Properties

Label 174.4.f.a.17.9
Level $174$
Weight $4$
Character 174.17
Analytic conductor $10.266$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [174,4,Mod(17,174)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("174.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(174, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 174 = 2 \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 174.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2663323410\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(30\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 174.17
Dual form 174.4.f.a.41.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{2} +(0.762114 + 5.13996i) q^{3} +4.00000i q^{4} -8.24082 q^{5} +(6.19121 - 8.34679i) q^{6} +4.60548 q^{7} +(5.65685 - 5.65685i) q^{8} +(-25.8384 + 7.83447i) q^{9} +(11.6543 + 11.6543i) q^{10} +(12.6993 + 12.6993i) q^{11} +(-20.5598 + 3.04846i) q^{12} +35.0408i q^{13} +(-6.51313 - 6.51313i) q^{14} +(-6.28044 - 42.3575i) q^{15} -16.0000 q^{16} +(-90.2610 - 90.2610i) q^{17} +(47.6206 + 25.4614i) q^{18} +(-17.1416 + 17.1416i) q^{19} -32.9633i q^{20} +(3.50990 + 23.6720i) q^{21} -35.9191i q^{22} -204.945i q^{23} +(33.3872 + 24.7648i) q^{24} -57.0889 q^{25} +(49.5551 - 49.5551i) q^{26} +(-59.9606 - 126.837i) q^{27} +18.4219i q^{28} +(-142.530 - 63.8287i) q^{29} +(-51.0206 + 68.7844i) q^{30} +(-68.5989 + 68.5989i) q^{31} +(22.6274 + 22.6274i) q^{32} +(-55.5956 + 74.9522i) q^{33} +255.297i q^{34} -37.9529 q^{35} +(-31.3379 - 103.353i) q^{36} +(42.8414 + 42.8414i) q^{37} +48.4838 q^{38} +(-180.108 + 26.7050i) q^{39} +(-46.6171 + 46.6171i) q^{40} +(-23.5656 + 23.5656i) q^{41} +(28.5135 - 38.4410i) q^{42} +(197.932 - 197.932i) q^{43} +(-50.7972 + 50.7972i) q^{44} +(212.929 - 64.5625i) q^{45} +(-289.836 + 289.836i) q^{46} +(-410.374 + 410.374i) q^{47} +(-12.1938 - 82.2394i) q^{48} -321.790 q^{49} +(80.7359 + 80.7359i) q^{50} +(395.149 - 532.727i) q^{51} -140.163 q^{52} +242.810i q^{53} +(-94.5780 + 264.172i) q^{54} +(-104.653 - 104.653i) q^{55} +(26.0525 - 26.0525i) q^{56} +(-101.171 - 75.0433i) q^{57} +(111.301 + 291.836i) q^{58} -44.1380i q^{59} +(169.430 - 25.1218i) q^{60} +(153.359 - 153.359i) q^{61} +194.027 q^{62} +(-118.998 + 36.0815i) q^{63} -64.0000i q^{64} -288.765i q^{65} +(184.623 - 27.3744i) q^{66} -155.452i q^{67} +(361.044 - 361.044i) q^{68} +(1053.41 - 156.191i) q^{69} +(53.6735 + 53.6735i) q^{70} +325.633 q^{71} +(-101.845 + 190.482i) q^{72} +(837.309 + 837.309i) q^{73} -121.174i q^{74} +(-43.5082 - 293.435i) q^{75} +(-68.5664 - 68.5664i) q^{76} +(58.4864 + 58.4864i) q^{77} +(292.478 + 216.945i) q^{78} +(-52.9813 + 52.9813i) q^{79} +131.853 q^{80} +(606.242 - 404.860i) q^{81} +66.6536 q^{82} +358.507i q^{83} +(-94.6879 + 14.0396i) q^{84} +(743.825 + 743.825i) q^{85} -559.836 q^{86} +(219.453 - 781.245i) q^{87} +143.676 q^{88} +(149.821 + 149.821i) q^{89} +(-392.433 - 209.822i) q^{90} +161.379i q^{91} +819.779 q^{92} +(-404.876 - 300.315i) q^{93} +1160.71 q^{94} +(141.261 - 141.261i) q^{95} +(-99.0593 + 133.549i) q^{96} +(-735.966 - 735.966i) q^{97} +(455.079 + 455.079i) q^{98} +(-427.622 - 228.637i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 24 q^{10} + 88 q^{15} - 960 q^{16} + 48 q^{19} - 752 q^{21} + 64 q^{24} + 1500 q^{25} + 600 q^{27} + 312 q^{30} - 300 q^{31} - 224 q^{36} - 192 q^{37} - 172 q^{39} + 96 q^{40} + 888 q^{43} - 1532 q^{45}+ \cdots - 6000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/174\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 1.41421i −0.500000 0.500000i
\(3\) 0.762114 + 5.13996i 0.146669 + 0.989186i
\(4\) 4.00000i 0.500000i
\(5\) −8.24082 −0.737081 −0.368541 0.929612i \(-0.620142\pi\)
−0.368541 + 0.929612i \(0.620142\pi\)
\(6\) 6.19121 8.34679i 0.421258 0.567927i
\(7\) 4.60548 0.248672 0.124336 0.992240i \(-0.460320\pi\)
0.124336 + 0.992240i \(0.460320\pi\)
\(8\) 5.65685 5.65685i 0.250000 0.250000i
\(9\) −25.8384 + 7.83447i −0.956976 + 0.290166i
\(10\) 11.6543 + 11.6543i 0.368541 + 0.368541i
\(11\) 12.6993 + 12.6993i 0.348090 + 0.348090i 0.859398 0.511308i \(-0.170839\pi\)
−0.511308 + 0.859398i \(0.670839\pi\)
\(12\) −20.5598 + 3.04846i −0.494593 + 0.0733344i
\(13\) 35.0408i 0.747581i 0.927513 + 0.373791i \(0.121942\pi\)
−0.927513 + 0.373791i \(0.878058\pi\)
\(14\) −6.51313 6.51313i −0.124336 0.124336i
\(15\) −6.28044 42.3575i −0.108107 0.729110i
\(16\) −16.0000 −0.250000
\(17\) −90.2610 90.2610i −1.28774 1.28774i −0.936159 0.351578i \(-0.885645\pi\)
−0.351578 0.936159i \(-0.614355\pi\)
\(18\) 47.6206 + 25.4614i 0.623571 + 0.333405i
\(19\) −17.1416 + 17.1416i −0.206977 + 0.206977i −0.802981 0.596005i \(-0.796754\pi\)
0.596005 + 0.802981i \(0.296754\pi\)
\(20\) 32.9633i 0.368541i
\(21\) 3.50990 + 23.6720i 0.0364725 + 0.245983i
\(22\) 35.9191i 0.348090i
\(23\) 204.945i 1.85800i −0.370084 0.928998i \(-0.620671\pi\)
0.370084 0.928998i \(-0.379329\pi\)
\(24\) 33.3872 + 24.7648i 0.283964 + 0.210629i
\(25\) −57.0889 −0.456711
\(26\) 49.5551 49.5551i 0.373791 0.373791i
\(27\) −59.9606 126.837i −0.427386 0.904069i
\(28\) 18.4219i 0.124336i
\(29\) −142.530 63.8287i −0.912663 0.408713i
\(30\) −51.0206 + 68.7844i −0.310502 + 0.418609i
\(31\) −68.5989 + 68.5989i −0.397443 + 0.397443i −0.877330 0.479887i \(-0.840678\pi\)
0.479887 + 0.877330i \(0.340678\pi\)
\(32\) 22.6274 + 22.6274i 0.125000 + 0.125000i
\(33\) −55.5956 + 74.9522i −0.293271 + 0.395379i
\(34\) 255.297i 1.28774i
\(35\) −37.9529 −0.183292
\(36\) −31.3379 103.353i −0.145083 0.478488i
\(37\) 42.8414 + 42.8414i 0.190354 + 0.190354i 0.795849 0.605495i \(-0.207025\pi\)
−0.605495 + 0.795849i \(0.707025\pi\)
\(38\) 48.4838 0.206977
\(39\) −180.108 + 26.7050i −0.739497 + 0.109647i
\(40\) −46.6171 + 46.6171i −0.184270 + 0.184270i
\(41\) −23.5656 + 23.5656i −0.0897641 + 0.0897641i −0.750563 0.660799i \(-0.770218\pi\)
0.660799 + 0.750563i \(0.270218\pi\)
\(42\) 28.5135 38.4410i 0.104755 0.141228i
\(43\) 197.932 197.932i 0.701962 0.701962i −0.262870 0.964831i \(-0.584669\pi\)
0.964831 + 0.262870i \(0.0846689\pi\)
\(44\) −50.7972 + 50.7972i −0.174045 + 0.174045i
\(45\) 212.929 64.5625i 0.705370 0.213876i
\(46\) −289.836 + 289.836i −0.928998 + 0.928998i
\(47\) −410.374 + 410.374i −1.27360 + 1.27360i −0.329415 + 0.944185i \(0.606852\pi\)
−0.944185 + 0.329415i \(0.893148\pi\)
\(48\) −12.1938 82.2394i −0.0366672 0.247296i
\(49\) −321.790 −0.938162
\(50\) 80.7359 + 80.7359i 0.228356 + 0.228356i
\(51\) 395.149 532.727i 1.08494 1.46268i
\(52\) −140.163 −0.373791
\(53\) 242.810i 0.629292i 0.949209 + 0.314646i \(0.101886\pi\)
−0.949209 + 0.314646i \(0.898114\pi\)
\(54\) −94.5780 + 264.172i −0.238341 + 0.665728i
\(55\) −104.653 104.653i −0.256570 0.256570i
\(56\) 26.0525 26.0525i 0.0621681 0.0621681i
\(57\) −101.171 75.0433i −0.235095 0.174381i
\(58\) 111.301 + 291.836i 0.251975 + 0.660688i
\(59\) 44.1380i 0.0973946i −0.998814 0.0486973i \(-0.984493\pi\)
0.998814 0.0486973i \(-0.0155070\pi\)
\(60\) 169.430 25.1218i 0.364555 0.0540535i
\(61\) 153.359 153.359i 0.321895 0.321895i −0.527599 0.849494i \(-0.676907\pi\)
0.849494 + 0.527599i \(0.176907\pi\)
\(62\) 194.027 0.397443
\(63\) −118.998 + 36.0815i −0.237974 + 0.0721562i
