.906303 0.453152 0.891434i \(-0.350300\pi\)
0.453152 + 0.891434i \(0.350300\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −20.0000 −0.695889
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) −24.0000 −0.834058
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) −8.00000 −0.277350
\(833\) 7.00000 0.242536
\(834\) −20.0000 −0.692543
\(835\) 0 0
\(836\) 0 0
\(837\) −10.0000 −0.345651
\(838\) 60.0000 2.07267
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) −6.00000 −0.206774
\(843\) 7.00000 0.241093
\(844\) −26.0000 −0.894957
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 2.00000 0.0687208
\(848\) −24.0000 −0.824163
\(849\) 11.0000 0.377519
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) −16.0000 −0.548151
\(853\) −54.0000 −1.84892 −0.924462 0.381273i \(-0.875486\pi\)
−0.924462 + 0.381273i \(0.875486\pi\)
\(854\) 16.0000 0.547509
\(855\) 0 0
\(856\) 0 0
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) −6.00000 −0.204837
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) −2.00000 −0.0681598
\(862\) −46.0000 −1.56677
\(863\) −54.0000 −1.83818 −0.919091 0.394046i \(-0.871075\pi\)
−0.919091 + 0.394046i \(0.871075\pi\)
\(864\) 40.0000 1.36083
\(865\) 0 0
\(866\) 52.0000 1.76703
\(867\) 32.0000 1.08678
\(868\) −4.00000 −0.135769
\(869\) 15.0000 0.508840
\(870\) 0 0
\(871\) 2.00000 0.0677674
\(872\) 0 0
\(873\) −14.0000 −0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 12.0000 0.405442
\(877\) 32.0000 1.08056 0.540282 0.841484i \(-0.318318\pi\)
0.540282 + 0.841484i \(0.318318\pi\)
\(878\) 60.0000 2.02490
\(879\) −9.00000 −0.303562
\(880\) 0 0
\(881\) 32.0000 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(882\) −4.00000 −0.134687
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 14.0000 0.470871
\(885\) 0 0
\(886\) −8.00000 −0.268765
\(887\) −28.0000 −0.940148 −0.470074 0.882627i \(-0.655773\pi\)
−0.470074 + 0.882627i \(0.655773\pi\)
\(888\) 0 0
\(889\) −2.00000 −0.0670778
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) 42.0000 1.40626
\(893\) 0 0
\(894\) 20.0000 0.668900
\(895\) 0 0
\(896\) 0 0
\(897\) 6.00000 0.200334
\(898\) −10.0000 −0.333704
\(899\) −10.0000 −0.333519
\(900\) 0 0
\(901\) 42.0000 1.39922
\(902\) −12.0000 −0.399556
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) 0 0
\(906\) −26.0000 −0.863792
\(907\) −38.0000 −1.26177 −0.630885 0.775877i \(-0.717308\pi\)
−0.630885 + 0.775877i \(0.717308\pi\)
\(908\) 34.0000 1.12833
\(909\) −24.0000 −0.796030
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) −76.0000 −2.51386
\(915\) 0 0
\(916\) −20.0000 −0.660819
\(917\) −22.0000 −0.726504
\(918\) −70.0000 −2.31034
\(919\) −5.00000 −0.164935 −0.0824674 0.996594i \(-0.526280\pi\)
−0.0824674 + 0.996594i \(0.526280\pi\)
\(920\) 0 0
\(921\) 7.00000 0.230658
\(922\) 24.0000 0.790398
\(923\) −8.00000 −0.263323
\(924\) 6.00000 0.197386
\(925\) 0 0
\(926\) 72.0000 2.36607
\(927\) 38.0000 1.24808
\(928\) 40.0000 1.31306
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 32.0000 1.04819
\(933\) 12.0000 0.392862
\(934\) 54.0000 1.76693
\(935\) 0 0
\(936\) 0 0
\(937\) −13.0000 −0.424691 −0.212346 0.977195i \(-0.568110\pi\)
−0.212346 + 0.977195i \(0.568110\pi\)
\(938\) −4.00000 −0.130605
\(939\) 21.0000 0.685309
\(940\) 0 0
\(941\) −48.0000 −1.56476 −0.782378 0.622804i \(-0.785993\pi\)
−0.782378 + 0.622804i \(0.785993\pi\)
\(942\) −36.0000 −1.17294
\(943\) 12.0000 0.390774
\(944\) −40.0000 −1.30189
\(945\) 0 0
\(946\) 24.0000 0.780307
