Properties

Label 245.2.j.d.79.1
Level $245$
Weight $2$
Character 245.79
Analytic conductor $1.956$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,2,Mod(79,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 245.79
Dual form 245.2.j.d.214.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 - 1.00000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-1.86603 + 1.23205i) q^{5} -2.00000 q^{6} +(-1.00000 + 1.73205i) q^{9} +(4.46410 - 0.267949i) q^{10} +(1.50000 + 2.59808i) q^{11} +(1.73205 + 1.00000i) q^{12} +1.00000i q^{13} +(-1.00000 + 2.00000i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-6.06218 + 3.50000i) q^{17} +(3.46410 - 2.00000i) q^{18} +(-4.00000 - 2.00000i) q^{20} -6.00000i q^{22} +(5.19615 + 3.00000i) q^{23} +(1.96410 - 4.59808i) q^{25} +(1.00000 - 1.73205i) q^{26} +5.00000i q^{27} +5.00000 q^{29} +(3.73205 - 2.46410i) q^{30} +(1.00000 + 1.73205i) q^{31} +(-6.92820 + 4.00000i) q^{32} +(2.59808 + 1.50000i) q^{33} +14.0000 q^{34} -4.00000 q^{36} +(-1.73205 - 1.00000i) q^{37} +(0.500000 + 0.866025i) q^{39} -2.00000 q^{41} +4.00000i q^{43} +(-3.00000 + 5.19615i) q^{44} +(-0.267949 - 4.46410i) q^{45} +(-6.00000 - 10.3923i) q^{46} +(-2.59808 - 1.50000i) q^{47} -4.00000i q^{48} +(-8.00000 + 6.00000i) q^{50} +(-3.50000 + 6.06218i) q^{51} +(-1.73205 + 1.00000i) q^{52} +(-5.19615 + 3.00000i) q^{53} +(5.00000 - 8.66025i) q^{54} +(-6.00000 - 3.00000i) q^{55} +(-8.66025 - 5.00000i) q^{58} +(-5.00000 - 8.66025i) q^{59} +(-4.46410 + 0.267949i) q^{60} +(-4.00000 + 6.92820i) q^{61} -4.00000i q^{62} +8.00000 q^{64} +(-1.23205 - 1.86603i) q^{65} +(-3.00000 - 5.19615i) q^{66} +(1.73205 - 1.00000i) q^{67} +(-12.1244 - 7.00000i) q^{68} +6.00000 q^{69} -8.00000 q^{71} +(5.19615 - 3.00000i) q^{73} +(2.00000 + 3.46410i) q^{74} +(-0.598076 - 4.96410i) q^{75} -2.00000i q^{78} +(-2.50000 + 4.33013i) q^{79} +(0.535898 + 8.92820i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(3.46410 + 2.00000i) q^{82} -4.00000i q^{83} +(7.00000 - 14.0000i) q^{85} +(4.00000 - 6.92820i) q^{86} +(4.33013 - 2.50000i) q^{87} +(-4.00000 + 8.00000i) q^{90} +12.0000i q^{92} +(1.73205 + 1.00000i) q^{93} +(3.00000 + 5.19615i) q^{94} +(-4.00000 + 6.92820i) q^{96} -7.00000i q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 4 q^{5} - 8 q^{6} - 4 q^{9} + 4 q^{10} + 6 q^{11} - 4 q^{15} + 8 q^{16} - 16 q^{20} - 6 q^{25} + 4 q^{26} + 20 q^{29} + 8 q^{30} + 4 q^{31} + 56 q^{34} - 16 q^{36} + 2 q^{39} - 8 q^{41}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 1.00000i −1.22474 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i −0.228714 0.973494i \(-0.573452\pi\)
0.728714 + 0.684819i \(0.240119\pi\)
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) −1.86603 + 1.23205i −0.834512 + 0.550990i
\(6\) −2.00000 −0.816497
\(7\) 0 0
\(8\) 0 0
\(9\) −1.00000 + 1.73205i −0.333333 + 0.577350i
\(10\) 4.46410 0.267949i 1.41167 0.0847330i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 1.73205 + 1.00000i 0.500000 + 0.288675i
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) 0 0
\(15\) −1.00000 + 2.00000i −0.258199 + 0.516398i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −6.06218 + 3.50000i −1.47029 + 0.848875i −0.999444 0.0333386i \(-0.989386\pi\)
−0.470850 + 0.882213i \(0.656053\pi\)
\(18\) 3.46410 2.00000i 0.816497 0.471405i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) −4.00000 2.00000i −0.894427 0.447214i
\(21\) 0 0
\(22\) 6.00000i 1.27920i
\(23\) 5.19615 + 3.00000i 1.08347 + 0.625543i 0.931831 0.362892i \(-0.118211\pi\)
0.151642 + 0.988436i \(0.451544\pi\)
\(24\) 0 0
\(25\) 1.96410 4.59808i 0.392820 0.919615i
\(26\) 1.00000 1.73205i 0.196116 0.339683i
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 3.73205 2.46410i 0.681376 0.449881i
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) −6.92820 + 4.00000i −1.22474 + 0.707107i
\(33\) 2.59808 + 1.50000i 0.452267 + 0.261116i
\(34\) 14.0000 2.40098
\(35\) 0 0
\(36\) −4.00000 −0.666667
\(37\) −1.73205 1.00000i −0.284747 0.164399i 0.350823 0.936442i \(-0.385902\pi\)
−0.635571 + 0.772043i \(0.719235\pi\)
\(38\) 0 0
\(39\) 0.500000 + 0.866025i 0.0800641 + 0.138675i
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −3.00000 + 5.19615i −0.452267 + 0.783349i
\(45\) −0.267949 4.46410i −0.0399435 0.665469i
\(46\) −6.00000 10.3923i −0.884652 1.53226i
\(47\) −2.59808 1.50000i −0.378968 0.218797i 0.298401 0.954441i \(-0.403547\pi\)
−0.677369 + 0.735643i \(0.736880\pi\)
\(48\) 4.00000i 0.577350i
\(49\) 0 0
\(50\) −8.00000 + 6.00000i −1.13137 + 0.848528i
\(51\) −3.50000 + 6.06218i −0.490098 + 0.848875i
\(52\) −1.73205 + 1.00000i −0.240192 + 0.138675i
\(53\) −5.19615 + 3.00000i −0.713746 + 0.412082i −0.812447 0.583036i \(-0.801865\pi\)
0.0987002 + 0.995117i \(0.468532\pi\)
\(54\) 5.00000 8.66025i 0.680414 1.17851i
\(55\) −6.00000 3.00000i −0.809040 0.404520i
\(56\) 0 0
\(57\) 0 0
\(58\) −8.66025 5.00000i −1.13715 0.656532i
\(59\) −5.00000 8.66025i −0.650945 1.12747i −0.982894 0.184172i \(-0.941040\pi\)
0.331949 0.943297i \(-0.392294\pi\)
\(60\) −4.46410 + 0.267949i −0.576313 + 0.0345921i
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) −1.23205 1.86603i −0.152817 0.231452i
\(66\) −3.00000 5.19615i −0.369274 0.639602i
\(67\) 1.73205 1.00000i 0.211604 0.122169i −0.390453 0.920623i \(-0.627682\pi\)
0.602056 + 0.798454i \(0.294348\pi\)
\(68\) −12.1244 7.00000i −1.47029 0.848875i
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 5.19615 3.00000i 0.608164 0.351123i −0.164083 0.986447i \(-0.552466\pi\)
0.772246 + 0.635323i \(0.219133\pi\)
\(74\) 2.00000 + 3.46410i 0.232495 + 0.402694i
\(75\) −0.598076 4.96410i −0.0690599 0.573205i
\(76\) 0 0
\(77\) 0 0
\(78\) 2.00000i 0.226455i
\(79\) −2.50000 + 4.33013i −0.281272 + 0.487177i −0.971698 0.236225i \(-0.924090\pi\)
0.690426 + 0.723403i \(0.257423\pi\)
\(80\) 0.535898 + 8.92820i 0.0599153 + 0.998203i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 3.46410 + 2.00000i 0.382546 + 0.220863i
\(83\) 4.00000i 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 7.00000 14.0000i 0.759257 1.51851i
\(86\) 4.00000 6.92820i 0.431331 0.747087i
\(87\) 4.33013 2.50000i 0.464238 0.268028i
\(88\) 0 0