\(64\) 64.0000i 0.125000i
\(65\) 288.765i 0.551028i
\(66\) 184.623 27.3744i 0.344325 0.0510539i
\(67\) 155.452i 0.283455i −0.989906 0.141727i \(-0.954734\pi\)
0.989906 0.141727i \(-0.0452656\pi\)
\(68\) 361.044 361.044i 0.643868 0.643868i
\(69\) 1053.41 156.191i 1.83790 0.272510i
\(70\) 53.6735 + 53.6735i 0.0916459 + 0.0916459i
\(71\) 325.633 0.544303 0.272152 0.962254i \(-0.412265\pi\)
0.272152 + 0.962254i \(0.412265\pi\)
\(72\) −101.845 + 190.482i −0.166703 + 0.311785i
\(73\) 837.309 + 837.309i 1.34246 + 1.34246i 0.893604 + 0.448857i \(0.148169\pi\)
0.448857 + 0.893604i \(0.351831\pi\)
\(74\) 121.174i 0.190354i
\(75\) −43.5082 293.435i −0.0669853 0.451772i
\(76\) −68.5664 68.5664i −0.103488 0.103488i
\(77\) 58.4864 + 58.4864i 0.0865603 + 0.0865603i
\(78\) 292.478 + 216.945i 0.424572 + 0.314925i
\(79\) −52.9813 + 52.9813i −0.0754539 + 0.0754539i −0.743827 0.668373i \(-0.766991\pi\)
0.668373 + 0.743827i \(0.266991\pi\)
\(80\) 131.853 0.184270
\(81\) 606.242 404.860i 0.831608 0.555363i
\(82\) 66.6536 0.0897641
\(83\) 358.507i 0.474111i 0.971496 + 0.237056i \(0.0761823\pi\)
−0.971496 + 0.237056i \(0.923818\pi\)
\(84\) −94.6879 + 14.0396i −0.122992 + 0.0182363i
\(85\) 743.825 + 743.825i 0.949167 + 0.949167i
\(86\) −559.836 −0.701962
\(87\) 219.453 781.245i 0.270434 0.962738i
\(88\) 143.676 0.174045
\(89\) 149.821 + 149.821i 0.178438 + 0.178438i 0.790675 0.612236i \(-0.209730\pi\)
−0.612236 + 0.790675i \(0.709730\pi\)
\(90\) −392.433 209.822i −0.459623 0.245747i
\(91\) 161.379i 0.185903i
\(92\) 819.779 0.928998
\(93\) −404.876 300.315i −0.451437 0.334852i
\(94\) 1160.71 1.27360
\(95\) 141.261 141.261i 0.152559 0.152559i
\(96\) −99.0593 + 133.549i −0.105315 + 0.141982i
\(97\) −735.966 735.966i −0.770372 0.770372i 0.207800 0.978171i \(-0.433370\pi\)
−0.978171 + 0.207800i \(0.933370\pi\)
\(98\) 455.079 + 455.079i 0.469081 + 0.469081i
\(99\) −427.622 228.637i −0.434117 0.232110i
\(100\) 228.356i 0.228356i
\(101\) −363.410 363.410i −0.358026 0.358026i 0.505059 0.863085i \(-0.331471\pi\)
−0.863085 + 0.505059i \(0.831471\pi\)
\(102\) −1312.22 + 194.565i −1.27381 + 0.188871i
\(103\) −1764.22 −1.68771 −0.843853 0.536575i \(-0.819718\pi\)
−0.843853 + 0.536575i \(0.819718\pi\)
\(104\) 198.220 + 198.220i 0.186895 + 0.186895i
\(105\) −28.9245 195.076i −0.0268832 0.181310i
\(106\) 343.385 343.385i 0.314646 0.314646i
\(107\) 1108.90i 1.00188i 0.865482 + 0.500941i \(0.167012\pi\)
−0.865482 + 0.500941i \(0.832988\pi\)
\(108\) 507.350 239.843i 0.452035 0.213693i
\(109\) 993.771i 0.873266i 0.899640 + 0.436633i \(0.143829\pi\)
−0.899640 + 0.436633i \(0.856171\pi\)
\(110\) 296.003i 0.256570i
\(111\) −187.553 + 252.853i −0.160376 + 0.216214i
\(112\) −73.6877 −0.0621681
\(113\) −481.710 + 481.710i −0.401021 + 0.401021i −0.878593 0.477571i \(-0.841517\pi\)
0.477571 + 0.878593i \(0.341517\pi\)
\(114\) 36.9502 + 249.205i 0.0303570 + 0.204738i
\(115\) 1688.91i 1.36949i
\(116\) 255.315 570.121i 0.204357 0.456331i
\(117\) −274.526 905.396i −0.216922 0.715418i
\(118\) −62.4206 + 62.4206i −0.0486973 + 0.0486973i
\(119\) −415.695 415.695i −0.320225 0.320225i
\(120\) −275.138 204.083i −0.209304 0.155251i
\(121\) 1008.46i 0.757667i
\(122\) −433.765 −0.321895
\(123\) −139.086 103.167i −0.101959 0.0756277i
\(124\) −274.396 274.396i −0.198721 0.198721i
\(125\) 1500.56 1.07371
\(126\) 219.316 + 117.262i 0.155065 + 0.0829088i
\(127\) 247.225 247.225i 0.172738 0.172738i −0.615443 0.788181i \(-0.711023\pi\)
0.788181 + 0.615443i \(0.211023\pi\)
\(128\) −90.5097 + 90.5097i −0.0625000 + 0.0625000i
\(129\) 1168.21 + 866.516i 0.797326 + 0.591414i
\(130\) −408.375 + 408.375i −0.275514 + 0.275514i
\(131\) −1125.02 + 1125.02i −0.750335 + 0.750335i −0.974542 0.224207i \(-0.928021\pi\)
0.224207 + 0.974542i \(0.428021\pi\)
\(132\) −299.809 222.382i −0.197690 0.146636i
\(133\) −78.9453 + 78.9453i −0.0514694 + 0.0514694i
\(134\) −219.842 + 219.842i −0.141727 + 0.141727i
\(135\) 494.125 + 1045.24i 0.315018 + 0.666373i
\(136\) −1021.19 −0.643868
\(137\) 968.152 + 968.152i 0.603758 + 0.603758i 0.941308 0.337550i \(-0.109598\pi\)
−0.337550 + 0.941308i \(0.609598\pi\)
\(138\) −1710.63 1268.86i −1.05521 0.782697i
\(139\) −1135.68 −0.693003 −0.346501 0.938049i \(-0.612630\pi\)
−0.346501 + 0.938049i \(0.612630\pi\)
\(140\) 151.812i 0.0916459i
\(141\) −2422.06 1796.55i −1.44662 1.07303i
\(142\) −460.514 460.514i −0.272152 0.272152i
\(143\) −444.993 + 444.993i −0.260225 + 0.260225i
\(144\) 413.414 125.352i 0.239244 0.0725414i
\(145\) 1174.57 + 526.001i 0.672707 + 0.301255i
\(146\) 2368.27i 1.34246i
\(147\) −245.240 1653.99i −0.137599 0.928016i
\(148\) −171.366 + 171.366i −0.0951768 + 0.0951768i
\(149\) −3436.03 −1.88920 −0.944599 0.328226i \(-0.893549\pi\)
−0.944599 + 0.328226i \(0.893549\pi\)
\(150\) −353.449 + 476.509i −0.192393 + 0.259379i
\(151\) 2291.63i 1.23504i 0.786557 + 0.617518i \(0.211862\pi\)
−0.786557 + 0.617518i \(0.788138\pi\)
\(152\) 193.935i 0.103488i
\(153\) 3039.35 + 1625.05i 1.60599 + 0.858677i
\(154\) 165.425i 0.0865603i
\(155\) 565.311 565.311i 0.292948 0.292948i
\(156\) −106.820 720.432i −0.0548235 0.369748i
\(157\) −141.274 141.274i −0.0718144 0.0718144i 0.670287 0.742102i \(-0.266171\pi\)
−0.742102 + 0.670287i \(0.766171\pi\)
\(158\) 149.854 0.0754539
\(159\) −1248.03 + 185.049i −0.622487 + 0.0922976i
\(160\) −186.468 186.468i −0.0921352 0.0921352i
\(161\) 943.869i 0.462033i
\(162\) −1429.91 284.798i −0.693486 0.138122i
\(163\) −635.767 635.767i −0.305504 0.305504i 0.537659 0.843163i \(-0.319309\pi\)
−0.843163 + 0.537659i \(0.819309\pi\)
\(164\) −94.2624 94.2624i −0.0448820 0.0448820i
\(165\) 458.153 617.668i 0.216165 0.291427i
\(166\) 507.005 507.005i 0.237056 0.237056i
\(167\) 470.718 0.218115 0.109058 0.994035i \(-0.465217\pi\)
0.109058 + 0.994035i \(0.465217\pi\)
\(168\) 153.764 + 114.054i 0.0706139 + 0.0523777i
\(169\) 969.145 0.441122
\(170\) 2103.86i 0.949167i
\(171\) 308.616 577.206i 0.138014 0.258129i
\(172\) 791.728 + 791.728i 0.350981 + 0.350981i
\(173\) 1419.43 0.623798 0.311899 0.950115i \(-0.399035\pi\)
0.311899 + 0.950115i \(0.399035\pi\)
\(174\) −1415.20 + 794.494i −0.616586 + 0.346152i
\(175\) −262.922 −0.113571
\(176\) −203.189 203.189i −0.0870224 0.0870224i
\(177\) 226.868 33.6382i 0.0963413 0.0142848i
\(178\) 423.758i 0.178438i
\(179\) 862.468 0.360133 0.180067 0.983654i \(-0.442369\pi\)
0.180067 + 0.983654i \(0.442369\pi\)
\(180\) 258.250 + 851.717i 0.106938 + 0.352685i
\(181\) 861.720 0.353874 0.176937 0.984222i \(-0.443381\pi\)
0.176937 + 0.984222i \(0.443381\pi\)
\(182\) 228.225 228.225i 0.0929515 0.0929515i
\(183\) 905.136 + 671.382i 0.365626 + 0.271202i
\(184\) −1159.34 1159.34i −0.464499 0.464499i
\(185\) −353.048 353.048i −0.140306 0.140306i
\(186\) 147.871 + 997.291i 0.0582925 + 0.393145i
\(187\) 2292.51i 0.896495i
\(188\) −1641.50 1641.50i −0.636800 0.636800i
\(189\) −276.147 584.147i −0.106279 0.224817i
\(190\) −399.546 −0.152559
\(191\) −1605.39 1605.39i −0.608178 0.608178i 0.334292 0.942470i \(-0.391503\pi\)
−0.942470 + 0.334292i \(0.891503\pi\)
\(192\) 328.957 48.7753i 0.123648 0.0183336i
