Properties

Label 174.4.f.a.17.13
Level $174$
Weight $4$
Character 174.17
Analytic conductor $10.266$
Analytic rank $0$
Dimension $60$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [174,4,Mod(17,174)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(174, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("174.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 174 = 2 \cdot 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 174.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2663323410\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(30\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.13
Character \(\chi\) \(=\) 174.17
Dual form 174.4.f.a.41.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{2} +(5.06270 + 1.17009i) q^{3} +4.00000i q^{4} +15.7560 q^{5} +(-5.50498 - 8.81449i) q^{6} +15.8294 q^{7} +(5.65685 - 5.65685i) q^{8} +(24.2618 + 11.8476i) q^{9} +(-22.2824 - 22.2824i) q^{10} +(-34.5465 - 34.5465i) q^{11} +(-4.68035 + 20.2508i) q^{12} +63.8874i q^{13} +(-22.3862 - 22.3862i) q^{14} +(79.7680 + 18.4359i) q^{15} -16.0000 q^{16} +(29.1612 + 29.1612i) q^{17} +(-17.5563 - 51.0664i) q^{18} +(-42.1853 + 42.1853i) q^{19} +63.0241i q^{20} +(80.1395 + 18.5218i) q^{21} +97.7123i q^{22} -203.498i q^{23} +(35.2580 - 22.0199i) q^{24} +123.253 q^{25} +(90.3504 - 90.3504i) q^{26} +(108.967 + 88.3692i) q^{27} +63.3176i q^{28} +(-84.7806 + 131.154i) q^{29} +(-86.7367 - 138.881i) q^{30} +(-28.1059 + 28.1059i) q^{31} +(22.6274 + 22.6274i) q^{32} +(-134.476 - 215.321i) q^{33} -82.4805i q^{34} +249.409 q^{35} +(-47.3904 + 97.0472i) q^{36} +(-95.9844 - 95.9844i) q^{37} +119.318 q^{38} +(-74.7538 + 323.442i) q^{39} +(89.1296 - 89.1296i) q^{40} +(256.367 - 256.367i) q^{41} +(-87.1406 - 139.528i) q^{42} +(316.481 - 316.481i) q^{43} +(138.186 - 138.186i) q^{44} +(382.270 + 186.671i) q^{45} +(-287.790 + 287.790i) q^{46} +(213.077 - 213.077i) q^{47} +(-81.0031 - 18.7214i) q^{48} -92.4298 q^{49} +(-174.306 - 174.306i) q^{50} +(113.513 + 181.756i) q^{51} -255.549 q^{52} -59.8555i q^{53} +(-29.1302 - 279.076i) q^{54} +(-544.316 - 544.316i) q^{55} +(89.5447 - 89.5447i) q^{56} +(-262.932 + 164.211i) q^{57} +(305.377 - 65.5812i) q^{58} +721.957i q^{59} +(-73.7438 + 319.072i) q^{60} +(-541.445 + 541.445i) q^{61} +79.4956 q^{62} +(384.050 + 187.540i) q^{63} -64.0000i q^{64} +1006.61i q^{65} +(-114.332 + 494.688i) q^{66} +440.734i q^{67} +(-116.645 + 116.645i) q^{68} +(238.111 - 1030.25i) q^{69} +(-352.717 - 352.717i) q^{70} -1001.10 q^{71} +(204.266 - 70.2253i) q^{72} +(-444.626 - 444.626i) q^{73} +271.485i q^{74} +(623.991 + 144.216i) q^{75} +(-168.741 - 168.741i) q^{76} +(-546.851 - 546.851i) q^{77} +(563.134 - 351.699i) q^{78} +(310.904 - 310.904i) q^{79} -252.097 q^{80} +(448.269 + 574.888i) q^{81} -725.114 q^{82} +190.699i q^{83} +(-74.0872 + 320.558i) q^{84} +(459.466 + 459.466i) q^{85} -895.143 q^{86} +(-582.680 + 564.790i) q^{87} -390.849 q^{88} +(-1113.51 - 1113.51i) q^{89} +(-276.618 - 804.604i) q^{90} +1011.30i q^{91} +813.992 q^{92} +(-175.178 + 109.405i) q^{93} -602.674 q^{94} +(-664.673 + 664.673i) q^{95} +(88.0797 + 141.032i) q^{96} +(385.262 + 385.262i) q^{97} +(130.716 + 130.716i) q^{98} +(-428.867 - 1247.45i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 24 q^{10} + 88 q^{15} - 960 q^{16} + 48 q^{19} - 752 q^{21} + 64 q^{24} + 1500 q^{25} + 600 q^{27} + 312 q^{30} - 300 q^{31} - 224 q^{36} - 192 q^{37} - 172 q^{39} + 96 q^{40} + 888 q^{43} - 1532 q^{45}+ \cdots - 6000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/174\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 1.41421i −0.500000 0.500000i
\(3\) 5.06270 + 1.17009i 0.974316 + 0.225183i
\(4\) 4.00000i 0.500000i
\(5\) 15.7560 1.40926 0.704631 0.709574i \(-0.251112\pi\)
0.704631 + 0.709574i \(0.251112\pi\)
\(6\) −5.50498 8.81449i −0.374566 0.599750i
\(7\) 15.8294 0.854708 0.427354 0.904084i \(-0.359446\pi\)
0.427354 + 0.904084i \(0.359446\pi\)
\(8\) 5.65685 5.65685i 0.250000 0.250000i
\(9\) 24.2618 + 11.8476i 0.898585 + 0.438800i
\(10\) −22.2824 22.2824i −0.704631 0.704631i
\(11\) −34.5465 34.5465i −0.946925 0.946925i 0.0517362 0.998661i \(-0.483525\pi\)
−0.998661 + 0.0517362i \(0.983525\pi\)
\(12\) −4.68035 + 20.2508i −0.112592 + 0.487158i
\(13\) 63.8874i 1.36301i 0.731812 + 0.681506i \(0.238675\pi\)
−0.731812 + 0.681506i \(0.761325\pi\)
\(14\) −22.3862 22.3862i −0.427354 0.427354i
\(15\) 79.7680 + 18.4359i 1.37307 + 0.317343i
\(16\) −16.0000 −0.250000
\(17\) 29.1612 + 29.1612i 0.416038 + 0.416038i 0.883836 0.467798i \(-0.154952\pi\)
−0.467798 + 0.883836i \(0.654952\pi\)
\(18\) −17.5563 51.0664i −0.229892 0.668692i
\(19\) −42.1853 + 42.1853i −0.509367 + 0.509367i −0.914332 0.404965i \(-0.867284\pi\)
0.404965 + 0.914332i \(0.367284\pi\)
\(20\) 63.0241i 0.704631i
\(21\) 80.1395 + 18.5218i 0.832756 + 0.192466i
\(22\) 97.7123i 0.946925i
\(23\) 203.498i 1.84488i −0.386139 0.922441i \(-0.626191\pi\)
0.386139 0.922441i \(-0.373809\pi\)
\(24\) 35.2580 22.0199i 0.299875 0.187283i
\(25\) 123.253 0.986021
\(26\) 90.3504 90.3504i 0.681506 0.681506i
\(27\) 108.967 + 88.3692i 0.776695 + 0.629876i
\(28\) 63.3176i 0.427354i
\(29\) −84.7806 + 131.154i −0.542875 + 0.839814i
\(30\) −86.7367 138.881i −0.527862 0.845205i
\(31\) −28.1059 + 28.1059i −0.162838 + 0.162838i −0.783823 0.620985i \(-0.786733\pi\)
0.620985 + 0.783823i \(0.286733\pi\)
\(32\) 22.6274 + 22.6274i 0.125000 + 0.125000i
\(33\) −134.476 215.321i −0.709372 1.13584i
\(34\) 82.4805i 0.416038i
\(35\) 249.409 1.20451