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) −4.00000 + 8.00000i −0.421637 + 0.843274i
\(91\) 0 0
\(92\) 12.0000i 1.25109i
\(93\) 1.73205 + 1.00000i 0.179605 + 0.103695i
\(94\) 3.00000 + 5.19615i 0.309426 + 0.535942i
\(95\) 0 0
\(96\) −4.00000 + 6.92820i −0.408248 + 0.707107i
\(97\) 7.00000i 0.710742i −0.934725 0.355371i \(-0.884354\pi\)
0.934725 0.355371i \(-0.115646\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 9.92820 1.19615i 0.992820 0.119615i
\(101\) 6.00000 + 10.3923i 0.597022 + 1.03407i 0.993258 + 0.115924i \(0.0369830\pi\)
−0.396236 + 0.918149i \(0.629684\pi\)
\(102\) 12.1244 7.00000i 1.20049 0.693103i
\(103\) 16.4545 + 9.50000i 1.62131 + 0.936063i 0.986571 + 0.163335i \(0.0522252\pi\)
0.634738 + 0.772728i \(0.281108\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) 6.92820 + 4.00000i 0.669775 + 0.386695i 0.795991 0.605308i \(-0.206950\pi\)
−0.126217 + 0.992003i \(0.540283\pi\)
\(108\) −8.66025 + 5.00000i −0.833333 + 0.481125i
\(109\) 2.50000 + 4.33013i 0.239457 + 0.414751i 0.960558 0.278078i \(-0.0896974\pi\)
−0.721102 + 0.692829i \(0.756364\pi\)
\(110\) 7.39230 + 11.1962i 0.704829 + 1.06751i
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 6.00000i 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) −13.3923 + 0.803848i −1.24884 + 0.0749592i
\(116\) 5.00000 + 8.66025i 0.464238 + 0.804084i
\(117\) −1.73205 1.00000i −0.160128 0.0924500i
\(118\) 20.0000i 1.84115i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 13.8564 8.00000i 1.25450 0.724286i
\(123\) −1.73205 + 1.00000i −0.156174 + 0.0901670i
\(124\) −2.00000 + 3.46410i −0.179605 + 0.311086i
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) 2.00000i 0.177471i 0.996055 + 0.0887357i \(0.0282826\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) 0 0
\(129\) 2.00000 + 3.46410i 0.176090 + 0.304997i
\(130\) 0.267949 + 4.46410i 0.0235007 + 0.391528i
\(131\) 11.0000 19.0526i 0.961074 1.66463i 0.241264 0.970460i \(-0.422438\pi\)
0.719811 0.694170i \(-0.244228\pi\)
\(132\) 6.00000i 0.522233i
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) −6.16025 9.33013i −0.530190 0.803009i
\(136\) 0 0
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) −10.3923 6.00000i −0.884652 0.510754i
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 13.8564 + 8.00000i 1.16280 + 0.671345i
\(143\) −2.59808 + 1.50000i −0.217262 + 0.125436i
\(144\) 4.00000 + 6.92820i 0.333333 + 0.577350i
\(145\) −9.33013 + 6.16025i −0.774825 + 0.511581i
\(146\) −12.0000 −0.993127
\(147\) 0 0
\(148\) 4.00000i 0.328798i
\(149\) 5.00000 8.66025i 0.409616 0.709476i −0.585231 0.810867i \(-0.698996\pi\)
0.994847 + 0.101391i \(0.0323294\pi\)
\(150\) −3.92820 + 9.19615i −0.320736 + 0.750863i
\(151\) 6.50000 + 11.2583i 0.528962 + 0.916190i 0.999430 + 0.0337724i \(0.0107521\pi\)
−0.470467 + 0.882418i \(0.655915\pi\)
\(152\) 0 0
\(153\) 14.0000i 1.13183i
\(154\) 0 0
\(155\) −4.00000 2.00000i −0.321288 0.160644i
\(156\) −1.00000 + 1.73205i −0.0800641 + 0.138675i
\(157\) 15.5885 9.00000i 1.24409 0.718278i 0.274169 0.961681i \(-0.411597\pi\)
0.969925 + 0.243403i \(0.0782638\pi\)
\(158\) 8.66025 5.00000i 0.688973 0.397779i
\(159\) −3.00000 + 5.19615i −0.237915 + 0.412082i
\(160\) 8.00000 16.0000i 0.632456 1.26491i
\(161\) 0 0
\(162\) 2.00000i 0.157135i
\(163\) −12.1244 7.00000i −0.949653 0.548282i −0.0566798 0.998392i \(-0.518051\pi\)
−0.892973 + 0.450110i \(0.851385\pi\)
\(164\) −2.00000 3.46410i −0.156174 0.270501i
\(165\) −6.69615 + 0.401924i −0.521295 + 0.0312897i
\(166\) −4.00000 + 6.92820i −0.310460 + 0.537733i
\(167\) 3.00000i 0.232147i 0.993241 + 0.116073i \(0.0370308\pi\)
−0.993241 + 0.116073i \(0.962969\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) −26.1244 + 17.2487i −2.00365 + 1.32292i
\(171\) 0 0
\(172\) −6.92820 + 4.00000i −0.528271 + 0.304997i
\(173\) 7.79423 + 4.50000i 0.592584 + 0.342129i 0.766119 0.642699i \(-0.222185\pi\)
−0.173534 + 0.984828i \(0.555519\pi\)
\(174\) −10.0000 −0.758098
\(175\) 0 0
\(176\) 12.0000 0.904534
\(177\) −8.66025 5.00000i −0.650945 0.375823i
\(178\) 0 0
\(179\) −10.0000 17.3205i −0.747435 1.29460i −0.949048 0.315130i \(-0.897952\pi\)
0.201613 0.979465i \(-0.435382\pi\)
\(180\) 7.46410 4.92820i 0.556341 0.367327i
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) 8.00000i 0.591377i
\(184\) 0 0
\(185\) 4.46410 0.267949i 0.328207 0.0197000i
\(186\) −2.00000 3.46410i −0.146647 0.254000i
\(187\) −18.1865 10.5000i −1.32993 0.767836i
\(188\) 6.00000i 0.437595i
\(189\) 0 0
\(190\) 0 0
\(191\) 1.50000 2.59808i 0.108536 0.187990i −0.806641 0.591041i \(-0.798717\pi\)
0.915177 + 0.403051i \(0.132050\pi\)
\(192\) 6.92820 4.00000i 0.500000 0.288675i
\(193\) −13.8564 + 8.00000i −0.997406 + 0.575853i −0.907480 0.420096i \(-0.861996\pi\)
−0.0899262 + 0.995948i \(0.528663\pi\)
\(194\) −7.00000 + 12.1244i −0.502571 + 0.870478i
\(195\) −2.00000 1.00000i −0.143223 0.0716115i
\(196\) 0 0
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 10.3923 + 6.00000i 0.738549 + 0.426401i
\(199\) 5.00000 + 8.66025i 0.354441 + 0.613909i 0.987022 0.160585i \(-0.0513380\pi\)
−0.632581 + 0.774494i \(0.718005\pi\)
\(200\) 0 0
\(201\) 1.00000 1.73205i 0.0705346 0.122169i
\(202\) 24.0000i 1.68863i
\(203\) 0 0
\(204\) −14.0000 −0.980196
\(205\) 3.73205 2.46410i 0.260658 0.172100i
\(206\) −19.0000 32.9090i −1.32379 2.29288i
\(207\) −10.3923 + 6.00000i −0.722315 + 0.417029i
\(208\) 3.46410 + 2.00000i 0.240192 + 0.138675i
\(209\) 0 0
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) −10.3923 6.00000i −0.713746 0.412082i
\(213\) −6.92820 + 4.00000i −0.474713 + 0.274075i
\(214\) −8.00000 13.8564i −0.546869 0.947204i
\(215\) −4.92820 7.46410i −0.336101 0.509048i
\(216\) 0 0
\(217\) 0 0
\(218\) 10.0000i 0.677285i
\(219\) 3.00000 5.19615i 0.202721 0.351123i
\(220\) −0.803848 13.3923i −0.0541954 0.902909i
\(221\) −3.50000 6.06218i −0.235435 0.407786i
\(222\) 3.46410 + 2.00000i 0.232495 + 0.134231i
\(223\) 21.0000i 1.40626i 0.711059 + 0.703132i \(0.248216\pi\)
−0.711059 + 0.703132i \(0.751784\pi\)
\(224\) 0 0
\(225\) 6.00000 + 8.00000i 0.400000 + 0.533333i
\(226\) −6.00000 + 10.3923i −0.399114 + 0.691286i