\(193\) 1542.76 1542.76i 0.575388 0.575388i −0.358241 0.933629i \(-0.616623\pi\)
0.933629 + 0.358241i \(0.116623\pi\)
\(194\) 2081.63i 0.770372i
\(195\) 1484.24 220.072i 0.545069 0.0808187i
\(196\) 1287.16i 0.469081i
\(197\) 2986.12i 1.07996i −0.841678 0.539980i \(-0.818432\pi\)
0.841678 0.539980i \(-0.181568\pi\)
\(198\) 281.407 + 928.090i 0.101004 + 0.333114i
\(199\) −3578.36 −1.27469 −0.637345 0.770579i \(-0.719967\pi\)
−0.637345 + 0.770579i \(0.719967\pi\)
\(200\) −322.943 + 322.943i −0.114178 + 0.114178i
\(201\) 799.016 118.472i 0.280389 0.0415740i
\(202\) 1027.88i 0.358026i
\(203\) −656.420 293.962i −0.226954 0.101636i
\(204\) 2130.91 + 1580.60i 0.731341 + 0.542470i
\(205\) 194.200 194.200i 0.0661634 0.0661634i
\(206\) 2494.98 + 2494.98i 0.843853 + 0.843853i
\(207\) 1605.63 + 5295.44i 0.539127 + 1.77806i
\(208\) 560.652i 0.186895i
\(209\) −435.373 −0.144093
\(210\) −234.974 + 316.785i −0.0772132 + 0.104096i
\(211\) 3103.73 + 3103.73i 1.01265 + 1.01265i 0.999919 + 0.0127319i \(0.00405281\pi\)
0.0127319 + 0.999919i \(0.495947\pi\)
\(212\) −971.239 −0.314646
\(213\) 248.169 + 1673.74i 0.0798323 + 0.538417i
\(214\) 1568.22 1568.22i 0.500941 0.500941i
\(215\) −1631.12 + 1631.12i −0.517403 + 0.517403i
\(216\) −1056.69 378.312i −0.332864 0.119171i
\(217\) −315.931 + 315.931i −0.0988331 + 0.0988331i
\(218\) 1405.40 1405.40i 0.436633 0.436633i
\(219\) −3665.61 + 4941.86i −1.13105 + 1.52484i
\(220\) 418.611 418.611i 0.128285 0.128285i
\(221\) 3162.82 3162.82i 0.962688 0.962688i
\(222\) 622.828 92.3482i 0.188295 0.0279189i
\(223\) 1938.81 0.582208 0.291104 0.956691i \(-0.405977\pi\)
0.291104 + 0.956691i \(0.405977\pi\)
\(224\) 104.210 + 104.210i 0.0310841 + 0.0310841i
\(225\) 1475.08 447.261i 0.437062 0.132522i
\(226\) 1362.48 0.401021
\(227\) 4862.54i 1.42175i 0.703316 + 0.710877i \(0.251702\pi\)
−0.703316 + 0.710877i \(0.748298\pi\)
\(228\) 300.173 404.684i 0.0871906 0.117548i
\(229\) −4888.21 4888.21i −1.41058 1.41058i −0.755975 0.654601i \(-0.772837\pi\)
−0.654601 0.755975i \(-0.727163\pi\)
\(230\) 2388.48 2388.48i 0.684747 0.684747i
\(231\) −256.044 + 345.191i −0.0729285 + 0.0983199i
\(232\) −1167.34 + 445.204i −0.330344 + 0.125987i
\(233\) 4183.02i 1.17613i 0.808813 + 0.588066i \(0.200110\pi\)
−0.808813 + 0.588066i \(0.799890\pi\)
\(234\) −892.185 + 1668.66i −0.249248 + 0.466170i
\(235\) 3381.82 3381.82i 0.938747 0.938747i
\(236\) 176.552 0.0486973
\(237\) −312.699 231.944i −0.0857046 0.0635712i
\(238\) 1175.76i 0.320225i
\(239\) 3698.40i 1.00096i 0.865748 + 0.500481i \(0.166843\pi\)
−0.865748 + 0.500481i \(0.833157\pi\)
\(240\) 100.487 + 677.720i 0.0270267 + 0.182278i
\(241\) 1726.78i 0.461543i −0.973008 0.230771i \(-0.925875\pi\)
0.973008 0.230771i \(-0.0741250\pi\)
\(242\) −1426.17 + 1426.17i −0.378834 + 0.378834i
\(243\) 2542.99 + 2807.51i 0.671328 + 0.741160i
\(244\) 613.436 + 613.436i 0.160948 + 0.160948i
\(245\) 2651.81 0.691502
\(246\) 50.7976 + 342.597i 0.0131656 + 0.0887933i
\(247\) −600.655 600.655i −0.154732 0.154732i
\(248\) 776.108i 0.198721i
\(249\) −1842.71 + 273.223i −0.468984 + 0.0695373i
\(250\) −2122.11 2122.11i −0.536857 0.536857i
\(251\) −3371.95 3371.95i −0.847949 0.847949i 0.141928 0.989877i \(-0.454670\pi\)
−0.989877 + 0.141928i \(0.954670\pi\)
\(252\) −144.326 475.992i −0.0360781 0.118987i
\(253\) 2602.66 2602.66i 0.646749 0.646749i
\(254\) −699.259 −0.172738
\(255\) −3256.35 + 4390.11i −0.799689 + 1.07812i
\(256\) 256.000 0.0625000
\(257\) 3277.94i 0.795612i 0.917469 + 0.397806i \(0.130228\pi\)
−0.917469 + 0.397806i \(0.869772\pi\)
\(258\) −426.659 2877.54i −0.102956 0.694370i
\(259\) 197.305 + 197.305i 0.0473357 + 0.0473357i
\(260\) 1155.06 0.275514
\(261\) 4182.81 + 532.580i 0.991991 + 0.126306i
\(262\) 3182.05 0.750335
\(263\) −3264.73 3264.73i −0.765444 0.765444i 0.211857 0.977301i \(-0.432049\pi\)
−0.977301 + 0.211857i \(0.932049\pi\)
\(264\) 109.498 + 738.490i 0.0255270 + 0.172163i
\(265\) 2000.95i 0.463840i
\(266\) 223.291 0.0514694
\(267\) −655.894 + 884.255i −0.150337 + 0.202680i
\(268\) 621.807 0.141727
\(269\) −4260.77 + 4260.77i −0.965738 + 0.965738i −0.999432 0.0336942i \(-0.989273\pi\)
0.0336942 + 0.999432i \(0.489273\pi\)
\(270\) 779.400 2177.00i 0.175677 0.490695i
\(271\) −4452.91 4452.91i −0.998137 0.998137i 0.00186146 0.999998i \(-0.499407\pi\)
−0.999998 + 0.00186146i \(0.999407\pi\)
\(272\) 1444.18 + 1444.18i 0.321934 + 0.321934i
\(273\) −829.484 + 122.990i −0.183892 + 0.0272662i
\(274\) 2738.35i 0.603758i
\(275\) −724.989 724.989i −0.158976 0.158976i
\(276\) 624.765 + 4213.63i 0.136255 + 0.918952i
\(277\) 2717.42 0.589436 0.294718 0.955584i \(-0.404774\pi\)
0.294718 + 0.955584i \(0.404774\pi\)
\(278\) 1606.10 + 1606.10i 0.346501 + 0.346501i
\(279\) 1235.05 2309.92i 0.265019 0.495668i
\(280\) −214.694 + 214.694i −0.0458230 + 0.0458230i
\(281\) 8233.18i 1.74787i −0.486046 0.873933i \(-0.661561\pi\)
0.486046 0.873933i \(-0.338439\pi\)
\(282\) 884.596 + 5966.02i 0.186798 + 1.25983i
\(283\) 5347.60i 1.12326i −0.827389 0.561629i \(-0.810175\pi\)
0.827389 0.561629i \(-0.189825\pi\)
\(284\) 1302.53i 0.272152i
\(285\) 833.732 + 618.418i 0.173284 + 0.128533i
\(286\) 1258.63 0.260225
\(287\) −108.531 + 108.531i −0.0223219 + 0.0223219i
\(288\) −761.929 407.382i −0.155893 0.0833514i
\(289\) 11381.1i 2.31653i
\(290\) −917.211 2404.97i −0.185726 0.486981i
\(291\) 3221.95 4343.73i 0.649051 0.875030i
\(292\) −3349.24 + 3349.24i −0.671230 + 0.671230i
\(293\) 2021.49 + 2021.49i 0.403061 + 0.403061i 0.879310 0.476249i \(-0.158004\pi\)
−0.476249 + 0.879310i \(0.658004\pi\)
\(294\) −1992.27 + 2685.91i −0.395209 + 0.532808i
\(295\) 363.733i 0.0717877i
\(296\) 484.695 0.0951768
\(297\) 849.289 2372.21i 0.165928 0.463466i
\(298\) 4859.28 + 4859.28i 0.944599 + 0.944599i
\(299\) 7181.42 1.38900
\(300\) 1173.74 174.033i 0.225886 0.0334926i
\(301\) 911.572 911.572i 0.174559 0.174559i
\(302\) 3240.86 3240.86i 0.617518 0.617518i
\(303\) 1590.95 2144.87i 0.301643 0.406666i
\(304\) 274.266 274.266i 0.0517441 0.0517441i
\(305\) −1263.80 + 1263.80i −0.237263 + 0.237263i
\(306\) −2000.11 6596.45i −0.373657 1.23233i
\(307\) −682.192 + 682.192i −0.126823 + 0.126823i −0.767669 0.640846i \(-0.778584\pi\)
0.640846 + 0.767669i \(0.278584\pi\)
\(308\) −233.946 + 233.946i −0.0432802 + 0.0432802i
\(309\) −1344.54 9068.02i −0.247534 1.66945i
\(310\) −1598.94 −0.292948
\(311\) 589.772 + 589.772i 0.107533 + 0.107533i 0.758826 0.651293i \(-0.225773\pi\)
−0.651293 + 0.758826i \(0.725773\pi\)
\(312\) −867.779 + 1169.91i −0.157462 + 0.212286i
\(313\) 9591.31 1.73205 0.866027 0.499998i \(-0.166666\pi\)
0.866027 + 0.499998i \(0.166666\pi\)
\(314\) 399.582i 0.0718144i
\(315\) 980.641 297.341i 0.175406 0.0531850i
\(316\) −211.925 211.925i −0.0377269 0.0377269i
\(317\) −457.637 + 457.637i −0.0810835 + 0.0810835i −0.746485 0.665402i \(-0.768260\pi\)
0.665402 + 0.746485i \(0.268260\pi\)
\(318\) 2026.68 + 1503.29i 0.357392 + 0.265095i
\(319\) −999.456 2620.62i −0.175419 0.459957i
\(320\) 527.413i 0.0921352i
\(321\) −5699.69 + 845.107i −0.991046 + 0.146945i
\(322\) −1334.83 + 1334.83i −0.231016 + 0.231016i
\(323\) 3094.44 0.533062
\(324\) 1619.44 + 2424.97i 0.277682 + 0.415804i