\(36\) −47.3904 + 97.0472i −0.219400 + 0.449292i
\(37\) −95.9844 95.9844i −0.426479 0.426479i 0.460948 0.887427i \(-0.347510\pi\)
−0.887427 + 0.460948i \(0.847510\pi\)
\(38\) 119.318 0.509367
\(39\) −74.7538 + 323.442i −0.306928 + 1.32801i
\(40\) 89.1296 89.1296i 0.352316 0.352316i
\(41\) 256.367 256.367i 0.976530 0.976530i −0.0232006 0.999731i \(-0.507386\pi\)
0.999731 + 0.0232006i \(0.00738565\pi\)
\(42\) −87.1406 139.528i −0.320145 0.512611i
\(43\) 316.481 316.481i 1.12239 1.12239i 0.131011 0.991381i \(-0.458178\pi\)
0.991381 0.131011i \(-0.0418223\pi\)
\(44\) 138.186 138.186i 0.473462 0.473462i
\(45\) 382.270 + 186.671i 1.26634 + 0.618384i
\(46\) −287.790 + 287.790i −0.922441 + 0.922441i
\(47\) 213.077 213.077i 0.661288 0.661288i −0.294396 0.955684i \(-0.595118\pi\)
0.955684 + 0.294396i \(0.0951183\pi\)
\(48\) −81.0031 18.7214i −0.243579 0.0562959i
\(49\) −92.4298 −0.269475
\(50\) −174.306 174.306i −0.493010 0.493010i
\(51\) 113.513 + 181.756i 0.311668 + 0.499037i
\(52\) −255.549 −0.681506
\(53\) 59.8555i 0.155128i −0.996987 0.0775640i \(-0.975286\pi\)
0.996987 0.0775640i \(-0.0247142\pi\)
\(54\) −29.1302 279.076i −0.0734095 0.703286i
\(55\) −544.316 544.316i −1.33447 1.33447i
\(56\) 89.5447 89.5447i 0.213677 0.213677i
\(57\) −262.932 + 164.211i −0.610985 + 0.381583i
\(58\) 305.377 65.5812i 0.691344 0.148470i
\(59\) 721.957i 1.59306i 0.604597 + 0.796532i \(0.293334\pi\)
−0.604597 + 0.796532i \(0.706666\pi\)
\(60\) −73.7438 + 319.072i −0.158671 + 0.686534i
\(61\) −541.445 + 541.445i −1.13647 + 1.13647i −0.147397 + 0.989077i \(0.547090\pi\)
−0.989077 + 0.147397i \(0.952910\pi\)
\(62\) 79.4956 0.162838
\(63\) 384.050 + 187.540i 0.768027 + 0.375046i
\(64\) 64.0000i 0.125000i
\(65\) 1006.61i 1.92084i
\(66\) −114.332 + 494.688i −0.213232 + 0.922604i
\(67\) 440.734i 0.803644i 0.915718 + 0.401822i \(0.131623\pi\)
−0.915718 + 0.401822i \(0.868377\pi\)
\(68\) −116.645 + 116.645i −0.208019 + 0.208019i
\(69\) 238.111 1030.25i 0.415437 1.79750i
\(70\) −352.717 352.717i −0.602254 0.602254i
\(71\) −1001.10 −1.67336 −0.836682 0.547689i \(-0.815508\pi\)
−0.836682 + 0.547689i \(0.815508\pi\)
\(72\) 204.266 70.2253i 0.334346 0.114946i
\(73\) −444.626 444.626i −0.712870 0.712870i 0.254265 0.967135i \(-0.418167\pi\)
−0.967135 + 0.254265i \(0.918167\pi\)
\(74\) 271.485i 0.426479i
\(75\) 623.991 + 144.216i 0.960696 + 0.222036i
\(76\) −168.741 168.741i −0.254683 0.254683i
\(77\) −546.851 546.851i −0.809344 0.809344i
\(78\) 563.134 351.699i 0.817467 0.510539i
\(79\) 310.904 310.904i 0.442777 0.442777i −0.450167 0.892944i \(-0.648636\pi\)
0.892944 + 0.450167i \(0.148636\pi\)
\(80\) −252.097 −0.352316
\(81\) 448.269 + 574.888i 0.614909 + 0.788598i
\(82\) −725.114 −0.976530
\(83\) 190.699i 0.252192i 0.992018 + 0.126096i \(0.0402447\pi\)