\(227\) −14.7224 + 8.50000i −0.977162 + 0.564165i −0.901412 0.432962i \(-0.857468\pi\)
−0.0757500 + 0.997127i \(0.524135\pi\)
\(228\) 0 0
\(229\) 5.00000 8.66025i 0.330409 0.572286i −0.652183 0.758062i \(-0.726147\pi\)
0.982592 + 0.185776i \(0.0594799\pi\)
\(230\) 24.0000 + 12.0000i 1.58251 + 0.791257i
\(231\) 0 0
\(232\) 0 0
\(233\) 13.8564 + 8.00000i 0.907763 + 0.524097i 0.879711 0.475509i \(-0.157736\pi\)
0.0280525 + 0.999606i \(0.491069\pi\)
\(234\) 2.00000 + 3.46410i 0.130744 + 0.226455i
\(235\) 6.69615 0.401924i 0.436809 0.0262186i
\(236\) 10.0000 17.3205i 0.650945 1.12747i
\(237\) 5.00000i 0.324785i
\(238\) 0 0
\(239\) −15.0000 −0.970269 −0.485135 0.874439i \(-0.661229\pi\)
−0.485135 + 0.874439i \(0.661229\pi\)
\(240\) 4.92820 + 7.46410i 0.318114 + 0.481806i
\(241\) 11.0000 + 19.0526i 0.708572 + 1.22728i 0.965387 + 0.260822i \(0.0839937\pi\)
−0.256814 + 0.966461i \(0.582673\pi\)
\(242\) −3.46410 + 2.00000i −0.222681 + 0.128565i
\(243\) −13.8564 8.00000i −0.888889 0.513200i
\(244\) −16.0000 −1.02430
\(245\) 0 0
\(246\) 4.00000 0.255031
\(247\) 0 0
\(248\) 0 0
\(249\) −2.00000 3.46410i −0.126745 0.219529i
\(250\) 7.53590 21.0526i 0.476612 1.33148i
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 18.0000i 1.13165i
\(254\) 2.00000 3.46410i 0.125491 0.217357i
\(255\) −0.937822 15.6244i −0.0587287 0.978435i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 19.0526 + 11.0000i 1.18847 + 0.686161i 0.957958 0.286909i \(-0.0926278\pi\)
0.230508 + 0.973070i \(0.425961\pi\)
\(258\) 8.00000i 0.498058i
\(259\) 0 0
\(260\) 2.00000 4.00000i 0.124035 0.248069i
\(261\) −5.00000 + 8.66025i −0.309492 + 0.536056i
\(262\) −38.1051 + 22.0000i −2.35414 + 1.35916i
\(263\) 20.7846 12.0000i 1.28163 0.739952i 0.304487 0.952517i \(-0.401515\pi\)
0.977147 + 0.212565i \(0.0681817\pi\)
\(264\) 0 0
\(265\) 6.00000 12.0000i 0.368577 0.737154i
\(266\) 0 0
\(267\) 0 0
\(268\) 3.46410 + 2.00000i 0.211604 + 0.122169i
\(269\) −5.00000 8.66025i −0.304855 0.528025i 0.672374 0.740212i \(-0.265275\pi\)
−0.977229 + 0.212187i \(0.931941\pi\)
\(270\) 1.33975 + 22.3205i 0.0815343 + 1.35838i
\(271\) −4.00000 + 6.92820i −0.242983 + 0.420858i −0.961563 0.274586i \(-0.911459\pi\)
0.718580 + 0.695444i \(0.244792\pi\)
\(272\) 28.0000i 1.69775i
\(273\) 0 0
\(274\) −24.0000 −1.44989
\(275\) 14.8923 1.79423i 0.898040 0.108196i
\(276\) 6.00000 + 10.3923i 0.361158 + 0.625543i
\(277\) 1.73205 1.00000i 0.104069 0.0600842i −0.447062 0.894503i \(-0.647530\pi\)
0.551131 + 0.834419i \(0.314196\pi\)
\(278\) 17.3205 + 10.0000i 1.03882 + 0.599760i
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 7.00000 0.417585 0.208792 0.977960i \(-0.433047\pi\)
0.208792 + 0.977960i \(0.433047\pi\)
\(282\) 5.19615 + 3.00000i 0.309426 + 0.178647i
\(283\) 9.52628 5.50000i 0.566279 0.326941i −0.189383 0.981903i \(-0.560649\pi\)
0.755662 + 0.654962i \(0.227315\pi\)
\(284\) −8.00000 13.8564i −0.474713 0.822226i
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) 0 0
\(288\) 16.0000i 0.942809i
\(289\) 16.0000 27.7128i 0.941176 1.63017i
\(290\) 22.3205 1.33975i 1.31071 0.0786726i
\(291\) −3.50000 6.06218i −0.205174 0.355371i
\(292\) 10.3923 + 6.00000i 0.608164 + 0.351123i
\(293\) 9.00000i 0.525786i −0.964825 0.262893i \(-0.915323\pi\)
0.964825 0.262893i \(-0.0846766\pi\)
\(294\) 0 0
\(295\) 20.0000 + 10.0000i 1.16445 + 0.582223i
\(296\) 0 0
\(297\) −12.9904 + 7.50000i −0.753778 + 0.435194i
\(298\) −17.3205 + 10.0000i −1.00335 + 0.579284i
\(299\) −3.00000 + 5.19615i −0.173494 + 0.300501i
\(300\) 8.00000 6.00000i 0.461880 0.346410i
\(301\) 0 0
\(302\) 26.0000i 1.49613i
\(303\) 10.3923 + 6.00000i 0.597022 + 0.344691i
\(304\) 0 0
\(305\) −1.07180 17.8564i −0.0613709 1.02245i
\(306\) −14.0000 + 24.2487i −0.800327 + 1.38621i
\(307\) 7.00000i 0.399511i −0.979846 0.199756i \(-0.935985\pi\)
0.979846 0.199756i \(-0.0640148\pi\)
\(308\) 0 0
\(309\) 19.0000 1.08087
\(310\) 4.92820 + 7.46410i 0.279903 + 0.423932i
\(311\) 6.00000 + 10.3923i 0.340229 + 0.589294i 0.984475 0.175525i \(-0.0561621\pi\)
−0.644246 + 0.764818i \(0.722829\pi\)
\(312\) 0 0
\(313\) −18.1865 10.5000i −1.02796 0.593495i −0.111563 0.993757i \(-0.535586\pi\)
−0.916401 + 0.400262i \(0.868919\pi\)
\(314\) −36.0000 −2.03160
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) −10.3923 6.00000i −0.583690 0.336994i 0.178908 0.983866i \(-0.442743\pi\)
−0.762598 + 0.646872i \(0.776077\pi\)
\(318\) 10.3923 6.00000i 0.582772 0.336463i
\(319\) 7.50000 + 12.9904i 0.419919 + 0.727322i
\(320\) −14.9282 + 9.85641i −0.834512 + 0.550990i
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.73205i 0.0555556 0.0962250i
\(325\) 4.59808 + 1.96410i 0.255055 + 0.108949i
\(326\) 14.0000 + 24.2487i 0.775388 + 1.34301i
\(327\) 4.33013 + 2.50000i 0.239457 + 0.138250i
\(328\) 0 0
\(329\) 0 0
\(330\) 12.0000 + 6.00000i 0.660578 + 0.330289i
\(331\) −6.00000 + 10.3923i −0.329790 + 0.571213i −0.982470 0.186421i \(-0.940311\pi\)
0.652680 + 0.757634i \(0.273645\pi\)
\(332\) 6.92820 4.00000i 0.380235 0.219529i
\(333\) 3.46410 2.00000i 0.189832 0.109599i
\(334\) 3.00000 5.19615i 0.164153 0.284321i
\(335\) −2.00000 + 4.00000i −0.109272 + 0.218543i
\(336\) 0 0
\(337\) 18.0000i 0.980522i −0.871576 0.490261i \(-0.836901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) −20.7846 12.0000i −1.13053 0.652714i
\(339\) −3.00000 5.19615i −0.162938 0.282216i
\(340\) 31.2487 1.87564i 1.69470 0.101721i
\(341\) −3.00000 + 5.19615i −0.162459 + 0.281387i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −11.1962 + 7.39230i −0.602781 + 0.397988i
\(346\) −9.00000 15.5885i −0.483843 0.838041i
\(347\) −15.5885 + 9.00000i −0.836832 + 0.483145i −0.856186 0.516667i \(-0.827172\pi\)
0.0193540 + 0.999813i \(0.493839\pi\)
\(348\) 8.66025 + 5.00000i 0.464238 + 0.268028i
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) −20.7846 12.0000i −1.10782 0.639602i
\(353\) 9.52628 5.50000i 0.507033 0.292735i −0.224580 0.974456i \(-0.572101\pi\)
0.731613 + 0.681720i \(0.238768\pi\)
\(354\) 10.0000 + 17.3205i 0.531494 + 0.920575i
\(355\) 14.9282 9.85641i 0.792307 0.523124i
\(356\) 0 0
\(357\) 0 0
\(358\) 40.0000i 2.11407i
\(359\) −10.0000 + 17.3205i −0.527780 + 0.914141i 0.471696 + 0.881761i \(0.343642\pi\)