\(325\) 2000.44i 0.341429i
\(326\) 1798.22i 0.305504i
\(327\) −5107.94 + 757.366i −0.863822 + 0.128081i
\(328\) 266.614i 0.0448820i
\(329\) −1889.97 + 1889.97i −0.316709 + 0.316709i
\(330\) −1521.44 + 225.588i −0.253796 + 0.0376309i
\(331\) −601.873 601.873i −0.0999455 0.0999455i 0.655366 0.755311i \(-0.272514\pi\)
−0.755311 + 0.655366i \(0.772514\pi\)
\(332\) −1434.03 −0.237056
\(333\) −1442.59 771.312i −0.237398 0.126930i
\(334\) −665.696 665.696i −0.109058 0.109058i
\(335\) 1281.05i 0.208929i
\(336\) −56.1584 378.752i −0.00911813 0.0614958i
\(337\) −2317.42 2317.42i −0.374593 0.374593i 0.494554 0.869147i \(-0.335332\pi\)
−0.869147 + 0.494554i \(0.835332\pi\)
\(338\) −1370.58 1370.58i −0.220561 0.220561i
\(339\) −2843.09 2108.85i −0.455502 0.337867i
\(340\) −2975.30 + 2975.30i −0.474583 + 0.474583i
\(341\) −1742.32 −0.276691
\(342\) −1252.74 + 379.845i −0.198072 + 0.0600574i
\(343\) −3061.67 −0.481968
\(344\) 2239.35i 0.350981i
\(345\) −8680.94 + 1287.14i −1.35468 + 0.200862i
\(346\) −2007.37 2007.37i −0.311899 0.311899i
\(347\) −9157.78 −1.41676 −0.708379 0.705832i \(-0.750573\pi\)
−0.708379 + 0.705832i \(0.750573\pi\)
\(348\) 3124.98 + 877.810i 0.481369 + 0.135217i
\(349\) 712.847 0.109335 0.0546673 0.998505i \(-0.482590\pi\)
0.0546673 + 0.998505i \(0.482590\pi\)
\(350\) 371.827 + 371.827i 0.0567857 + 0.0567857i
\(351\) 4444.48 2101.07i 0.675865 0.319506i
\(352\) 574.705i 0.0870224i
\(353\) 10185.9 1.53581 0.767904 0.640565i \(-0.221300\pi\)
0.767904 + 0.640565i \(0.221300\pi\)
\(354\) −368.411 273.268i −0.0553130 0.0410283i
\(355\) −2683.48 −0.401196
\(356\) −599.284 + 599.284i −0.0892191 + 0.0892191i
\(357\) 1819.85 2453.46i 0.269795 0.363729i
\(358\) −1219.71 1219.71i −0.180067 0.180067i
\(359\) −6676.28 6676.28i −0.981506 0.981506i 0.0183257 0.999832i \(-0.494166\pi\)
−0.999832 + 0.0183257i \(0.994166\pi\)
\(360\) 839.290 1569.73i 0.122873 0.229811i
\(361\) 6271.33i 0.914321i
\(362\) −1218.66 1218.66i −0.176937 0.176937i
\(363\) 5183.42 768.558i 0.749474 0.111126i
\(364\) −645.518 −0.0929515
\(365\) −6900.11 6900.11i −0.989503 0.989503i
\(366\) −330.578 2229.53i −0.0472120 0.318414i
\(367\) 1458.99 1458.99i 0.207517 0.207517i −0.595694 0.803211i \(-0.703123\pi\)
0.803211 + 0.595694i \(0.203123\pi\)
\(368\) 3279.12i 0.464499i
\(369\) 424.273 793.520i 0.0598557 0.111949i
\(370\) 998.571i 0.140306i
\(371\) 1118.26i 0.156488i
\(372\) 1201.26 1619.50i 0.167426 0.225719i
\(373\) −5959.73 −0.827300 −0.413650 0.910436i \(-0.635746\pi\)
−0.413650 + 0.910436i \(0.635746\pi\)
\(374\) −3242.09 + 3242.09i −0.448248 + 0.448248i
\(375\) 1143.60 + 7712.83i 0.157481 + 1.06210i
\(376\) 4642.85i 0.636800i
\(377\) 2236.61 4994.37i 0.305547 0.682290i
\(378\) −435.577 + 1216.64i −0.0592690 + 0.165548i
\(379\) 5440.07 5440.07i 0.737303 0.737303i −0.234753 0.972055i \(-0.575428\pi\)
0.972055 + 0.234753i \(0.0754280\pi\)
\(380\) 565.044 + 565.044i 0.0762793 + 0.0762793i
\(381\) 1459.14 + 1082.31i 0.196205 + 0.145534i
\(382\) 4540.73i 0.608178i
\(383\) 3194.01 0.426126 0.213063 0.977038i \(-0.431656\pi\)
0.213063 + 0.977038i \(0.431656\pi\)
\(384\) −534.195 396.237i −0.0709909 0.0526573i
\(385\) −481.976 481.976i −0.0638020 0.0638020i
\(386\) −4363.57 −0.575388
\(387\) −3563.55 + 6664.93i −0.468076 + 0.875446i
\(388\) 2943.86 2943.86i 0.385186 0.385186i
\(389\) 3982.78 3982.78i 0.519113 0.519113i −0.398190 0.917303i \(-0.630362\pi\)
0.917303 + 0.398190i \(0.130362\pi\)
\(390\) −2410.26 1787.80i −0.312944 0.232125i
\(391\) −18498.5 + 18498.5i −2.39261 + 2.39261i
\(392\) −1820.32 + 1820.32i −0.234541 + 0.234541i
\(393\) −6639.98 4925.18i −0.852271 0.632170i
\(394\) −4223.01 + 4223.01i −0.539980 + 0.539980i
\(395\) 436.609 436.609i 0.0556157 0.0556157i
\(396\) 914.548 1710.49i 0.116055 0.217059i
\(397\) 9302.53 1.17602 0.588011 0.808853i \(-0.299911\pi\)
0.588011 + 0.808853i \(0.299911\pi\)
\(398\) 5060.57 + 5060.57i 0.637345 + 0.637345i
\(399\) −465.941 345.610i −0.0584617 0.0433638i
\(400\) 913.422 0.114178
\(401\) 8886.30i 1.10663i 0.832971 + 0.553317i \(0.186638\pi\)
−0.832971 + 0.553317i \(0.813362\pi\)
\(402\) −1297.52 962.434i −0.160982 0.119408i
\(403\) −2403.76 2403.76i −0.297121 0.297121i
\(404\) 1453.64 1453.64i 0.179013 0.179013i
\(405\) −4995.93 + 3336.38i −0.612963 + 0.409348i
\(406\) 512.594 + 1344.04i 0.0626592 + 0.164295i
\(407\) 1088.11i 0.132520i
\(408\) −778.261 5248.86i −0.0944354 0.636905i
\(409\) −5041.86 + 5041.86i −0.609545 + 0.609545i −0.942827 0.333282i \(-0.891844\pi\)
0.333282 + 0.942827i \(0.391844\pi\)
\(410\) −549.280 −0.0661634
\(411\) −4238.42 + 5714.10i −0.508676 + 0.685781i
\(412\) 7056.88i 0.843853i
\(413\) 203.277i 0.0242194i
\(414\) 5218.17 9759.59i 0.619466 1.15859i
\(415\) 2954.39i 0.349458i
\(416\) −792.882 + 792.882i −0.0934477 + 0.0934477i
\(417\) −865.520 5837.36i −0.101642 0.685508i
\(418\) 615.710 + 615.710i 0.0720464 + 0.0720464i
\(419\) 1256.60 0.146513 0.0732565 0.997313i \(-0.476661\pi\)
0.0732565 + 0.997313i \(0.476661\pi\)
\(420\) 780.306 115.698i 0.0906548 0.0134416i
\(421\) −62.6636 62.6636i −0.00725424 0.00725424i 0.703470 0.710725i \(-0.251633\pi\)
−0.710725 + 0.703470i \(0.751633\pi\)
\(422\) 8778.66i 1.01265i
\(423\) 7388.33 13818.5i 0.849251 1.58836i
\(424\) 1373.54 + 1373.54i 0.157323 + 0.157323i
\(425\) 5152.90 + 5152.90i 0.588123 + 0.588123i
\(426\) 2016.06 2717.99i 0.229292 0.309125i
\(427\) 706.292 706.292i 0.0800465 0.0800465i
\(428\) −4435.59 −0.500941
\(429\) −2626.38 1948.11i −0.295578 0.219244i
\(430\) 4613.51 0.517403
\(431\) 15119.7i 1.68976i −0.534953 0.844882i \(-0.679671\pi\)
0.534953 0.844882i \(-0.320329\pi\)
\(432\) 959.370 + 2029.40i 0.106847 + 0.226017i
\(433\) 3031.13 + 3031.13i 0.336413 + 0.336413i 0.855016 0.518602i \(-0.173547\pi\)
−0.518602 + 0.855016i \(0.673547\pi\)
\(434\) 893.587 0.0988331
\(435\) −1808.47 + 6438.10i −0.199332 + 0.709617i
\(436\) −3975.08 −0.436633
\(437\) 3513.08 + 3513.08i 0.384562 + 0.384562i
\(438\) 12172.8 1804.89i 1.32794 0.196897i
\(439\) 9089.77i 0.988226i 0.869398 + 0.494113i \(0.164507\pi\)
−0.869398 + 0.494113i \(0.835493\pi\)
\(440\) −1184.01 −0.128285
\(441\) 8314.52 2521.05i 0.897799 0.272222i
\(442\) −8945.79 −0.962688
\(443\) 6878.83 6878.83i 0.737750 0.737750i −0.234392 0.972142i \(-0.575310\pi\)
0.972142 + 0.234392i \(0.0753101\pi\)
\(444\) −1011.41 750.212i −0.108107 0.0801880i
\(445\) −1234.65 1234.65i −0.131524 0.131524i
\(446\) −2741.89 2741.89i −0.291104 0.291104i
\(447\) −2618.65 17661.1i −0.277087 1.86877i
\(448\) 294.751i 0.0310841i
\(449\) 10181.2 + 10181.2i 1.07011 + 1.07011i 0.997349 + 0.0727619i \(0.0231813\pi\)
0.0727619 + 0.997349i \(0.476819\pi\)
\(450\) −2718.61 1453.56i −0.284792 0.152270i
\(451\) −598.534 −0.0624919
\(452\) −1926.84 1926.84i −0.200511 0.200511i
\(453\) −11778.9 + 1746.49i −1.22168 + 0.181141i
\(454\) 6876.67 6876.67i 0.710877 0.710877i
\(455\) 1329.90i 0.137026i
\(456\) −996.819 + 147.801i −0.102369 + 0.0151785i
\(457\) 7606.81i 0.778625i 0.921106 + 0.389313i \(0.127287\pi\)
−0.921106 + 0.389313i \(0.872713\pi\)
\(458\) 13825.9i 1.41058i
\(459\) −6036.37 + 16860.6i −0.613842 + 1.71456i