−0.992018 + 0.126096i \(0.959755\pi\)
\(84\) −74.0872 + 320.558i −0.0962330 + 0.416378i
\(85\) 459.466 + 459.466i 0.586306 + 0.586306i
\(86\) −895.143 −1.12239
\(87\) −582.680 + 564.790i −0.718044 + 0.695998i
\(88\) −390.849 −0.473462
\(89\) −1113.51 1113.51i −1.32620 1.32620i −0.908658 0.417542i \(-0.862892\pi\)
−0.417542 0.908658i \(-0.637108\pi\)
\(90\) −276.618 804.604i −0.323979 0.942363i
\(91\) 1011.30i 1.16498i
\(92\) 813.992 0.922441
\(93\) −175.178 + 109.405i −0.195324 + 0.121987i
\(94\) −602.674 −0.661288
\(95\) −664.673 + 664.673i −0.717832 + 0.717832i
\(96\) 88.0797 + 141.032i 0.0936416 + 0.149937i
\(97\) 385.262 + 385.262i 0.403273 + 0.403273i 0.879385 0.476112i \(-0.157954\pi\)
−0.476112 + 0.879385i \(0.657954\pi\)
\(98\) 130.716 + 130.716i 0.134737 + 0.134737i
\(99\) −428.867 1247.45i −0.435382 1.26640i
\(100\) 493.010i 0.493010i
\(101\) 1.66851 + 1.66851i 0.00164379 + 0.00164379i 0.707928 0.706284i \(-0.249630\pi\)
−0.706284 + 0.707928i \(0.749630\pi\)
\(102\) 96.5094 417.574i 0.0936848 0.405352i
\(103\) −719.844 −0.688625 −0.344313 0.938855i \(-0.611888\pi\)
−0.344313 + 0.938855i \(0.611888\pi\)
\(104\) 361.401 + 361.401i 0.340753 + 0.340753i
\(105\) 1262.68 + 291.830i 1.17357 + 0.271235i
\(106\) −84.6484 + 84.6484i −0.0775640 + 0.0775640i
\(107\) 156.630i 0.141514i −0.997494 0.0707572i \(-0.977458\pi\)
0.997494 0.0707572i \(-0.0225415\pi\)
\(108\) −353.477 + 435.869i −0.314938 + 0.388348i
\(109\) 285.950i 0.251276i −0.992076 0.125638i \(-0.959902\pi\)
0.992076 0.125638i \(-0.0400978\pi\)
\(110\) 1539.56i 1.33447i
\(111\) −373.630 598.250i −0.319490 0.511562i
\(112\) −253.271 −0.213677
\(113\) 127.641 127.641i 0.106261 0.106261i −0.651978 0.758238i \(-0.726060\pi\)
0.758238 + 0.651978i \(0.226060\pi\)
\(114\) 604.071 + 139.613i 0.496284 + 0.114701i
\(115\) 3206.32i 2.59992i
\(116\) −524.614 339.122i −0.419907 0.271437i
\(117\) −756.912 + 1550.02i −0.598090 + 1.22478i
\(118\) 1021.00 1021.00i 0.796532 0.796532i
\(119\) 461.605 + 461.605i 0.355591 + 0.355591i
\(120\) 555.525 346.947i 0.422603 0.263931i
\(121\) 1055.93i 0.793332i
\(122\) 1531.44 1.13647
\(123\) 1597.88 997.935i 1.17135 0.731551i
\(124\) −112.424 112.424i −0.0814190 0.0814190i
\(125\) −27.5321 −0.0197003
\(126\) −277.906 808.351i −0.196491 0.571536i
\(127\) −241.918 + 241.918i −0.169030 + 0.169030i −0.786553 0.617523i \(-0.788136\pi\)
0.617523 + 0.786553i \(0.288136\pi\)
\(128\) −90.5097 + 90.5097i −0.0625000 + 0.0625000i
\(129\) 1972.56 1231.94i 1.34631 0.840821i
\(130\) 1423.56 1423.56i 0.960421 0.960421i
\(131\) 1083.86 1083.86i 0.722879 0.722879i −0.246312 0.969191i \(-0.579219\pi\)
0.969191 + 0.246312i \(0.0792188\pi\)
\(132\) 861.284 537.905i 0.567918 0.354686i