−0.999476 + 0.0323801i \(0.989691\pi\)
\(360\) 0 0
\(361\) 9.50000 + 16.4545i 0.500000 + 0.866025i
\(362\) −31.1769 18.0000i −1.63862 0.946059i
\(363\) 2.00000i 0.104973i
\(364\) 0 0
\(365\) −6.00000 + 12.0000i −0.314054 + 0.628109i
\(366\) 8.00000 13.8564i 0.418167 0.724286i
\(367\) 2.59808 1.50000i 0.135618 0.0782994i −0.430656 0.902516i \(-0.641718\pi\)
0.566274 + 0.824217i \(0.308384\pi\)
\(368\) 20.7846 12.0000i 1.08347 0.625543i
\(369\) 2.00000 3.46410i 0.104116 0.180334i
\(370\) −8.00000 4.00000i −0.415900 0.207950i
\(371\) 0 0
\(372\) 4.00000i 0.207390i
\(373\) −20.7846 12.0000i −1.07619 0.621336i −0.146321 0.989237i \(-0.546743\pi\)
−0.929865 + 0.367901i \(0.880077\pi\)
\(374\) 21.0000 + 36.3731i 1.08588 + 1.88081i
\(375\) 7.23205 + 8.52628i 0.373461 + 0.440295i
\(376\) 0 0
\(377\) 5.00000i 0.257513i
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 1.00000 + 1.73205i 0.0512316 + 0.0887357i
\(382\) −5.19615 + 3.00000i −0.265858 + 0.153493i
\(383\) −13.8564 8.00000i −0.708029 0.408781i 0.102302 0.994753i \(-0.467379\pi\)
−0.810331 + 0.585973i \(0.800713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 32.0000 1.62876
\(387\) −6.92820 4.00000i −0.352180 0.203331i
\(388\) 12.1244 7.00000i 0.615521 0.355371i
\(389\) 2.50000 + 4.33013i 0.126755 + 0.219546i 0.922418 0.386194i \(-0.126210\pi\)
−0.795663 + 0.605740i \(0.792877\pi\)
\(390\) 2.46410 + 3.73205i 0.124775 + 0.188980i
\(391\) −42.0000 −2.12403
\(392\) 0 0
\(393\) 22.0000i 1.10975i
\(394\) 2.00000 3.46410i 0.100759 0.174519i
\(395\) −0.669873 11.1603i −0.0337050 0.561533i
\(396\) −6.00000 10.3923i −0.301511 0.522233i
\(397\) 6.06218 + 3.50000i 0.304252 + 0.175660i 0.644351 0.764730i \(-0.277127\pi\)
−0.340099 + 0.940389i \(0.610461\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 0 0
\(400\) −12.0000 16.0000i −0.600000 0.800000i
\(401\) 1.50000 2.59808i 0.0749064 0.129742i −0.826139 0.563466i \(-0.809468\pi\)
0.901046 + 0.433724i \(0.142801\pi\)
\(402\) −3.46410 + 2.00000i −0.172774 + 0.0997509i
\(403\) −1.73205 + 1.00000i −0.0862796 + 0.0498135i
\(404\) −12.0000 + 20.7846i −0.597022 + 1.03407i
\(405\) 2.00000 + 1.00000i 0.0993808 + 0.0496904i
\(406\) 0 0
\(407\) 6.00000i 0.297409i
\(408\) 0 0
\(409\) −10.0000 17.3205i −0.494468 0.856444i 0.505511 0.862820i \(-0.331304\pi\)
−0.999980 + 0.00637586i \(0.997970\pi\)
\(410\) −8.92820 + 0.535898i −0.440933 + 0.0264661i
\(411\) 6.00000 10.3923i 0.295958 0.512615i
\(412\) 38.0000i 1.87213i
\(413\) 0 0
\(414\) 24.0000 1.17954
\(415\) 4.92820 + 7.46410i 0.241916 + 0.366398i
\(416\) −4.00000 6.92820i −0.196116 0.339683i
\(417\) −8.66025 + 5.00000i −0.424094 + 0.244851i
\(418\) 0 0
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) −3.00000 −0.146211 −0.0731055 0.997324i \(-0.523291\pi\)
−0.0731055 + 0.997324i \(0.523291\pi\)
\(422\) 22.5167 + 13.0000i 1.09609 + 0.632830i
\(423\) 5.19615 3.00000i 0.252646 0.145865i
\(424\) 0 0
\(425\) 4.18653 + 34.7487i 0.203077 + 1.68556i
\(426\) 16.0000 0.775203
\(427\) 0 0
\(428\) 16.0000i 0.773389i
\(429\) −1.50000 + 2.59808i −0.0724207 + 0.125436i
\(430\) 1.07180 + 17.8564i 0.0516866 + 0.861112i
\(431\) 11.5000 + 19.9186i 0.553936 + 0.959444i 0.997985 + 0.0634424i \(0.0202079\pi\)
−0.444050 + 0.896002i \(0.646459\pi\)
\(432\) 17.3205 + 10.0000i 0.833333 + 0.481125i
\(433\) 26.0000i 1.24948i 0.780833 + 0.624740i \(0.214795\pi\)
−0.780833 + 0.624740i \(0.785205\pi\)
\(434\) 0 0
\(435\) −5.00000 + 10.0000i −0.239732 + 0.479463i
\(436\) −5.00000 + 8.66025i −0.239457 + 0.414751i
\(437\) 0 0
\(438\) −10.3923 + 6.00000i −0.496564 + 0.286691i
\(439\) −15.0000 + 25.9808i −0.715911 + 1.23999i 0.246696 + 0.969093i \(0.420655\pi\)
−0.962607 + 0.270901i \(0.912678\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 14.0000i 0.665912i
\(443\) −3.46410 2.00000i −0.164584 0.0950229i 0.415445 0.909618i \(-0.363626\pi\)
−0.580030 + 0.814595i \(0.696959\pi\)
\(444\) −2.00000 3.46410i −0.0949158 0.164399i
\(445\) 0 0
\(446\) 21.0000 36.3731i 0.994379 1.72231i
\(447\) 10.0000i 0.472984i
\(448\) 0 0
\(449\) 5.00000 0.235965 0.117982 0.993016i \(-0.462357\pi\)
0.117982 + 0.993016i \(0.462357\pi\)
\(450\) −2.39230 19.8564i −0.112774 0.936040i
\(451\) −3.00000 5.19615i −0.141264 0.244677i
\(452\) 10.3923 6.00000i 0.488813 0.282216i
\(453\) 11.2583 + 6.50000i 0.528962 + 0.305397i
\(454\) 34.0000 1.59570
\(455\) 0 0
\(456\) 0 0
\(457\) 32.9090 + 19.0000i 1.53942 + 0.888783i 0.998873 + 0.0474665i \(0.0151147\pi\)
0.540544 + 0.841316i \(0.318219\pi\)
\(458\) −17.3205 + 10.0000i −0.809334 + 0.467269i
\(459\) −17.5000 30.3109i −0.816830 1.41479i
\(460\) −14.7846 22.3923i −0.689336 1.04405i
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) 36.0000i 1.67306i −0.547920 0.836531i \(-0.684580\pi\)
0.547920 0.836531i \(-0.315420\pi\)
\(464\) 10.0000 17.3205i 0.464238 0.804084i
\(465\) −4.46410 + 0.267949i −0.207018 + 0.0124258i
\(466\) −16.0000 27.7128i −0.741186 1.28377i
\(467\) 23.3827 + 13.5000i 1.08202 + 0.624705i 0.931441 0.363892i \(-0.118552\pi\)
0.150581 + 0.988598i \(0.451886\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 0 0
\(470\) −12.0000 6.00000i −0.553519 0.276759i
\(471\) 9.00000 15.5885i 0.414698 0.718278i
\(472\) 0 0
\(473\) −10.3923 + 6.00000i −0.477839 + 0.275880i
\(474\) 5.00000 8.66025i 0.229658 0.397779i
\(475\) 0 0
\(476\) 0 0
\(477\) 12.0000i 0.549442i
\(478\) 25.9808 + 15.0000i 1.18833 + 0.686084i
\(479\) 15.0000 + 25.9808i 0.685367 + 1.18709i 0.973321 + 0.229447i \(0.0736918\pi\)
−0.287954 + 0.957644i \(0.592975\pi\)
\(480\) −1.07180 17.8564i −0.0489206 0.815030i
\(481\) 1.00000 1.73205i 0.0455961 0.0789747i
\(482\) 44.0000i 2.00415i
\(483\) 0 0
\(484\) 4.00000 0.181818
\(485\) 8.62436 + 13.0622i 0.391612 + 0.593123i
\(486\) 16.0000 + 27.7128i 0.725775 + 1.25708i
\(487\) 36.3731 21.0000i 1.64822 0.951601i 0.670442 0.741962i \(-0.266104\pi\)
0.977779 0.209639i \(-0.0672289\pi\)
\(488\) 0 0
\(489\) −14.0000 −0.633102
\(490\) 0 0
\(491\) 7.00000 0.315906 0.157953 0.987447i \(-0.449511\pi\)
0.157953 + 0.987447i \(0.449511\pi\)
\(492\) −3.46410 2.00000i −0.156174 0.0901670i
\(493\) −30.3109 + 17.5000i −1.36513 + 0.788160i