\(460\) −6755.65 −0.684747
\(461\) −6387.87 + 6387.87i −0.645364 + 0.645364i −0.951869 0.306505i \(-0.900840\pi\)
0.306505 + 0.951869i \(0.400840\pi\)
\(462\) 850.275 126.072i 0.0856242 0.0126957i
\(463\) 9518.04i 0.955380i 0.878529 + 0.477690i \(0.158526\pi\)
−0.878529 + 0.477690i \(0.841474\pi\)
\(464\) 2280.49 + 1021.26i 0.228166 + 0.102178i
\(465\) 3336.51 + 2474.84i 0.332746 + 0.246813i
\(466\) 5915.68 5915.68i 0.588066 0.588066i
\(467\) −6859.88 6859.88i −0.679738 0.679738i 0.280203 0.959941i \(-0.409598\pi\)
−0.959941 + 0.280203i \(0.909598\pi\)
\(468\) 3621.58 1098.10i 0.357709 0.108461i
\(469\) 715.930i 0.0704873i
\(470\) −9565.23 −0.938747
\(471\) 618.474 833.807i 0.0605048 0.0815707i
\(472\) −249.682 249.682i −0.0243486 0.0243486i
\(473\) 5027.20 0.488691
\(474\) 114.206 + 770.242i 0.0110667 + 0.0746379i
\(475\) 978.595 978.595i 0.0945285 0.0945285i
\(476\) 1662.78 1662.78i 0.160112 0.160112i
\(477\) −1902.29 6273.81i −0.182599 0.602218i
\(478\) 5230.33 5230.33i 0.500481 0.500481i
\(479\) 4237.88 4237.88i 0.404245 0.404245i −0.475481 0.879726i \(-0.657726\pi\)
0.879726 + 0.475481i \(0.157726\pi\)
\(480\) 816.330 1100.55i 0.0776254 0.104652i
\(481\) −1501.19 + 1501.19i −0.142305 + 0.142305i
\(482\) −2442.04 + 2442.04i −0.230771 + 0.230771i
\(483\) 4851.45 719.335i 0.457036 0.0677658i
\(484\) 4033.82 0.378834
\(485\) 6064.97 + 6064.97i 0.567827 + 0.567827i
\(486\) 374.092 7566.75i 0.0349159 0.706244i
\(487\) 9488.03 0.882841 0.441421 0.897300i \(-0.354475\pi\)
0.441421 + 0.897300i \(0.354475\pi\)
\(488\) 1735.06i 0.160948i
\(489\) 2783.29 3752.34i 0.257392 0.347008i
\(490\) −3750.23 3750.23i −0.345751 0.345751i
\(491\) 3090.67 3090.67i 0.284074 0.284074i −0.550658 0.834731i \(-0.685623\pi\)
0.834731 + 0.550658i \(0.185623\pi\)
\(492\) 412.666 556.343i 0.0378139 0.0509795i
\(493\) 7103.69 + 18626.2i 0.648954 + 1.70158i
\(494\) 1698.91i 0.154732i
\(495\) 3523.95 + 1884.16i 0.319980 + 0.171084i
\(496\) 1097.58 1097.58i 0.0993607 0.0993607i
\(497\) 1499.70 0.135353
\(498\) 2992.38 + 2219.59i 0.269261 + 0.199723i
\(499\) 11969.9i 1.07384i −0.843634 0.536918i \(-0.819588\pi\)
0.843634 0.536918i \(-0.180412\pi\)
\(500\) 6002.25i 0.536857i
\(501\) 358.741 + 2419.47i 0.0319907 + 0.215756i
\(502\) 9537.30i 0.847949i
\(503\) −9938.85 + 9938.85i −0.881017 + 0.881017i −0.993638 0.112621i \(-0.964075\pi\)
0.112621 + 0.993638i \(0.464075\pi\)
\(504\) −469.047 + 877.262i −0.0414544 + 0.0775325i
\(505\) 2994.80 + 2994.80i 0.263894 + 0.263894i
\(506\) −7361.42 −0.646749
\(507\) 738.599 + 4981.37i 0.0646989 + 0.436352i
\(508\) 988.901 + 988.901i 0.0863689 + 0.0863689i
\(509\) 16304.4i 1.41981i 0.704300 + 0.709903i \(0.251261\pi\)
−0.704300 + 0.709903i \(0.748739\pi\)
\(510\) 10813.7 1603.38i 0.938902 0.139213i
\(511\) 3856.21 + 3856.21i 0.333833 + 0.333833i
\(512\) −362.039 362.039i −0.0312500 0.0312500i
\(513\) 3202.02 + 1146.38i 0.275580 + 0.0986622i
\(514\) 4635.71 4635.71i 0.397806 0.397806i
\(515\) 14538.6 1.24398
\(516\) −3466.06 + 4672.84i −0.295707 + 0.398663i
\(517\) −10422.9 −0.886654
\(518\) 558.063i 0.0473357i
\(519\) 1081.77 + 7295.80i 0.0914918 + 0.617052i
\(520\) −1633.50 1633.50i −0.137757 0.137757i
\(521\) −867.452 −0.0729438 −0.0364719 0.999335i \(-0.511612\pi\)
−0.0364719 + 0.999335i \(0.511612\pi\)
\(522\) −5162.21 6668.57i −0.432843 0.559149i
\(523\) 21914.3 1.83221 0.916107 0.400935i \(-0.131315\pi\)
0.916107 + 0.400935i \(0.131315\pi\)
\(524\) −4500.10 4500.10i −0.375167 0.375167i
\(525\) −200.376 1351.41i −0.0166574 0.112343i
\(526\) 9234.04i 0.765444i
\(527\) 12383.6 1.02360
\(528\) 889.530 1199.24i 0.0733178 0.0988448i
\(529\) −29835.3 −2.45215
\(530\) −2829.77 + 2829.77i −0.231920 + 0.231920i
\(531\) 345.798 + 1140.45i 0.0282606 + 0.0932043i
\(532\) −315.781 315.781i −0.0257347 0.0257347i
\(533\) −825.756 825.756i −0.0671060 0.0671060i
\(534\) 2178.10 322.952i 0.176509 0.0261713i
\(535\) 9138.23i 0.738468i
\(536\) −879.368 879.368i −0.0708636 0.0708636i
\(537\) 657.299 + 4433.05i 0.0528203 + 0.356239i
\(538\) 12051.3 0.965738
\(539\) −4086.50 4086.50i −0.326564 0.326564i
\(540\) −4180.98 + 1976.50i −0.333186 + 0.157509i
\(541\) 8072.98 8072.98i 0.641561 0.641561i −0.309378 0.950939i \(-0.600121\pi\)
0.950939 + 0.309378i \(0.100121\pi\)
\(542\) 12594.7i 0.998137i
\(543\) 656.729 + 4429.21i 0.0519023 + 0.350047i
\(544\) 4084.75i 0.321934i
\(545\) 8189.49i 0.643668i
\(546\) 1347.00 + 999.134i 0.105579 + 0.0783132i
\(547\) 19144.5 1.49645 0.748225 0.663445i \(-0.230906\pi\)
0.748225 + 0.663445i \(0.230906\pi\)
\(548\) −3872.61 + 3872.61i −0.301879 + 0.301879i
\(549\) −2761.06 + 5164.03i −0.214643 + 0.401449i
\(550\) 2050.58i 0.158976i
\(551\) 3537.33 1349.07i 0.273494 0.104306i
\(552\) 5075.42 6842.52i 0.391348 0.527604i
\(553\) −244.004 + 244.004i −0.0187633 + 0.0187633i
\(554\) −3843.01 3843.01i −0.294718 0.294718i
\(555\) 1545.59 2083.72i 0.118210 0.159367i
\(556\) 4542.73i 0.346501i
\(557\) −10070.8 −0.766096 −0.383048 0.923729i \(-0.625126\pi\)
−0.383048 + 0.923729i \(0.625126\pi\)
\(558\) −5013.34 + 1520.10i −0.380343 + 0.115324i
\(559\) 6935.69 + 6935.69i 0.524773 + 0.524773i
\(560\) 607.247 0.0458230
\(561\) 11783.4 1747.15i 0.886800 0.131488i
\(562\) −11643.5 + 11643.5i −0.873933 + 0.873933i
\(563\) 8696.58 8696.58i 0.651007 0.651007i −0.302228 0.953236i \(-0.597730\pi\)
0.953236 + 0.302228i \(0.0977304\pi\)
\(564\) 7186.22 9688.23i 0.536515 0.723312i
\(565\) 3969.68 3969.68i 0.295585 0.295585i
\(566\) −7562.65 + 7562.65i −0.561629 + 0.561629i
\(567\) 2792.04 1864.57i 0.206798 0.138104i
\(568\) 1842.06 1842.06i 0.136076 0.136076i
\(569\) 6753.06 6753.06i 0.497545 0.497545i −0.413128 0.910673i \(-0.635564\pi\)
0.910673 + 0.413128i \(0.135564\pi\)
\(570\) −304.500 2053.65i −0.0223756 0.150909i
\(571\) −8878.30 −0.650692 −0.325346 0.945595i \(-0.605481\pi\)
−0.325346 + 0.945595i \(0.605481\pi\)
\(572\) −1779.97 1779.97i −0.130113 0.130113i
\(573\) 7028.15 9475.13i 0.512400 0.690802i
\(574\) 306.972 0.0223219
\(575\) 11700.1i 0.848568i
\(576\) 501.406 + 1653.66i 0.0362707 + 0.119622i
\(577\) −3505.86 3505.86i −0.252948 0.252948i 0.569230 0.822178i \(-0.307241\pi\)
−0.822178 + 0.569230i \(0.807241\pi\)
\(578\) 16095.3 16095.3i 1.15827 1.15827i
\(579\) 9105.45 + 6753.94i 0.653557 + 0.484774i
\(580\) −2104.00 + 4698.27i −0.150628 + 0.336353i
\(581\) 1651.09i 0.117898i
\(582\) −10699.5 + 1586.44i −0.762041 + 0.112990i
\(583\) −3083.52 + 3083.52i −0.219050 + 0.219050i
\(584\) 9473.07 0.671230
\(585\) 2262.32 + 7461.21i 0.159889 + 0.527321i
\(586\) 5717.65i 0.403061i
\(587\) 964.987i 0.0678522i 0.999424 + 0.0339261i \(0.0108011\pi\)
−0.999424 + 0.0339261i \(0.989199\pi\)
\(588\) 6615.94 980.961i 0.464008 0.0687996i
\(589\) 2351.79i 0.164523i
\(590\) 514.397 514.397i 0.0358939 0.0358939i
\(591\) 15348.5 2275.76i 1.06828 0.158396i
\(592\) −685.462 685.462i −0.0475884 0.0475884i
\(593\) −3231.55 −0.223784 −0.111892 0.993720i \(-0.535691\pi\)
−0.111892 + 0.993720i \(0.535691\pi\)
\(594\) −4555.88 + 2153.73i −0.314697 + 0.148769i
\(595\) 3425.67 + 3425.67i 0.236032 + 0.236032i
\(596\) 13744.1i 0.944599i
\(597\) −2727.12 18392.6i −0.186957 1.26090i