\(133\) −667.768 + 667.768i −0.435360 + 0.435360i
\(134\) 623.291 623.291i 0.401822 0.401822i
\(135\) 1716.89 + 1392.35i 1.09457 + 0.887661i
\(136\) 329.922 0.208019
\(137\) −292.426 292.426i −0.182362 0.182362i 0.610022 0.792384i \(-0.291161\pi\)
−0.792384 + 0.610022i \(0.791161\pi\)
\(138\) −1793.73 + 1120.25i −1.10647 + 0.691031i
\(139\) −521.328 −0.318119 −0.159059 0.987269i \(-0.550846\pi\)
−0.159059 + 0.987269i \(0.550846\pi\)
\(140\) 997.635i 0.602254i
\(141\) 1328.07 829.427i 0.793215 0.495393i
\(142\) 1415.77 + 1415.77i 0.836682 + 0.836682i
\(143\) 2207.09 2207.09i 1.29067 1.29067i
\(144\) −388.189 189.562i −0.224646 0.109700i
\(145\) −1335.81 + 2066.46i −0.765053 + 1.18352i
\(146\) 1257.59i 0.712870i
\(147\) −467.944 108.151i −0.262554 0.0606813i
\(148\) 383.938 383.938i 0.213240 0.213240i
\(149\) −8.44638 −0.00464399 −0.00232199 0.999997i \(-0.500739\pi\)
−0.00232199 + 0.999997i \(0.500739\pi\)
\(150\) −678.503 1086.41i −0.369330 0.591366i
\(151\) 406.305i 0.218971i 0.993988 + 0.109486i \(0.0349203\pi\)
−0.993988 + 0.109486i \(0.965080\pi\)
\(152\) 477.272i 0.254683i
\(153\) 362.013 + 1052.99i 0.191288 + 0.556402i
\(154\) 1546.73i 0.809344i
\(155\) −442.838 + 442.838i −0.229481 + 0.229481i
\(156\) −1293.77 299.015i −0.664003 0.153464i
\(157\) 137.354 + 137.354i 0.0698219 + 0.0698219i 0.741155 0.671333i \(-0.234278\pi\)
−0.671333 + 0.741155i \(0.734278\pi\)
\(158\) −879.369 −0.442777
\(159\) 70.0361 303.030i 0.0349322 0.151144i
\(160\) 356.518 + 356.518i 0.176158 + 0.176158i
\(161\) 3221.25i 1.57683i
\(162\) 179.066 1446.96i 0.0868443 0.701754i
\(163\) −772.318 772.318i −0.371120 0.371120i 0.496765 0.867885i \(-0.334521\pi\)
−0.867885 + 0.496765i \(0.834521\pi\)
\(164\) 1025.47 + 1025.47i 0.488265 + 0.488265i
\(165\) −2118.81 3392.61i −0.999692 1.60069i
\(166\) 269.689 269.689i 0.126096 0.126096i
\(167\) 2992.32 1.38654 0.693271 0.720677i \(-0.256169\pi\)
0.693271 + 0.720677i \(0.256169\pi\)
\(168\) 558.112 348.562i 0.256305 0.160072i
\(169\) −1884.59 −0.857803
\(170\) 1299.56i 0.586306i
\(171\) −1523.28 + 523.696i −0.681219 + 0.234199i
\(172\) 1265.92 + 1265.92i 0.561196 + 0.561196i
\(173\) −3448.21 −1.51539 −0.757696 0.652608i \(-0.773675\pi\)
−0.757696 + 0.652608i \(0.773675\pi\)
\(174\) 1622.77 + 25.3000i 0.707021 + 0.0110229i
\(175\) 1951.02 0.842760
\(176\) 552.744 + 552.744i 0.236731 + 0.236731i
\(177\) −844.753 + 3655.05i −0.358732 + 1.55215i
\(178\) 3149.48i 1.32620i
\(179\) −3489.39 −1.45703 −0.728516 0.685028i \(-0.759790\pi\)
−0.728516 + 0.685028i \(0.759790\pi\)
\(180\) −746.685 + 1529.08i −0.309192 + 0.633171i
\(181\) 832.300 0.341792 0.170896 0.985289i \(-0.445334\pi\)
0.170896 + 0.985289i \(0.445334\pi\)
\(182\) 1430.19 1430.19i 0.582489 0.582489i
\(183\) −3374.71 + 2107.63i −1.36320 + 0.851371i