\(494\) 0 0
\(495\) 11.1962 7.39230i 0.503230 0.332259i
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 8.00000i 0.358489i
\(499\) −17.5000 + 30.3109i −0.783408 + 1.35690i 0.146538 + 0.989205i \(0.453187\pi\)
−0.929946 + 0.367697i \(0.880146\pi\)
\(500\) −17.0526 + 14.4641i −0.762614 + 0.646854i
\(501\) 1.50000 + 2.59808i 0.0670151 + 0.116073i
\(502\) −31.1769 18.0000i −1.39149 0.803379i
\(503\) 9.00000i 0.401290i −0.979664 0.200645i \(-0.935696\pi\)
0.979664 0.200645i \(-0.0643038\pi\)
\(504\) 0 0
\(505\) −24.0000 12.0000i −1.06799 0.533993i
\(506\) 18.0000 31.1769i 0.800198 1.38598i
\(507\) 10.3923 6.00000i 0.461538 0.266469i
\(508\) −3.46410 + 2.00000i −0.153695 + 0.0887357i
\(509\) 15.0000 25.9808i 0.664863 1.15158i −0.314459 0.949271i \(-0.601823\pi\)
0.979322 0.202306i \(-0.0648436\pi\)
\(510\) −14.0000 + 28.0000i −0.619930 + 1.23986i
\(511\) 0 0
\(512\) 32.0000i 1.41421i
\(513\) 0 0
\(514\) −22.0000 38.1051i −0.970378 1.68074i
\(515\) −42.4090 + 2.54552i −1.86876 + 0.112169i
\(516\) −4.00000 + 6.92820i −0.176090 + 0.304997i
\(517\) 9.00000i 0.395820i
\(518\) 0 0
\(519\) 9.00000 0.395056
\(520\) 0 0
\(521\) −14.0000 24.2487i −0.613351 1.06236i −0.990671 0.136272i \(-0.956488\pi\)
0.377320 0.926083i \(-0.376846\pi\)
\(522\) 17.3205 10.0000i 0.758098 0.437688i
\(523\) 3.46410 + 2.00000i 0.151475 + 0.0874539i 0.573822 0.818980i \(-0.305460\pi\)
−0.422347 + 0.906434i \(0.638794\pi\)
\(524\) 44.0000 1.92215
\(525\) 0 0
\(526\) −48.0000 −2.09290
\(527\) −12.1244 7.00000i −0.528145 0.304925i
\(528\) 10.3923 6.00000i 0.452267 0.261116i
\(529\) 6.50000 + 11.2583i 0.282609 + 0.489493i
\(530\) −22.3923 + 14.7846i −0.972660 + 0.642202i
\(531\) 20.0000 0.867926
\(532\) 0 0
\(533\) 2.00000i 0.0866296i
\(534\) 0 0
\(535\) −17.8564 + 1.07180i −0.772000 + 0.0463378i
\(536\) 0 0
\(537\) −17.3205 10.0000i −0.747435 0.431532i
\(538\) 20.0000i 0.862261i
\(539\) 0 0
\(540\) 10.0000 20.0000i 0.430331 0.860663i
\(541\) −13.5000 + 23.3827i −0.580410 + 1.00530i 0.415020 + 0.909812i \(0.363774\pi\)
−0.995431 + 0.0954880i \(0.969559\pi\)
\(542\) 13.8564 8.00000i 0.595184 0.343629i
\(543\) 15.5885 9.00000i 0.668965 0.386227i
\(544\) 28.0000 48.4974i 1.20049 2.07931i
\(545\) −10.0000 5.00000i −0.428353 0.214176i
\(546\) 0 0
\(547\) 32.0000i 1.36822i 0.729378 + 0.684111i \(0.239809\pi\)
−0.729378 + 0.684111i \(0.760191\pi\)
\(548\) 20.7846 + 12.0000i 0.887875 + 0.512615i
\(549\) −8.00000 13.8564i −0.341432 0.591377i
\(550\) −27.5885 11.7846i −1.17638 0.502497i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −4.00000 −0.169944
\(555\) 3.73205 2.46410i 0.158417 0.104595i
\(556\) −10.0000 17.3205i −0.424094 0.734553i
\(557\) −24.2487 + 14.0000i −1.02745 + 0.593199i −0.916253 0.400599i \(-0.868802\pi\)
−0.111198 + 0.993798i \(0.535469\pi\)
\(558\) 6.92820 + 4.00000i 0.293294 + 0.169334i
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) −21.0000 −0.886621
\(562\) −12.1244 7.00000i −0.511435 0.295277i
\(563\) −20.7846 + 12.0000i −0.875967 + 0.505740i −0.869326 0.494238i \(-0.835447\pi\)
−0.00664037 + 0.999978i \(0.502114\pi\)
\(564\) −3.00000 5.19615i −0.126323 0.218797i
\(565\) 7.39230 + 11.1962i 0.310997 + 0.471026i
\(566\) −22.0000 −0.924729
\(567\) 0 0
\(568\) 0 0
\(569\) −15.0000 + 25.9808i −0.628833 + 1.08917i 0.358954 + 0.933355i \(0.383134\pi\)
−0.987786 + 0.155815i \(0.950200\pi\)
\(570\) 0 0
\(571\) −6.00000 10.3923i −0.251092 0.434904i 0.712735 0.701434i \(-0.247456\pi\)
−0.963827 + 0.266529i \(0.914123\pi\)
\(572\) −5.19615 3.00000i −0.217262 0.125436i
\(573\) 3.00000i 0.125327i
\(574\) 0 0
\(575\) 24.0000 18.0000i 1.00087 0.750652i
\(576\) −8.00000 + 13.8564i −0.333333 + 0.577350i
\(577\) 37.2391 21.5000i 1.55028 0.895057i 0.552166 0.833734i \(-0.313802\pi\)
0.998118 0.0613223i \(-0.0195318\pi\)
\(578\) −55.4256 + 32.0000i −2.30540 + 1.33102i
\(579\) −8.00000 + 13.8564i −0.332469 + 0.575853i
\(580\) −20.0000 10.0000i −0.830455 0.415227i
\(581\) 0 0
\(582\) 14.0000i 0.580319i
\(583\) −15.5885 9.00000i −0.645608 0.372742i
\(584\) 0 0
\(585\) 4.46410 0.267949i 0.184568 0.0110783i
\(586\) −9.00000 + 15.5885i −0.371787 + 0.643953i
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −24.6410 37.3205i −1.01445 1.53646i
\(591\) 1.00000 + 1.73205i 0.0411345 + 0.0712470i
\(592\) −6.92820 + 4.00000i −0.284747 + 0.164399i
\(593\) −35.5070 20.5000i −1.45810 0.841834i −0.459182 0.888342i \(-0.651857\pi\)
−0.998918 + 0.0465084i \(0.985191\pi\)
\(594\) 30.0000 1.23091
\(595\) 0 0
\(596\) 20.0000 0.819232
\(597\) 8.66025 + 5.00000i 0.354441 + 0.204636i
\(598\) 10.3923 6.00000i 0.424973 0.245358i
\(599\) 12.5000 + 21.6506i 0.510736 + 0.884621i 0.999923 + 0.0124417i \(0.00396043\pi\)
−0.489186 + 0.872179i \(0.662706\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) 4.00000i 0.162893i
\(604\) −13.0000 + 22.5167i −0.528962 + 0.916190i
\(605\) 0.267949 + 4.46410i 0.0108937 + 0.181492i
\(606\) −12.0000 20.7846i −0.487467 0.844317i
\(607\) 23.3827 + 13.5000i 0.949074 + 0.547948i 0.892793 0.450467i \(-0.148742\pi\)
0.0562808 + 0.998415i \(0.482076\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −16.0000 + 32.0000i −0.647821 + 1.29564i
\(611\) 1.50000 2.59808i 0.0606835 0.105107i
\(612\) 24.2487 14.0000i 0.980196 0.565916i
\(613\) 38.1051 22.0000i 1.53905 0.888572i 0.540157 0.841564i \(-0.318365\pi\)
0.998895 0.0470071i \(-0.0149684\pi\)
\(614\) −7.00000 + 12.1244i −0.282497 + 0.489299i
\(615\) 2.00000 4.00000i 0.0806478 0.161296i
\(616\) 0 0
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) −32.9090 19.0000i −1.32379 0.764292i
\(619\) −5.00000 8.66025i −0.200967 0.348085i 0.747873 0.663842i \(-0.231075\pi\)
−0.948840 + 0.315757i \(0.897742\pi\)
\(620\) −0.535898 8.92820i −0.0215222 0.358565i
\(621\) −15.0000 + 25.9808i −0.601929 + 1.04257i
\(622\) 24.0000i 0.962312i
\(623\) 0 0
\(624\) 4.00000 0.160128
\(625\) −17.2846 18.0622i −0.691384 0.722487i
\(626\) 21.0000 + 36.3731i 0.839329 + 1.45376i
\(627\) 0 0
\(628\) 31.1769 + 18.0000i 1.24409 + 0.718278i
\(629\) 14.0000 0.558217
\(630\) 0 0
\(631\) 37.0000 1.47295 0.736473 0.676467i \(-0.236490\pi\)
0.736473 + 0.676467i \(0.236490\pi\)