\(598\) −10156.1 10156.1i −0.694502 0.694502i
\(599\) −17636.4 17636.4i −1.20301 1.20301i −0.973246 0.229765i \(-0.926204\pi\)
−0.229765 0.973246i \(-0.573796\pi\)
\(600\) −1906.04 1413.80i −0.129689 0.0961967i
\(601\) −17742.0 + 17742.0i −1.20418 + 1.20418i −0.231295 + 0.972884i \(0.574296\pi\)
−0.972884 + 0.231295i \(0.925704\pi\)
\(602\) −2578.31 −0.174559
\(603\) 1217.88 + 4016.62i 0.0822487 + 0.271259i
\(604\) −9166.53 −0.617518
\(605\) 8310.50i 0.558462i
\(606\) −5283.25 + 783.361i −0.354154 + 0.0525113i
\(607\) 212.781 + 212.781i 0.0142282 + 0.0142282i 0.714185 0.699957i \(-0.246797\pi\)
−0.699957 + 0.714185i \(0.746797\pi\)
\(608\) −775.740 −0.0517441
\(609\) 1010.68 3598.01i 0.0672496 0.239407i
\(610\) 3574.58 0.237263
\(611\) −14379.8 14379.8i −0.952120 0.952120i
\(612\) −6500.20 + 12157.4i −0.429338 + 0.802995i
\(613\) 22134.7i 1.45842i −0.684291 0.729209i \(-0.739888\pi\)
0.684291 0.729209i \(-0.260112\pi\)
\(614\) 1929.53 0.126823
\(615\) 1146.18 + 850.177i 0.0751520 + 0.0557438i
\(616\) 661.698 0.0432802
\(617\) 12934.9 12934.9i 0.843987 0.843987i −0.145387 0.989375i \(-0.546443\pi\)
0.989375 + 0.145387i \(0.0464428\pi\)
\(618\) −10922.6 + 14725.6i −0.710960 + 0.958494i
\(619\) −857.139 857.139i −0.0556564 0.0556564i 0.678731 0.734387i \(-0.262530\pi\)
−0.734387 + 0.678731i \(0.762530\pi\)
\(620\) 2261.24 + 2261.24i 0.146474 + 0.146474i
\(621\) −25994.7 + 12288.6i −1.67976 + 0.794082i
\(622\) 1668.13i 0.107533i
\(623\) 689.998 + 689.998i 0.0443727 + 0.0443727i
\(624\) 2881.73 427.281i 0.184874 0.0274117i
\(625\) −5229.75 −0.334704
\(626\) −13564.2 13564.2i −0.866027 0.866027i
\(627\) −331.804 2237.80i −0.0211339 0.142534i
\(628\) 565.094 565.094i 0.0359072 0.0359072i
\(629\) 7733.82i 0.490250i
\(630\) −1807.34 966.333i −0.114295 0.0611105i
\(631\) 13527.0i 0.853410i 0.904391 + 0.426705i \(0.140326\pi\)
−0.904391 + 0.426705i \(0.859674\pi\)
\(632\) 599.414i 0.0377269i
\(633\) −13587.6 + 18318.4i −0.853175 + 1.15022i
\(634\) 1294.39 0.0810835
\(635\) −2037.34 + 2037.34i −0.127322 + 0.127322i
\(636\) −740.195 4992.13i −0.0461488 0.311243i
\(637\) 11275.8i 0.701352i
\(638\) −2292.67 + 5119.56i −0.142269 + 0.317688i
\(639\) −8413.82 + 2551.16i −0.520885 + 0.157938i
\(640\) 745.874 745.874i 0.0460676 0.0460676i
\(641\) −1777.13 1777.13i −0.109504 0.109504i 0.650232 0.759736i \(-0.274672\pi\)
−0.759736 + 0.650232i \(0.774672\pi\)
\(642\) 9255.75 + 6865.42i 0.568996 + 0.422051i
\(643\) 6490.78i 0.398089i 0.979990 + 0.199045i \(0.0637838\pi\)
−0.979990 + 0.199045i \(0.936216\pi\)
\(644\) 3775.47 0.231016
\(645\) −9627.00 7140.80i −0.587694 0.435921i
\(646\) −4376.20 4376.20i −0.266531 0.266531i
\(647\) 6133.94 0.372720 0.186360 0.982481i \(-0.440331\pi\)
0.186360 + 0.982481i \(0.440331\pi\)
\(648\) 1139.19 5719.66i 0.0690612 0.346743i
\(649\) 560.522 560.522i 0.0339020 0.0339020i
\(650\) −2829.05 + 2829.05i −0.170714 + 0.170714i
\(651\) −1864.65 1383.10i −0.112260 0.0832685i
\(652\) 2543.07 2543.07i 0.152752 0.152752i
\(653\) −9675.82 + 9675.82i −0.579853 + 0.579853i −0.934863 0.355009i \(-0.884478\pi\)
0.355009 + 0.934863i \(0.384478\pi\)
\(654\) 8294.80 + 6152.64i 0.495951 + 0.367871i
\(655\) 9271.12 9271.12i 0.553058 0.553058i
\(656\) 377.050 377.050i 0.0224410 0.0224410i
\(657\) −28194.6 15074.8i −1.67424 0.895167i
\(658\) 5345.64 0.316709
\(659\) −19410.7 19410.7i −1.14740 1.14740i −0.987063 0.160335i \(-0.948743\pi\)
−0.160335 0.987063i \(-0.551257\pi\)
\(660\) 2470.67 + 1832.61i 0.145713 + 0.108082i
\(661\) −17947.3 −1.05608 −0.528040 0.849219i \(-0.677073\pi\)
−0.528040 + 0.849219i \(0.677073\pi\)
\(662\) 1702.35i 0.0999455i
\(663\) 18667.2 + 13846.3i 1.09347 + 0.811081i
\(664\) 2028.02 + 2028.02i 0.118528 + 0.118528i
\(665\) 650.574 650.574i 0.0379371 0.0379371i
\(666\) 949.332 + 3130.93i 0.0552340 + 0.182164i
\(667\) −13081.4 + 29210.8i −0.759388 + 1.69572i
\(668\) 1882.87i 0.109058i
\(669\) 1477.59 + 9965.41i 0.0853918 + 0.575912i
\(670\) 1811.68 1811.68i 0.104465 0.104465i
\(671\) 3895.11 0.224097
\(672\) −456.216 + 615.056i −0.0261888 + 0.0353070i
\(673\) 12839.7i 0.735412i −0.929942 0.367706i \(-0.880143\pi\)
0.929942 0.367706i \(-0.119857\pi\)
\(674\) 6554.66i 0.374593i
\(675\) 3423.08 + 7241.00i 0.195192 + 0.412898i
\(676\) 3876.58i 0.220561i
\(677\) −19449.8 + 19449.8i −1.10416 + 1.10416i −0.110256 + 0.993903i \(0.535167\pi\)
−0.993903 + 0.110256i \(0.964833\pi\)
\(678\) 1038.37 + 7003.09i 0.0588174 + 0.396685i
\(679\) −3389.48 3389.48i −0.191570 0.191570i
\(680\) 8415.42 0.474583
\(681\) −24993.3 + 3705.81i −1.40638 + 0.208527i
\(682\) 2464.01 + 2464.01i 0.138346 + 0.138346i
\(683\) 10360.6i 0.580437i 0.956960 + 0.290218i \(0.0937279\pi\)
−0.956960 + 0.290218i \(0.906272\pi\)
\(684\) 2308.83 + 1234.46i 0.129065 + 0.0690071i
\(685\) −7978.36 7978.36i −0.445018 0.445018i
\(686\) 4329.86 + 4329.86i 0.240984 + 0.240984i
\(687\) 21399.8 28850.6i 1.18843 1.60221i
\(688\) −3166.91 + 3166.91i −0.175490 + 0.175490i
\(689\) −8508.24 −0.470447
\(690\) 14097.0 + 10456.4i 0.777774 + 0.576911i
\(691\) −21300.4 −1.17265 −0.586327 0.810075i \(-0.699427\pi\)
−0.586327 + 0.810075i \(0.699427\pi\)
\(692\) 5677.71i 0.311899i
\(693\) −1969.40 1052.98i −0.107953 0.0577194i
\(694\) 12951.1 + 12951.1i 0.708379 + 0.708379i
\(695\) 9358.96 0.510799
\(696\) −3177.98 5660.80i −0.173076 0.308293i
\(697\) 4254.11 0.231185
\(698\) −1008.12 1008.12i −0.0546673 0.0546673i
\(699\) −21500.6 + 3187.94i −1.16341 + 0.172502i
\(700\) 1051.69i 0.0567857i
\(701\) 26053.1 1.40372 0.701862 0.712313i \(-0.252352\pi\)
0.701862 + 0.712313i \(0.252352\pi\)
\(702\) −9256.80 3314.09i −0.497686 0.178180i
\(703\) −1468.74 −0.0787974
\(704\) 812.756 812.756i 0.0435112 0.0435112i
\(705\) 19959.7 + 14805.1i 1.06628 + 0.790910i
\(706\) −14405.0 14405.0i −0.767904 0.767904i
\(707\) −1673.68 1673.68i −0.0890313 0.0890313i
\(708\) 134.553 + 907.470i 0.00714238 + 0.0481707i
\(709\) 22513.4i 1.19254i −0.802785 0.596268i \(-0.796649\pi\)
0.802785 0.596268i \(-0.203351\pi\)
\(710\) 3795.02 + 3795.02i 0.200598 + 0.200598i
\(711\) 953.869 1784.03i 0.0503135 0.0941017i
\(712\) 1695.03 0.0892191
\(713\) 14059.0 + 14059.0i 0.738447 + 0.738447i
\(714\) −6043.38 + 896.066i −0.316762 + 0.0469670i
\(715\) 3667.11 3667.11i 0.191807 0.191807i
\(716\) 3449.87i 0.180067i
\(717\) −19009.6 + 2818.61i −0.990137 + 0.146810i
\(718\) 18883.4i 0.981506i
\(719\) 30026.4i 1.55743i −0.627376 0.778717i \(-0.715871\pi\)
0.627376 0.778717i \(-0.284129\pi\)
\(720\) −3406.87 + 1033.00i −0.176342 + 0.0534689i
\(721\) −8125.07 −0.419686
\(722\) 8869.00 8869.00i 0.457161 0.457161i
\(723\) 8875.59 1316.00i 0.456552 0.0676940i
\(724\) 3446.88i 0.176937i
\(725\) 8136.90 + 3643.91i 0.416823 + 0.186664i
\(726\) −8417.37 6243.56i −0.430300 0.319174i
\(727\) 15853.5 15853.5i 0.808765 0.808765i −0.175682 0.984447i \(-0.556213\pi\)
0.984447 + 0.175682i \(0.0562130\pi\)
\(728\) 912.900 + 912.900i 0.0464757 + 0.0464757i
\(729\) −12492.4 + 15210.5i −0.634682 + 0.772773i
\(730\) 19516.5i 0.989503i
\(731\) −35731.1 −1.80788
\(732\) −2685.53 + 3620.54i −0.135601 + 0.182813i