\(184\) −1151.16 1151.16i −0.461220 0.461220i
\(185\) −1512.33 1512.33i −0.601021 0.601021i
\(186\) 402.462 + 93.0169i 0.158656 + 0.0366684i
\(187\) 2014.84i 0.787913i
\(188\) 852.310 + 852.310i 0.330644 + 0.330644i
\(189\) 1724.89 + 1398.83i 0.663848 + 0.538360i
\(190\) 1879.98 0.717832
\(191\) −1105.13 1105.13i −0.418663 0.418663i 0.466080 0.884743i \(-0.345666\pi\)
−0.884743 + 0.466080i \(0.845666\pi\)
\(192\) 74.8856 324.013i 0.0281479 0.121790i
\(193\) −1515.56 + 1515.56i −0.565245 + 0.565245i −0.930793 0.365547i \(-0.880882\pi\)
0.365547 + 0.930793i \(0.380882\pi\)
\(194\) 1089.69i 0.403273i
\(195\) −1177.82 + 5096.17i −0.432542 + 1.87151i
\(196\) 369.719i 0.134737i
\(197\) 3567.87i 1.29036i 0.764031 + 0.645179i \(0.223217\pi\)
−0.764031 + 0.645179i \(0.776783\pi\)
\(198\) −1157.66 + 2370.68i −0.415510 + 0.850892i
\(199\) 2782.56 0.991209 0.495604 0.868548i \(-0.334947\pi\)
0.495604 + 0.868548i \(0.334947\pi\)
\(200\) 697.222 697.222i 0.246505 0.246505i
\(201\) −515.697 + 2231.30i −0.180967 + 0.783004i
\(202\) 4.71927i 0.00164379i
\(203\) −1342.03 + 2076.08i −0.463999 + 0.717795i
\(204\) −727.023 + 454.053i −0.249519 + 0.155834i
\(205\) 4039.32 4039.32i 1.37619 1.37619i
\(206\) 1018.01 + 1018.01i 0.344313 + 0.344313i
\(207\) 2410.96 4937.23i 0.809534 1.65778i
\(208\) 1022.20i 0.340753i
\(209\) 2914.71 0.964664
\(210\) −1372.99 2198.41i −0.451168 0.722403i
\(211\) −1730.56 1730.56i −0.564629 0.564629i 0.365990 0.930619i \(-0.380730\pi\)
−0.930619 + 0.365990i \(0.880730\pi\)
\(212\) 239.422 0.0775640
\(213\) −5068.27 1171.38i −1.63039 0.376814i
\(214\) −221.509 + 221.509i −0.0707572 + 0.0707572i
\(215\) 4986.48 4986.48i 1.58174 1.58174i
\(216\) 1116.30 116.521i 0.351643 0.0367048i
\(217\) −444.901 + 444.901i −0.139179 + 0.139179i
\(218\) −404.395 + 404.395i −0.125638 + 0.125638i
\(219\) −1730.75 2771.26i −0.534034 0.855087i
\(220\) 2177.27 2177.27i 0.667233 0.667233i
\(221\) −1863.03 + 1863.03i −0.567065 + 0.567065i
\(222\) −317.661 + 1374.45i −0.0960361 + 0.415526i
\(223\) 5139.73 1.54342 0.771708 0.635977i \(-0.219403\pi\)
0.771708 + 0.635977i \(0.219403\pi\)
\(224\) 358.179 + 358.179i 0.106838 + 0.106838i
\(225\) 2990.33 + 1460.25i 0.886023 + 0.432666i
\(226\) −361.023 −0.106261
\(227\) 2709.27i 0.792162i 0.918216 + 0.396081i \(0.129630\pi\)
−0.918216 + 0.396081i \(0.870370\pi\)
\(228\) −656.843 1051.73i −0.190792 0.305493i
\(229\) −116.830 116.830i −0.0337133 0.0337133i 0.690049 0.723762i \(-0.257589\pi\)
−0.723762 + 0.690049i \(0.757589\pi\)
\(230\) −4534.42 + 4534.42i −1.29996 + 1.29996i
\(231\) −2128.68 3408.40i −0.606306 0.970808i
\(232\) 262.325 + 1221.51i 0.0742348 + 0.345672i
\(233\) 519.051i 0.145941i −0.997334 0.0729703i \(-0.976752\pi\)