\(632\) 0 0
\(633\) −11.2583 + 6.50000i −0.447478 + 0.258352i
\(634\) 12.0000 + 20.7846i 0.476581 + 0.825462i
\(635\) −2.46410 3.73205i −0.0977849 0.148102i
\(636\) −12.0000 −0.475831
\(637\) 0 0
\(638\) 30.0000i 1.18771i
\(639\) 8.00000 13.8564i 0.316475 0.548151i
\(640\) 0 0
\(641\) −11.0000 19.0526i −0.434474 0.752531i 0.562779 0.826608i \(-0.309732\pi\)
−0.997253 + 0.0740768i \(0.976399\pi\)
\(642\) −13.8564 8.00000i −0.546869 0.315735i
\(643\) 1.00000i 0.0394362i 0.999806 + 0.0197181i \(0.00627687\pi\)
−0.999806 + 0.0197181i \(0.993723\pi\)
\(644\) 0 0
\(645\) −8.00000 4.00000i −0.315000 0.157500i
\(646\) 0 0
\(647\) 6.92820 4.00000i 0.272376 0.157256i −0.357591 0.933878i \(-0.616402\pi\)
0.629967 + 0.776622i \(0.283068\pi\)
\(648\) 0 0
\(649\) 15.0000 25.9808i 0.588802 1.01983i
\(650\) −6.00000 8.00000i −0.235339 0.313786i
\(651\) 0 0
\(652\) 28.0000i 1.09656i
\(653\) −3.46410 2.00000i −0.135561 0.0782660i 0.430686 0.902502i \(-0.358272\pi\)
−0.566247 + 0.824236i \(0.691605\pi\)
\(654\) −5.00000 8.66025i −0.195515 0.338643i
\(655\) 2.94744 + 49.1051i 0.115166 + 1.91870i
\(656\) −4.00000 + 6.92820i −0.156174 + 0.270501i
\(657\) 12.0000i 0.468165i
\(658\) 0 0
\(659\) 15.0000 0.584317 0.292159 0.956370i \(-0.405627\pi\)
0.292159 + 0.956370i \(0.405627\pi\)
\(660\) −7.39230 11.1962i −0.287745 0.435810i
\(661\) 6.00000 + 10.3923i 0.233373 + 0.404214i 0.958799 0.284087i \(-0.0916904\pi\)
−0.725426 + 0.688301i \(0.758357\pi\)
\(662\) 20.7846 12.0000i 0.807817 0.466393i
\(663\) −6.06218 3.50000i −0.235435 0.135929i
\(664\) 0 0
\(665\) 0 0
\(666\) −8.00000 −0.309994
\(667\) 25.9808 + 15.0000i 1.00598 + 0.580802i
\(668\) −5.19615 + 3.00000i −0.201045 + 0.116073i
\(669\) 10.5000 + 18.1865i 0.405953 + 0.703132i
\(670\) 7.46410 4.92820i 0.288363 0.190393i
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) 24.0000i 0.925132i 0.886585 + 0.462566i \(0.153071\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) −18.0000 + 31.1769i −0.693334 + 1.20089i
\(675\) 22.9904 + 9.82051i 0.884900 + 0.377992i
\(676\) 12.0000 + 20.7846i 0.461538 + 0.799408i
\(677\) −37.2391 21.5000i −1.43121 0.826312i −0.434001 0.900912i \(-0.642899\pi\)
−0.997214 + 0.0746002i \(0.976232\pi\)
\(678\) 12.0000i 0.460857i
\(679\) 0 0
\(680\) 0 0
\(681\) −8.50000 + 14.7224i −0.325721 + 0.564165i
\(682\) 10.3923 6.00000i 0.397942 0.229752i
\(683\) −13.8564 + 8.00000i −0.530201 + 0.306111i −0.741098 0.671397i \(-0.765695\pi\)
0.210898 + 0.977508i \(0.432361\pi\)
\(684\) 0 0
\(685\) −12.0000 + 24.0000i −0.458496 + 0.916993i
\(686\) 0 0
\(687\) 10.0000i 0.381524i
\(688\) 13.8564 + 8.00000i 0.528271 + 0.304997i
\(689\) −3.00000 5.19615i −0.114291 0.197958i
\(690\) 26.7846 1.60770i 1.01967 0.0612039i
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 18.0000i 0.684257i
\(693\) 0 0
\(694\) 36.0000 1.36654
\(695\) 18.6603 12.3205i 0.707824 0.467344i
\(696\) 0 0
\(697\) 12.1244 7.00000i 0.459243 0.265144i
\(698\) 34.6410 + 20.0000i 1.31118 + 0.757011i
\(699\) 16.0000 0.605176
\(700\) 0 0
\(701\) −13.0000 −0.491003 −0.245502 0.969396i \(-0.578953\pi\)
−0.245502 + 0.969396i \(0.578953\pi\)
\(702\) 8.66025 + 5.00000i 0.326860 + 0.188713i
\(703\) 0 0
\(704\) 12.0000 + 20.7846i 0.452267 + 0.783349i
\(705\) 5.59808 3.69615i 0.210836 0.139205i
\(706\) −22.0000 −0.827981
\(707\) 0 0
\(708\) 20.0000i 0.751646i
\(709\) 17.5000 30.3109i 0.657226 1.13835i −0.324104 0.946021i \(-0.605063\pi\)
0.981331 0.192328i \(-0.0616038\pi\)
\(710\) −35.7128 + 2.14359i −1.34028 + 0.0804476i
\(711\) −5.00000 8.66025i −0.187515 0.324785i
\(712\) 0 0
\(713\) 12.0000i 0.449404i
\(714\) 0 0
\(715\) 3.00000 6.00000i 0.112194 0.224387i
\(716\) 20.0000 34.6410i 0.747435 1.29460i
\(717\) −12.9904 + 7.50000i −0.485135 + 0.280093i
\(718\) 34.6410 20.0000i 1.29279 0.746393i
\(719\) −15.0000 + 25.9808i −0.559406 + 0.968919i 0.438141 + 0.898906i \(0.355637\pi\)
−0.997546 + 0.0700124i \(0.977696\pi\)
\(720\) −16.0000 8.00000i −0.596285 0.298142i
\(721\) 0 0
\(722\) 38.0000i 1.41421i
\(723\) 19.0526 + 11.0000i 0.708572 + 0.409094i
\(724\) 18.0000 + 31.1769i 0.668965 + 1.15868i
\(725\) 9.82051 22.9904i 0.364725 0.853841i
\(726\) −2.00000 + 3.46410i −0.0742270 + 0.128565i
\(727\) 28.0000i 1.03846i 0.854634 + 0.519231i \(0.173782\pi\)
−0.854634 + 0.519231i \(0.826218\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 22.3923 14.7846i 0.828776 0.547203i
\(731\) −14.0000 24.2487i −0.517809 0.896871i
\(732\) −13.8564 + 8.00000i −0.512148 + 0.295689i
\(733\) −0.866025 0.500000i −0.0319874 0.0184679i 0.483921 0.875112i \(-0.339212\pi\)
−0.515908 + 0.856644i \(0.672546\pi\)
\(734\) −6.00000 −0.221464
\(735\) 0 0
\(736\) −48.0000 −1.76930
\(737\) 5.19615 + 3.00000i 0.191403 + 0.110506i
\(738\) −6.92820 + 4.00000i −0.255031 + 0.147242i
\(739\) −17.5000 30.3109i −0.643748 1.11500i −0.984589 0.174883i \(-0.944045\pi\)
0.340841 0.940121i \(-0.389288\pi\)
\(740\) 4.92820 + 7.46410i 0.181164 + 0.274386i
\(741\) 0 0
\(742\) 0 0
\(743\) 14.0000i 0.513610i 0.966463 + 0.256805i \(0.0826698\pi\)
−0.966463 + 0.256805i \(0.917330\pi\)
\(744\) 0 0
\(745\) 1.33975 + 22.3205i 0.0490845 + 0.817760i
\(746\) 24.0000 + 41.5692i 0.878702 + 1.52196i
\(747\) 6.92820 + 4.00000i 0.253490 + 0.146352i
\(748\) 42.0000i 1.53567i
\(749\) 0 0
\(750\) −4.00000 22.0000i −0.146059 0.803326i
\(751\) 16.5000 28.5788i 0.602094 1.04286i −0.390410 0.920641i \(-0.627667\pi\)
0.992504 0.122216i \(-0.0389999\pi\)
\(752\) −10.3923 + 6.00000i −0.378968 + 0.218797i
\(753\) 15.5885 9.00000i 0.568075 0.327978i
\(754\) 5.00000 8.66025i 0.182089 0.315388i
\(755\) −26.0000 13.0000i −0.946237 0.473118i
\(756\) 0 0
\(757\) 32.0000i 1.16306i 0.813525 + 0.581530i \(0.197546\pi\)
−0.813525 + 0.581530i \(0.802454\pi\)
\(758\) 34.6410 + 20.0000i 1.25822 + 0.726433i
\(759\) 9.00000 + 15.5885i 0.326679 + 0.565825i
\(760\) 0 0
\(761\) 1.00000 1.73205i 0.0362500 0.0627868i −0.847331 0.531065i \(-0.821792\pi\)
0.883581 + 0.468278i \(0.155125\pi\)
\(762\) 4.00000i 0.144905i
\(763\) 0 0
\(764\) 6.00000 0.217072
\(765\) 17.2487 + 26.1244i 0.623628 + 0.944528i
\(766\) 16.0000 + 27.7128i 0.578103 + 1.00130i
\(767\) 8.66025 5.00000i 0.312704 0.180540i