\(733\) −6978.55 6978.55i −0.351649 0.351649i 0.509074 0.860723i \(-0.329988\pi\)
−0.860723 + 0.509074i \(0.829988\pi\)
\(734\) −4126.65 −0.207517
\(735\) 2020.98 + 13630.2i 0.101422 + 0.684024i
\(736\) 4637.37 4637.37i 0.232250 0.232250i
\(737\) 1974.13 1974.13i 0.0986676 0.0986676i
\(738\) −1722.22 + 522.195i −0.0859021 + 0.0260464i
\(739\) 22616.9 22616.9i 1.12581 1.12581i 0.134963 0.990851i \(-0.456908\pi\)
0.990851 0.134963i \(-0.0430916\pi\)
\(740\) 1412.19 1412.19i 0.0701530 0.0701530i
\(741\) 2629.57 3545.11i 0.130364 0.175753i
\(742\) 1581.45 1581.45i 0.0782438 0.0782438i
\(743\) −16618.7 + 16618.7i −0.820568 + 0.820568i −0.986189 0.165621i \(-0.947037\pi\)
0.165621 + 0.986189i \(0.447037\pi\)
\(744\) −3989.16 + 591.483i −0.196572 + 0.0291462i
\(745\) 28315.7 1.39249
\(746\) 8428.33 + 8428.33i 0.413650 + 0.413650i
\(747\) −2808.71 9263.23i −0.137571 0.453713i
\(748\) 9170.02 0.448248
\(749\) 5107.01i 0.249140i
\(750\) 9290.29 12524.9i 0.452311 0.609792i
\(751\) −25543.5 25543.5i −1.24114 1.24114i −0.959529 0.281610i \(-0.909132\pi\)
−0.281610 0.959529i \(-0.590868\pi\)
\(752\) 6565.99 6565.99i 0.318400 0.318400i
\(753\) 14761.9 19901.5i 0.714412 0.963147i
\(754\) −10226.1 + 3900.07i −0.493918 + 0.188372i
\(755\) 18884.9i 0.910322i
\(756\) 2336.59 1104.59i 0.112409 0.0531396i
\(757\) 13680.4 13680.4i 0.656833 0.656833i −0.297796 0.954629i \(-0.596252\pi\)
0.954629 + 0.297796i \(0.0962516\pi\)
\(758\) −15386.8 −0.737303
\(759\) 15361.1 + 11394.0i 0.734613 + 0.544897i
\(760\) 1598.18i 0.0762793i
\(761\) 30151.3i 1.43624i 0.695917 + 0.718122i \(0.254998\pi\)
−0.695917 + 0.718122i \(0.745002\pi\)
\(762\) −532.915 3594.16i −0.0253353 0.170870i
\(763\) 4576.79i 0.217157i
\(764\) 6421.56 6421.56i 0.304089 0.304089i
\(765\) −25046.7 13391.7i −1.18375 0.632915i
\(766\) −4517.01 4517.01i −0.213063 0.213063i
\(767\) 1546.63 0.0728104
\(768\) 195.101 + 1315.83i 0.00916681 + 0.0618241i
\(769\) −20123.2 20123.2i −0.943641 0.943641i 0.0548535 0.998494i \(-0.482531\pi\)
−0.998494 + 0.0548535i \(0.982531\pi\)
\(770\) 1363.23i 0.0638020i
\(771\) −16848.5 + 2498.17i −0.787008 + 0.116692i
\(772\) 6171.02 + 6171.02i 0.287694 + 0.287694i
\(773\) −8756.08 8756.08i −0.407418 0.407418i 0.473419 0.880837i \(-0.343020\pi\)
−0.880837 + 0.473419i \(0.843020\pi\)
\(774\) 14465.3 4386.02i 0.671761 0.203685i
\(775\) 3916.23 3916.23i 0.181516 0.181516i
\(776\) −8326.51 −0.385186
\(777\) −863.771 + 1164.51i −0.0398811 + 0.0537664i
\(778\) −11265.0 −0.519113
\(779\) 807.904i 0.0371581i
\(780\) 880.286 + 5936.95i 0.0404094 + 0.272535i
\(781\) 4135.31 + 4135.31i 0.189466 + 0.189466i
\(782\) 52321.7 2.39261
\(783\) 450.344 + 21905.4i 0.0205543 + 0.999789i
\(784\) 5148.63 0.234541
\(785\) 1164.21 + 1164.21i 0.0529330 + 0.0529330i
\(786\) 2425.08 + 16355.6i 0.110051 + 0.742220i
\(787\) 17263.1i 0.781910i 0.920410 + 0.390955i \(0.127855\pi\)
−0.920410 + 0.390955i \(0.872145\pi\)
\(788\) 11944.5 0.539980
\(789\) 14292.5 19268.7i 0.644899 0.869433i
\(790\) −1234.92 −0.0556157
\(791\) −2218.50 + 2218.50i −0.0997230 + 0.0997230i
\(792\) −3712.36 + 1125.63i −0.166557 + 0.0505018i
\(793\) 5373.82 + 5373.82i 0.240643 + 0.240643i
\(794\) −13155.8 13155.8i −0.588011 0.588011i
\(795\) 10284.8 1524.95i 0.458823 0.0680308i
\(796\) 14313.4i 0.637345i
\(797\) −9765.83 9765.83i −0.434032 0.434032i 0.455965 0.889998i \(-0.349294\pi\)
−0.889998 + 0.455965i \(0.849294\pi\)
\(798\) 170.173 + 1147.71i 0.00754895 + 0.0509128i
\(799\) 74081.6 3.28012
\(800\) −1291.77 1291.77i −0.0570889 0.0570889i
\(801\) −5044.90 2697.36i −0.222538 0.118985i
\(802\) 12567.1 12567.1i 0.553317 0.553317i
\(803\) 21266.5i 0.934593i
\(804\) 473.888 + 3196.06i 0.0207870 + 0.140195i
\(805\) 7778.25i 0.340556i
\(806\) 6798.85i 0.297121i
\(807\) −25147.4 18653.0i −1.09694 0.813650i
\(808\) −4111.51 −0.179013
\(809\) −4580.93 + 4580.93i −0.199081 + 0.199081i −0.799606 0.600525i \(-0.794958\pi\)
0.600525 + 0.799606i \(0.294958\pi\)
\(810\) 11783.7 + 2346.97i 0.511155 + 0.101807i
\(811\) 17596.9i 0.761913i 0.924593 + 0.380956i \(0.124405\pi\)
−0.924593 + 0.380956i \(0.875595\pi\)
\(812\) 1175.85 2625.68i 0.0508179 0.113477i
\(813\) 19494.2 26281.4i 0.840947 1.13374i
\(814\) 1538.82 1538.82i 0.0662601 0.0662601i
\(815\) 5239.24 + 5239.24i 0.225181 + 0.225181i
\(816\) −6322.38 + 8523.64i −0.271235 + 0.365670i
\(817\) 6785.75i 0.290579i
\(818\) 14260.5 0.609545
\(819\) −1264.32 4169.78i −0.0539426 0.177905i
\(820\) 776.799 + 776.799i 0.0330817 + 0.0330817i
\(821\) 14456.9 0.614555 0.307277 0.951620i \(-0.400582\pi\)
0.307277 + 0.951620i \(0.400582\pi\)
\(822\) 14075.0 2086.93i 0.597228 0.0885524i
\(823\) 24947.6 24947.6i 1.05665 1.05665i 0.0583500 0.998296i \(-0.481416\pi\)
0.998296 0.0583500i \(-0.0185839\pi\)
\(824\) −9979.93 + 9979.93i −0.421926 + 0.421926i
\(825\) 3173.89 4278.94i 0.133940 0.180574i
\(826\) −287.477 + 287.477i −0.0121097 + 0.0121097i
\(827\) 28593.5 28593.5i 1.20229 1.20229i 0.228822 0.973468i \(-0.426513\pi\)
0.973468 0.228822i \(-0.0734873\pi\)
\(828\) −21181.7 + 6422.53i −0.889030 + 0.269563i
\(829\) 27229.5 27229.5i 1.14080 1.14080i 0.152491 0.988305i \(-0.451271\pi\)
0.988305 0.152491i \(-0.0487294\pi\)
\(830\) −4178.14 + 4178.14i −0.174729 + 0.174729i
\(831\) 2070.98 + 13967.4i 0.0864520 + 0.583062i
\(832\) 2242.61 0.0934477
\(833\) 29045.1 + 29045.1i 1.20811 + 1.20811i
\(834\) −7031.25 + 9479.31i −0.291933 + 0.393575i
\(835\) −3879.10 −0.160769
\(836\) 1741.49i 0.0720464i
\(837\) 12814.1 + 4587.67i 0.529177 + 0.189454i
\(838\) −1777.10 1777.10i −0.0732565 0.0732565i
\(839\) −23743.9 + 23743.9i −0.977032 + 0.977032i −0.999742 0.0227099i \(-0.992771\pi\)
0.0227099 + 0.999742i \(0.492771\pi\)
\(840\) −1267.14 939.898i −0.0520482 0.0386066i
\(841\) 16240.8 + 18195.1i 0.665907 + 0.746035i
\(842\) 177.239i 0.00725424i
\(843\) 42318.2 6274.62i 1.72896 0.256358i
\(844\) −12414.9 + 12414.9i −0.506325 + 0.506325i
\(845\) −7986.55 −0.325143
\(846\) −29990.9 + 9093.57i −1.21881 + 0.369555i
\(847\) 4644.42i 0.188411i
\(848\) 3884.96i 0.157323i
\(849\) 27486.4 4075.48i 1.11111 0.164747i
\(850\) 14574.6i 0.588123i
\(851\) 8780.12 8780.12i 0.353676 0.353676i
\(852\) −6694.96 + 992.677i −0.269208 + 0.0399162i
\(853\) −21419.2 21419.2i −0.859766 0.859766i 0.131544 0.991310i \(-0.458006\pi\)
−0.991310 + 0.131544i \(0.958006\pi\)
\(854\) −1997.69 −0.0800465
\(855\) −2543.25 + 4756.65i −0.101728 + 0.190262i
\(856\) 6272.88 + 6272.88i 0.250470 + 0.250470i
\(857\) 46702.1i 1.86151i 0.365644 + 0.930755i \(0.380849\pi\)
−0.365644 + 0.930755i \(0.619151\pi\)
\(858\) 959.220 + 6469.31i 0.0381670 + 0.257411i
\(859\) −5502.22 5502.22i −0.218549 0.218549i 0.589338 0.807887i \(-0.299389\pi\)
−0.807887 + 0.589338i \(0.799389\pi\)
\(860\) −6524.49 6524.49i −0.258701 0.258701i
\(861\) −640.557 475.131i −0.0253544 0.0188065i
\(862\) −21382.4 + 21382.4i −0.844882 + 0.844882i
\(863\) −29460.8 −1.16206 −0.581029 0.813883i \(-0.697350\pi\)
−0.581029 + 0.813883i \(0.697350\pi\)
\(864\) 1513.25 4226.76i 0.0595854 0.166432i
\(865\) −11697.3 −0.459790
\(866\) 8573.34i 0.336413i
\(867\) −58498.5 + 8673.70i −2.29148 + 0.339763i
\(868\) −1263.72 1263.72i −0.0494165 0.0494165i