\(947\) 42.0000 1.36482 0.682408 0.730971i \(-0.260933\pi\)
0.682408 + 0.730971i \(0.260933\pi\)
\(948\) −10.0000 −0.324785
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 12.0000 0.389127
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) −24.0000 −0.777029
\(955\) 0 0
\(956\) 30.0000 0.970269
\(957\) 15.0000 0.484881
\(958\) −60.0000 −1.93851
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 4.00000 0.128965
\(963\) 16.0000 0.515593
\(964\) 44.0000 1.41714
\(965\) 0 0
\(966\) −12.0000 −0.386094
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.0000 0.706014 0.353007 0.935621i \(-0.385159\pi\)
0.353007 + 0.935621i \(0.385159\pi\)
\(972\) 32.0000 1.02640
\(973\) 10.0000 0.320585
\(974\) 84.0000 2.69153
\(975\) 0 0
\(976\) 32.0000 1.02430
\(977\) 12.0000 0.383914 0.191957 0.981403i \(-0.438517\pi\)
0.191957 + 0.981403i \(0.438517\pi\)
\(978\) −28.0000 −0.895341
\(979\) 0 0
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 14.0000 0.446758
\(983\) 51.0000 1.62665 0.813324 0.581811i \(-0.197656\pi\)
0.813324 + 0.581811i \(0.197656\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −70.0000 −2.22925
\(987\) 3.00000 0.0954911
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) −16.0000 −0.508001
\(993\) 12.0000 0.380808
\(994\) 16.0000 0.507489
\(995\) 0 0
\(996\) −8.00000 −0.253490
\(997\) −13.0000 −0.411714 −0.205857 0.978582i \(-0.565998\pi\)
−0.205857 + 0.978582i \(0.565998\pi\)
\(998\) −70.0000 −2.21581
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.2.a.c.1.1 1
3.2 odd 2 1575.2.a.a.1.1 1
4.3 odd 2 2800.2.a.l.1.1 1
5.2 odd 4 35.2.b.a.29.2 yes 2
5.3 odd 4 35.2.b.a.29.1 2
5.4 even 2 175.2.a.a.1.1 1
7.6 odd 2 1225.2.a.i.1.1 1
15.2 even 4 315.2.d.a.64.1 2
15.8 even 4 315.2.d.a.64.2 2
15.14 odd 2 1575.2.a.k.1.1 1
20.3 even 4 560.2.g.b.449.1 2
20.7 even 4 560.2.g.b.449.2 2
20.19 odd 2 2800.2.a.w.1.1 1
35.2 odd 12 245.2.j.e.214.2 4
35.3 even 12 245.2.j.d.79.2 4
35.12 even 12 245.2.j.d.214.2 4
35.13 even 4 245.2.b.a.99.1 2
35.17 even 12 245.2.j.d.79.1 4
35.18 odd 12 245.2.j.e.79.2 4
35.23 odd 12 245.2.j.e.214.1 4
35.27 even 4 245.2.b.a.99.2 2
35.32 odd 12 245.2.j.e.79.1 4
35.33 even 12 245.2.j.d.214.1 4
35.34 odd 2 1225.2.a.a.1.1 1
40.3 even 4 2240.2.g.g.449.2 2
40.13 odd 4 2240.2.g.h.449.1 2
40.27 even 4 2240.2.g.g.449.1 2
40.37 odd 4 2240.2.g.h.449.2 2
60.23 odd 4 5040.2.t.p.1009.1 2
60.47 odd 4 5040.2.t.p.1009.2 2
105.62 odd 4 2205.2.d.b.1324.1 2
105.83 odd 4 2205.2.d.b.1324.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.b.a.29.1 2 5.3 odd 4
35.2.b.a.29.2 yes 2 5.2 odd 4
175.2.a.a.1.1 1 5.4 even 2
175.2.a.c.1.1 1 1.1 even 1 trivial
245.2.b.a.99.1 2 35.13 even 4
245.2.b.a.99.2 2 35.27 even 4
245.2.j.d.79.1 4 35.17 even 12
245.2.j.d.79.2 4 35.3 even 12
245.2.j.d.214.1 4 35.33 even 12
245.2.j.d.214.2 4 35.12 even 12
245.2.j.e.79.1 4 35.32 odd 12
245.2.j.e.79.2 4 35.18 odd 12
245.2.j.e.214.1 4 35.23 odd 12
245.2.j.e.214.2 4 35.2 odd 12
315.2.d.a.64.1 2 15.2 even 4
315.2.d.a.64.2 2 15.8 even 4
560.2.g.b.449.1 2 20.3 even 4
560.2.g.b.449.2 2 20.7 even 4
1225.2.a.a.1.1 1 35.34 odd 2
1225.2.a.i.1.1 1 7.6 odd 2
1575.2.a.a.1.1 1 3.2 odd 2
1575.2.a.k.1.1 1 15.14 odd 2
2205.2.d.b.1324.1 2 105.62 odd 4
2205.2.d.b.1324.2 2 105.83 odd 4
2240.2.g.g.449.1 2 40.27 even 4
2240.2.g.g.449.2 2 40.3 even 4
2240.2.g.h.449.1 2 40.13 odd 4
2240.2.g.h.449.2 2 40.37 odd 4
2800.2.a.l.1.1 1 4.3 odd 2
2800.2.a.w.1.1 1 20.19 odd 2
5040.2.t.p.1009.1 2 60.23 odd 4
5040.2.t.p.1009.2 2 60.47 odd 4