\(768\) −13.8564 8.00000i −0.500000 0.288675i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 22.0000 0.792311
\(772\) −27.7128 16.0000i −0.997406 0.575853i
\(773\) 18.1865 10.5000i 0.654124 0.377659i −0.135910 0.990721i \(-0.543396\pi\)
0.790034 + 0.613062i \(0.210063\pi\)
\(774\) 8.00000 + 13.8564i 0.287554 + 0.498058i
\(775\) 9.92820 1.19615i 0.356632 0.0429671i
\(776\) 0 0
\(777\) 0 0
\(778\) 10.0000i 0.358517i
\(779\) 0 0
\(780\) −0.267949 4.46410i −0.00959412 0.159840i
\(781\) −12.0000 20.7846i −0.429394 0.743732i
\(782\) 72.7461 + 42.0000i 2.60140 + 1.50192i
\(783\) 25.0000i 0.893427i
\(784\) 0 0
\(785\) −18.0000 + 36.0000i −0.642448 + 1.28490i
\(786\) −22.0000 + 38.1051i −0.784714 + 1.35916i
\(787\) −14.7224 + 8.50000i −0.524798 + 0.302992i −0.738896 0.673820i \(-0.764652\pi\)
0.214097 + 0.976812i \(0.431319\pi\)
\(788\) −3.46410 + 2.00000i −0.123404 + 0.0712470i
\(789\) 12.0000 20.7846i 0.427211 0.739952i
\(790\) −10.0000 + 20.0000i −0.355784 + 0.711568i
\(791\) 0 0
\(792\) 0 0
\(793\) −6.92820 4.00000i −0.246028 0.142044i
\(794\) −7.00000 12.1244i −0.248421 0.430277i
\(795\) −0.803848 13.3923i −0.0285095 0.474976i
\(796\) −10.0000 + 17.3205i −0.354441 + 0.613909i
\(797\) 13.0000i 0.460484i 0.973133 + 0.230242i \(0.0739517\pi\)
−0.973133 + 0.230242i \(0.926048\pi\)
\(798\) 0 0
\(799\) 21.0000 0.742927
\(800\) 4.78461 + 39.7128i 0.169161 + 1.40406i
\(801\) 0 0
\(802\) −5.19615 + 3.00000i −0.183483 + 0.105934i
\(803\) 15.5885 + 9.00000i 0.550105 + 0.317603i
\(804\) 4.00000 0.141069
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) −8.66025 5.00000i −0.304855 0.176008i
\(808\) 0 0
\(809\) 22.5000 + 38.9711i 0.791058 + 1.37015i 0.925312 + 0.379206i \(0.123803\pi\)
−0.134255 + 0.990947i \(0.542864\pi\)
\(810\) −2.46410 3.73205i −0.0865797 0.131131i
\(811\) 38.0000 1.33436 0.667180 0.744896i \(-0.267501\pi\)
0.667180 + 0.744896i \(0.267501\pi\)
\(812\) 0 0
\(813\) 8.00000i 0.280572i
\(814\) −6.00000 + 10.3923i −0.210300 + 0.364250i
\(815\) 31.2487 1.87564i 1.09459 0.0657010i
\(816\) 14.0000 + 24.2487i 0.490098 + 0.848875i
\(817\) 0 0
\(818\) 40.0000i 1.39857i
\(819\) 0 0
\(820\) 8.00000 + 4.00000i 0.279372 + 0.139686i
\(821\) 11.5000 19.9186i 0.401353 0.695163i −0.592537 0.805543i \(-0.701873\pi\)
0.993889 + 0.110380i \(0.0352068\pi\)
\(822\) −20.7846 + 12.0000i −0.724947 + 0.418548i
\(823\) −22.5167 + 13.0000i −0.784881 + 0.453152i −0.838157 0.545428i \(-0.816367\pi\)
0.0532760 + 0.998580i \(0.483034\pi\)
\(824\) 0 0
\(825\) 12.0000 9.00000i 0.417786 0.313340i
\(826\) 0 0
\(827\) 18.0000i 0.625921i −0.949766 0.312961i \(-0.898679\pi\)
0.949766 0.312961i \(-0.101321\pi\)
\(828\) −20.7846 12.0000i −0.722315 0.417029i
\(829\) 15.0000 + 25.9808i 0.520972 + 0.902349i 0.999703 + 0.0243876i \(0.00776357\pi\)
−0.478731 + 0.877962i \(0.658903\pi\)
\(830\) −1.07180 17.8564i −0.0372026 0.619805i
\(831\) 1.00000 1.73205i 0.0346896 0.0600842i
\(832\) 8.00000i 0.277350i
\(833\) 0 0
\(834\) 20.0000 0.692543
\(835\) −3.69615 5.59808i −0.127911 0.193729i
\(836\) 0 0
\(837\) −8.66025 + 5.00000i −0.299342 + 0.172825i
\(838\) −51.9615 30.0000i −1.79498 1.03633i
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 5.19615 + 3.00000i 0.179071 + 0.103387i
\(843\) 6.06218 3.50000i 0.208792 0.120546i
\(844\) −13.0000 22.5167i −0.447478 0.775055i
\(845\) −22.3923 + 14.7846i −0.770319 + 0.508606i
\(846\) −12.0000 −0.412568
\(847\) 0 0
\(848\) 24.0000i 0.824163i
\(849\) 5.50000 9.52628i 0.188760 0.326941i
\(850\) 27.4974 64.3731i 0.943154 2.20798i
\(851\) −6.00000 10.3923i −0.205677 0.356244i
\(852\) −13.8564 8.00000i −0.474713 0.274075i
\(853\) 54.0000i 1.84892i −0.381273 0.924462i \(-0.624514\pi\)
0.381273 0.924462i \(-0.375486\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −36.3731 + 21.0000i −1.24248 + 0.717346i −0.969599 0.244701i \(-0.921310\pi\)
−0.272882 + 0.962048i \(0.587977\pi\)
\(858\) 5.19615 3.00000i 0.177394 0.102418i
\(859\) −20.0000 + 34.6410i −0.682391 + 1.18194i 0.291858 + 0.956462i \(0.405727\pi\)
−0.974249 + 0.225475i \(0.927607\pi\)
\(860\) 8.00000 16.0000i 0.272798 0.545595i
\(861\) 0 0
\(862\) 46.0000i 1.56677i
\(863\) −46.7654 27.0000i −1.59191 0.919091i −0.992979 0.118291i \(-0.962258\pi\)
−0.598933 0.800799i \(-0.704408\pi\)
\(864\) −20.0000 34.6410i −0.680414 1.17851i
\(865\) −20.0885 + 1.20577i −0.683028 + 0.0409975i
\(866\) 26.0000 45.0333i 0.883516 1.53029i
\(867\) 32.0000i 1.08678i
\(868\) 0 0
\(869\) −15.0000 −0.508840
\(870\) 18.6603 12.3205i 0.632642 0.417704i
\(871\) 1.00000 + 1.73205i 0.0338837 + 0.0586883i
\(872\) 0 0
\(873\) 12.1244 + 7.00000i 0.410347 + 0.236914i
\(874\) 0 0
\(875\) 0 0
\(876\) 12.0000 0.405442
\(877\) −27.7128 16.0000i −0.935795 0.540282i −0.0471555 0.998888i \(-0.515016\pi\)
−0.888640 + 0.458606i \(0.848349\pi\)
\(878\) 51.9615 30.0000i 1.75362 1.01245i
\(879\) −4.50000 7.79423i −0.151781 0.262893i
\(880\) −22.3923 + 14.7846i −0.754844 + 0.498389i
\(881\) −32.0000 −1.07811 −0.539054 0.842271i \(-0.681218\pi\)
−0.539054 + 0.842271i \(0.681218\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i −0.795656 0.605748i \(-0.792874\pi\)
0.795656 0.605748i \(-0.207126\pi\)
\(884\) 7.00000 12.1244i 0.235435 0.407786i
\(885\) 22.3205 1.33975i 0.750296 0.0450351i
\(886\) 4.00000 + 6.92820i 0.134383 + 0.232758i
\(887\) −24.2487 14.0000i −0.814192 0.470074i 0.0342175 0.999414i \(-0.489106\pi\)
−0.848410 + 0.529340i \(0.822439\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.50000 2.59808i 0.0502519 0.0870388i
\(892\) −36.3731 + 21.0000i −1.21786 + 0.703132i
\(893\) 0 0
\(894\) −10.0000 + 17.3205i −0.334450 + 0.579284i
\(895\) 40.0000 + 20.0000i 1.33705 + 0.668526i
\(896\) 0 0
\(897\) 6.00000i 0.200334i
\(898\) −8.66025 5.00000i −0.288996 0.166852i
\(899\) 5.00000 + 8.66025i 0.166759 + 0.288836i
\(900\) −7.85641 + 18.3923i −0.261880 + 0.613077i
\(901\) 21.0000 36.3731i 0.699611 1.21176i
\(902\) 12.0000i 0.399556i
\(903\) 0 0
\(904\) 0 0
\(905\) −33.5885 + 22.1769i −1.11652 + 0.737186i
\(906\) −13.0000 22.5167i −0.431896 0.748066i
\(907\) −32.9090 + 19.0000i −1.09272 + 0.630885i −0.934300 0.356487i \(-0.883975\pi\)
−0.158424 + 0.987371i \(0.550641\pi\)