\(869\) −1345.65 −0.0525294
\(870\) 11662.4 6547.29i 0.454474 0.255142i
\(871\) 5447.15 0.211905
\(872\) 5621.62 + 5621.62i 0.218316 + 0.218316i
\(873\) 24782.1 + 13250.3i 0.960763 + 0.513692i
\(874\) 9936.49i 0.384562i
\(875\) 6910.81 0.267003
\(876\) −19767.4 14662.4i −0.762420 0.565523i
\(877\) −32019.6 −1.23287 −0.616433 0.787407i \(-0.711423\pi\)
−0.616433 + 0.787407i \(0.711423\pi\)
\(878\) 12854.9 12854.9i 0.494113 0.494113i
\(879\) −8849.79 + 11931.0i −0.339586 + 0.457819i
\(880\) 1674.44 + 1674.44i 0.0641426 + 0.0641426i
\(881\) 18501.1 + 18501.1i 0.707511 + 0.707511i 0.966011 0.258500i \(-0.0832281\pi\)
−0.258500 + 0.966011i \(0.583228\pi\)
\(882\) −15323.8 8193.20i −0.585011 0.312788i
\(883\) 38898.6i 1.48249i 0.671232 + 0.741247i \(0.265765\pi\)
−0.671232 + 0.741247i \(0.734235\pi\)
\(884\) 12651.3 + 12651.3i 0.481344 + 0.481344i
\(885\) −1869.58 + 277.206i −0.0710114 + 0.0105290i
\(886\) −19456.3 −0.737750
\(887\) 491.626 + 491.626i 0.0186101 + 0.0186101i 0.716351 0.697740i \(-0.245811\pi\)
−0.697740 + 0.716351i \(0.745811\pi\)
\(888\) 369.393 + 2491.31i 0.0139595 + 0.0941475i
\(889\) 1138.59 1138.59i 0.0429551 0.0429551i
\(890\) 3492.11i 0.131524i
\(891\) 12840.3 + 2557.42i 0.482790 + 0.0961579i
\(892\) 7755.24i 0.291104i
\(893\) 14068.9i 0.527211i
\(894\) −21273.2 + 28679.8i −0.795841 + 1.07293i
\(895\) −7107.44 −0.265448
\(896\) −416.840 + 416.840i −0.0155420 + 0.0155420i
\(897\) 5473.06 + 36912.2i 0.203724 + 1.37398i
\(898\) 28796.7i 1.07011i
\(899\) 14156.0 5398.85i 0.525171 0.200291i
\(900\) 1789.04 + 5900.33i 0.0662609 + 0.218531i
\(901\) 21916.3 21916.3i 0.810362 0.810362i
\(902\) 846.454 + 846.454i 0.0312459 + 0.0312459i
\(903\) 5380.16 + 3990.72i 0.198273 + 0.147069i
\(904\) 5449.92i 0.200511i
\(905\) −7101.28 −0.260834
\(906\) 19127.8 + 14188.0i 0.701411 + 0.520269i
\(907\) −32957.0 32957.0i −1.20653 1.20653i −0.972145 0.234380i \(-0.924694\pi\)
−0.234380 0.972145i \(-0.575306\pi\)
\(908\) −19450.2 −0.710877
\(909\) 12237.0 + 6542.80i 0.446510 + 0.238736i
\(910\) −1880.76 + 1880.76i −0.0685128 + 0.0685128i
\(911\) −10207.4 + 10207.4i −0.371226 + 0.371226i −0.867924 0.496698i \(-0.834546\pi\)
0.496698 + 0.867924i \(0.334546\pi\)
\(912\) 1618.74 + 1200.69i 0.0587738 + 0.0435953i
\(913\) −4552.79 + 4552.79i −0.165033 + 0.165033i
\(914\) 10757.7 10757.7i 0.389313 0.389313i
\(915\) −7459.06 5532.74i −0.269496 0.199898i
\(916\) 19552.8 19552.8i 0.705288 0.705288i
\(917\) −5181.28 + 5181.28i −0.186588 + 0.186588i
\(918\) 32381.2 15307.8i 1.16420 0.550361i
\(919\) −9575.65 −0.343712 −0.171856 0.985122i \(-0.554976\pi\)
−0.171856 + 0.985122i \(0.554976\pi\)
\(920\) 9553.93 + 9553.93i 0.342374 + 0.342374i
\(921\) −4026.35 2986.53i −0.144053 0.106851i
\(922\) 18067.6 0.645364
\(923\) 11410.4i 0.406911i
\(924\) −1380.76 1024.18i −0.0491600 0.0364643i
\(925\) −2445.77 2445.77i −0.0869366 0.0869366i
\(926\) 13460.5 13460.5i 0.477690 0.477690i
\(927\) 45584.5 13821.7i 1.61509 0.489714i
\(928\) −1780.81 4669.37i −0.0629937 0.165172i
\(929\) 36175.2i 1.27758i −0.769382 0.638788i \(-0.779436\pi\)
0.769382 0.638788i \(-0.220564\pi\)
\(930\) −1218.58 8218.49i −0.0429663 0.289780i
\(931\) 5515.99 5515.99i 0.194178 0.194178i
\(932\) −16732.1 −0.588066
\(933\) −2581.93 + 3480.87i −0.0905987 + 0.122142i
\(934\) 19402.7i 0.679738i
\(935\) 18892.1i 0.660790i
\(936\) −6674.64 3568.74i −0.233085 0.124624i
\(937\) 29592.1i 1.03173i 0.856669 + 0.515866i \(0.172530\pi\)
−0.856669 + 0.515866i \(0.827470\pi\)
\(938\) −1012.48 + 1012.48i −0.0352437 + 0.0352437i
\(939\) 7309.67 + 49298.9i 0.254038 + 1.71332i
\(940\) 13527.3 + 13527.3i 0.469374 + 0.469374i
\(941\) −25766.8 −0.892639 −0.446320 0.894874i \(-0.647266\pi\)
−0.446320 + 0.894874i \(0.647266\pi\)
\(942\) −2053.83 + 304.527i −0.0710377 + 0.0105329i
\(943\) 4829.64 + 4829.64i 0.166781 + 0.166781i
\(944\) 706.208i 0.0243486i
\(945\) 2275.68 + 4813.85i 0.0783364 + 0.165709i
\(946\) −7109.53 7109.53i −0.244346 0.244346i
\(947\) −28176.3 28176.3i −0.966851 0.966851i 0.0326167 0.999468i \(-0.489616\pi\)
−0.999468 + 0.0326167i \(0.989616\pi\)
\(948\) 927.775 1250.80i 0.0317856 0.0428523i
\(949\) −29339.9 + 29339.9i −1.00360 + 1.00360i
\(950\) −2767.88 −0.0945285
\(951\) −2701.01 2003.47i −0.0920991 0.0683142i
\(952\) −4703.06 −0.160112
\(953\) 18923.3i 0.643219i 0.946872 + 0.321609i \(0.104224\pi\)
−0.946872 + 0.321609i \(0.895776\pi\)
\(954\) −6182.26 + 11562.7i −0.209809 + 0.392408i
\(955\) 13229.7 + 13229.7i 0.448277 + 0.448277i
\(956\) −14793.6 −0.500481
\(957\) 12708.2 7134.37i 0.429255 0.240984i
\(958\) −11986.5 −0.404245
\(959\) 4458.80 + 4458.80i 0.150138 + 0.150138i
\(960\) −2710.88 + 401.948i −0.0911388 + 0.0135134i
\(961\) 20379.4i 0.684079i
\(962\) 4246.02 0.142305
\(963\) −8687.63 28652.1i −0.290711 0.958777i
\(964\) 6907.13 0.230771
\(965\) −12713.6 + 12713.6i −0.424108 + 0.424108i
\(966\) −7878.27 5843.69i −0.262401 0.194635i
\(967\) −39736.7 39736.7i −1.32146 1.32146i −0.912599 0.408857i \(-0.865928\pi\)
−0.408857 0.912599i \(-0.634072\pi\)
\(968\) −5704.68 5704.68i −0.189417 0.189417i
\(969\) 2358.31 + 15905.3i 0.0781837 + 0.527298i
\(970\) 17154.3i 0.567827i
\(971\) 15258.8 + 15258.8i 0.504304 + 0.504304i 0.912772 0.408468i \(-0.133937\pi\)
−0.408468 + 0.912772i \(0.633937\pi\)
\(972\) −11230.0 + 10172.0i −0.370580 + 0.335664i
\(973\) −5230.36 −0.172331
\(974\) −13418.1 13418.1i −0.441421 0.441421i
\(975\) 10282.2 1524.56i 0.337736 0.0500770i
\(976\) −2453.74 + 2453.74i −0.0804738 + 0.0804738i
\(977\) 3050.43i 0.0998894i −0.998752 0.0499447i \(-0.984095\pi\)
0.998752 0.0499447i \(-0.0159045\pi\)
\(978\) −9242.78 + 1370.45i −0.302200 + 0.0448079i
\(979\) 3805.25i 0.124225i
\(980\) 10607.2i 0.345751i
\(981\) −7785.67 25677.4i −0.253392 0.835695i
\(982\) −8741.74 −0.284074
\(983\) 5573.62 5573.62i 0.180845 0.180845i −0.610879 0.791724i \(-0.709184\pi\)
0.791724 + 0.610879i \(0.209184\pi\)
\(984\) −1370.39 + 203.190i −0.0443967 + 0.00658280i
\(985\) 24608.1i 0.796018i
\(986\) 16295.3 36387.5i 0.526315 1.17527i
\(987\) −11154.7 8273.99i −0.359736 0.266833i
\(988\) 2402.62 2402.62i 0.0773659 0.0773659i
\(989\) −40565.1 40565.1i −1.30424 1.30424i
\(990\) −2319.02 7648.22i −0.0744479 0.245532i
\(991\) 33551.2i 1.07547i 0.843115 + 0.537733i \(0.180719\pi\)
−0.843115 + 0.537733i \(0.819281\pi\)
\(992\) −3104.43 −0.0993607
\(993\) 2634.91 3552.30i 0.0842057 0.113524i
\(994\) −2120.89 2120.89i −0.0676766 0.0676766i
\(995\) 29488.6 0.939550
\(996\) −1092.89 7370.84i −0.0347687 0.234492i
\(997\) 12169.9 12169.9i 0.386585 0.386585i −0.486883 0.873467i \(-0.661866\pi\)
0.873467 + 0.486883i \(0.161866\pi\)
\(998\) −16927.9 + 16927.9i −0.536918 + 0.536918i
\(999\) 2865.09 8002.69i 0.0907383 0.253447i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 174.4.f.a.17.9 60
3.2 odd 2 inner 174.4.f.a.17.16 yes 60
29.12 odd 4 inner 174.4.f.a.41.16 yes 60
87.41 even 4 inner 174.4.f.a.41.9 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
174.4.f.a.17.9 60 1.1 even 1 trivial
174.4.f.a.17.16 yes 60 3.2 odd 2 inner
174.4.f.a.41.9 yes 60 87.41 even 4 inner
174.4.f.a.41.16 yes 60 29.12 odd 4 inner