\(908\) −29.4449 17.0000i −0.977162 0.564165i
\(909\) −24.0000 −0.796030
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 10.3923 6.00000i 0.343935 0.198571i
\(914\) −38.0000 65.8179i −1.25693 2.17706i
\(915\) −9.85641 14.9282i −0.325843 0.493511i
\(916\) 20.0000 0.660819
\(917\) 0 0
\(918\) 70.0000i 2.31034i
\(919\) −2.50000 + 4.33013i −0.0824674 + 0.142838i −0.904309 0.426878i \(-0.859613\pi\)
0.821842 + 0.569716i \(0.192947\pi\)
\(920\) 0 0
\(921\) −3.50000 6.06218i −0.115329 0.199756i
\(922\) 20.7846 + 12.0000i 0.684505 + 0.395199i
\(923\) 8.00000i 0.263323i
\(924\) 0 0
\(925\) −8.00000 + 6.00000i −0.263038 + 0.197279i
\(926\) −36.0000 + 62.3538i −1.18303 + 2.04907i
\(927\) −32.9090 + 19.0000i −1.08087 + 0.624042i
\(928\) −34.6410 + 20.0000i −1.13715 + 0.656532i
\(929\) 25.0000 43.3013i 0.820223 1.42067i −0.0852924 0.996356i \(-0.527182\pi\)
0.905516 0.424313i \(-0.139484\pi\)
\(930\) 8.00000 + 4.00000i 0.262330 + 0.131165i
\(931\) 0 0
\(932\) 32.0000i 1.04819i
\(933\) 10.3923 + 6.00000i 0.340229 + 0.196431i
\(934\) −27.0000 46.7654i −0.883467 1.53021i
\(935\) 46.8731 2.81347i 1.53291 0.0920102i
\(936\) 0 0
\(937\) 13.0000i 0.424691i 0.977195 + 0.212346i \(0.0681103\pi\)
−0.977195 + 0.212346i \(0.931890\pi\)
\(938\) 0 0
\(939\) −21.0000 −0.685309
\(940\) 7.39230 + 11.1962i 0.241110 + 0.365178i
\(941\) −24.0000 41.5692i −0.782378 1.35512i −0.930553 0.366157i \(-0.880673\pi\)
0.148176 0.988961i \(-0.452660\pi\)
\(942\) −31.1769 + 18.0000i −1.01580 + 0.586472i
\(943\) −10.3923 6.00000i −0.338420 0.195387i
\(944\) −40.0000 −1.30189
\(945\) 0 0
\(946\) 24.0000 0.780307
\(947\) −36.3731 21.0000i −1.18197 0.682408i −0.225497 0.974244i \(-0.572401\pi\)
−0.956469 + 0.291835i \(0.905734\pi\)
\(948\) −8.66025 + 5.00000i −0.281272 + 0.162392i
\(949\) 3.00000 + 5.19615i 0.0973841 + 0.168674i
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 6.00000i 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) −12.0000 + 20.7846i −0.388514 + 0.672927i
\(955\) 0.401924 + 6.69615i 0.0130059 + 0.216682i
\(956\) −15.0000 25.9808i −0.485135 0.840278i
\(957\) 12.9904 + 7.50000i 0.419919 + 0.242441i
\(958\) 60.0000i 1.93851i
\(959\) 0 0
\(960\) −8.00000 + 16.0000i −0.258199 + 0.516398i
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) −3.46410 + 2.00000i −0.111687 + 0.0644826i
\(963\) −13.8564 + 8.00000i −0.446516 + 0.257796i
\(964\) −22.0000 + 38.1051i −0.708572 + 1.22728i
\(965\) 16.0000 32.0000i 0.515058 1.03012i
\(966\) 0 0
\(967\) 8.00000i 0.257263i −0.991692 0.128631i \(-0.958942\pi\)
0.991692 0.128631i \(-0.0410584\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −1.87564 31.2487i −0.0602233 1.00334i
\(971\) 11.0000 19.0526i 0.353007 0.611426i −0.633768 0.773523i \(-0.718493\pi\)
0.986775 + 0.162098i \(0.0518259\pi\)
\(972\) 32.0000i 1.02640i
\(973\) 0 0
\(974\) −84.0000 −2.69153
\(975\) 4.96410 0.598076i 0.158978 0.0191538i
\(976\) 16.0000 + 27.7128i 0.512148 + 0.887066i
\(977\) 10.3923 6.00000i 0.332479 0.191957i −0.324462 0.945899i \(-0.605183\pi\)
0.656941 + 0.753942i \(0.271850\pi\)
\(978\) 24.2487 + 14.0000i 0.775388 + 0.447671i
\(979\) 0 0
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) −12.1244 7.00000i −0.386904 0.223379i
\(983\) 44.1673 25.5000i 1.40872 0.813324i 0.413453 0.910525i \(-0.364323\pi\)
0.995265 + 0.0972017i \(0.0309892\pi\)
\(984\) 0 0
\(985\) −2.46410 3.73205i −0.0785128 0.118913i
\(986\) 70.0000 2.22925
\(987\) 0 0
\(988\) 0 0
\(989\) −12.0000 + 20.7846i −0.381578 + 0.660912i
\(990\) −26.7846 + 1.60770i −0.851271 + 0.0510959i
\(991\) 4.00000 + 6.92820i 0.127064 + 0.220082i 0.922538 0.385906i \(-0.126111\pi\)
−0.795474 + 0.605988i \(0.792778\pi\)
\(992\) −13.8564 8.00000i −0.439941 0.254000i
\(993\) 12.0000i 0.380808i
\(994\) 0 0
\(995\) −20.0000 10.0000i −0.634043 0.317021i
\(996\) 4.00000 6.92820i 0.126745 0.219529i
\(997\) 11.2583 6.50000i 0.356555 0.205857i −0.311014 0.950405i \(-0.600668\pi\)
0.667568 + 0.744548i \(0.267335\pi\)
\(998\) 60.6218 35.0000i 1.91895 1.10791i
\(999\) 5.00000 8.66025i 0.158193 0.273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.j.d.79.1 4
5.4 even 2 inner 245.2.j.d.79.2 4
7.2 even 3 245.2.b.a.99.2 2
7.3 odd 6 245.2.j.e.214.2 4
7.4 even 3 inner 245.2.j.d.214.2 4
7.5 odd 6 35.2.b.a.29.2 yes 2
7.6 odd 2 245.2.j.e.79.1 4
21.2 odd 6 2205.2.d.b.1324.1 2
21.5 even 6 315.2.d.a.64.1 2
28.19 even 6 560.2.g.b.449.2 2
35.2 odd 12 1225.2.a.a.1.1 1
35.4 even 6 inner 245.2.j.d.214.1 4
35.9 even 6 245.2.b.a.99.1 2
35.12 even 12 175.2.a.a.1.1 1
35.19 odd 6 35.2.b.a.29.1 2
35.23 odd 12 1225.2.a.i.1.1 1
35.24 odd 6 245.2.j.e.214.1 4
35.33 even 12 175.2.a.c.1.1 1
35.34 odd 2 245.2.j.e.79.2 4
56.5 odd 6 2240.2.g.h.449.2 2
56.19 even 6 2240.2.g.g.449.1 2
84.47 odd 6 5040.2.t.p.1009.2 2
105.44 odd 6 2205.2.d.b.1324.2 2
105.47 odd 12 1575.2.a.k.1.1 1
105.68 odd 12 1575.2.a.a.1.1 1
105.89 even 6 315.2.d.a.64.2 2
140.19 even 6 560.2.g.b.449.1 2
140.47 odd 12 2800.2.a.w.1.1 1
140.103 odd 12 2800.2.a.l.1.1 1
280.19 even 6 2240.2.g.g.449.2 2
280.229 odd 6 2240.2.g.h.449.1 2
420.299 odd 6 5040.2.t.p.1009.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.2.b.a.29.1 2 35.19 odd 6
35.2.b.a.29.2 yes 2 7.5 odd 6
175.2.a.a.1.1 1 35.12 even 12
175.2.a.c.1.1 1 35.33 even 12
245.2.b.a.99.1 2 35.9 even 6
245.2.b.a.99.2 2 7.2 even 3
245.2.j.d.79.1 4 1.1 even 1 trivial
245.2.j.d.79.2 4 5.4 even 2 inner
245.2.j.d.214.1 4 35.4 even 6 inner
245.2.j.d.214.2 4 7.4 even 3 inner
245.2.j.e.79.1 4 7.6 odd 2
245.2.j.e.79.2 4 35.34 odd 2
245.2.j.e.214.1 4 35.24 odd 6
245.2.j.e.214.2 4 7.3 odd 6
315.2.d.a.64.1 2 21.5 even 6
315.2.d.a.64.2 2 105.89 even 6
560.2.g.b.449.1 2 140.19 even 6
560.2.g.b.449.2 2 28.19 even 6
1225.2.a.a.1.1 1 35.2 odd 12
1225.2.a.i.1.1 1 35.23 odd 12
1575.2.a.a.1.1 1 105.68 odd 12
1575.2.a.k.1.1 1 105.47 odd 12
2205.2.d.b.1324.1 2 21.2 odd 6
2205.2.d.b.1324.2 2 105.44 odd 6
2240.2.g.g.449.1 2 56.19 even 6
2240.2.g.g.449.2 2 280.19 even 6
2240.2.g.h.449.1 2 280.229 odd 6
2240.2.g.h.449.2 2 56.5 odd 6
2800.2.a.l.1.1 1 140.103 odd 12
2800.2.a.w.1.1 1 140.47 odd 12
5040.2.t.p.1009.1 2 420.299 odd 6
5040.2.t.p.1009.2 2 84.47 odd 6