0.997334 0.0729703i \(-0.0232478\pi\)
\(234\) 3262.50 1121.63i 0.911436 0.313346i
\(235\) 3357.26 3357.26i 0.931929 0.931929i
\(236\) −2887.83 −0.796532
\(237\) 1937.80 1210.23i 0.531111 0.331699i
\(238\) 1305.62i 0.355591i
\(239\) 2705.94i 0.732354i −0.930545 0.366177i \(-0.880666\pi\)
0.930545 0.366177i \(-0.119334\pi\)
\(240\) −1276.29 294.975i −0.343267 0.0793357i
\(241\) 6462.05i 1.72721i 0.504170 + 0.863604i \(0.331798\pi\)
−0.504170 + 0.863604i \(0.668202\pi\)
\(242\) 1493.30 1493.30i 0.396666 0.396666i
\(243\) 1596.78 + 3435.00i 0.421537 + 0.906811i
\(244\) −2165.78 2165.78i −0.568237 0.568237i
\(245\) −1456.33 −0.379761
\(246\) −3671.03 848.447i −0.951449 0.219898i
\(247\) −2695.11 2695.11i −0.694273 0.694273i
\(248\) 317.983i 0.0814190i
\(249\) −223.134 + 965.450i −0.0567894 + 0.245714i
\(250\) 38.9362 + 38.9362i 0.00985017 + 0.00985017i
\(251\) −51.1710 51.1710i −0.0128681 0.0128681i 0.700643 0.713512i \(-0.252896\pi\)
−0.713512 + 0.700643i \(0.752896\pi\)
\(252\) −750.162 + 1536.20i −0.187523 + 0.384014i
\(253\) −7030.15 + 7030.15i −1.74696 + 1.74696i
\(254\) 684.248 0.169030
\(255\) 1788.52 + 2863.75i 0.439221 + 0.703274i
\(256\) 256.000 0.0625000
\(257\) 690.565i 0.167612i 0.996482 + 0.0838060i \(0.0267076\pi\)
−0.996482 + 0.0838060i \(0.973292\pi\)
\(258\) −4531.83 1047.40i −1.09356 0.252744i
\(259\) −1519.38 1519.38i −0.364515 0.364515i
\(260\) −4026.45 −0.960421
\(261\) −3610.78 + 2177.57i −0.856329 + 0.516431i
\(262\) −3065.61 −0.722879
\(263\) −827.368 827.368i −0.193984 0.193984i 0.603431 0.797415i \(-0.293800\pi\)
−0.797415 + 0.603431i \(0.793800\pi\)
\(264\) −1978.75 457.328i −0.461302 0.106616i
\(265\) 943.085i 0.218616i
\(266\) 1888.73 0.435360
\(267\) −4334.46 6940.26i −0.993500 1.59078i
\(268\) −1762.93 −0.401822
\(269\) −3485.31 + 3485.31i −0.789974 + 0.789974i −0.981490 0.191515i \(-0.938660\pi\)
0.191515 + 0.981490i \(0.438660\pi\)
\(270\) −458.976 4397.13i −0.103453 0.991114i
\(271\) 3916.95 + 3916.95i 0.877999 + 0.877999i 0.993327 0.115329i \(-0.0367922\pi\)
−0.115329 + 0.993327i \(0.536792\pi\)
\(272\) −466.580 466.580i −0.104009 0.104009i
\(273\) −1183.31 + 5119.90i −0.262334 + 1.13506i
\(274\) 827.106i 0.182362i
\(275\) −4257.95 4257.95i −0.933687 0.933687i
\(276\) 4121.00 + 952.442i 0.898749 + 0.207718i
\(277\) 9034.42 1.95966 0.979830 0.199835i \(-0.0640405\pi\)
0.979830 + 0.199835i \(0.0640405\pi\)
\(278\) 737.269 + 737.269i 0.159059 + 0.159059i
\(279\) −1014.89 + 348.913i −0.217777 + 0.0748704i
\(280\) 1410.87 1410.87i 0.301127 0.301127i
\(281\) 6674.92i 1.41706i 0.705683 + 0.708528i \(0.250640\pi\)
−0.705683 + 0.708528i \(0.749360\pi\)
\(282\) −3051.16 705.182i −0.644304 0.148911i
\(283\) 7526.04i 1.58084i −0.612567 0.790418i \(-0.709863\pi\)
0.612567 0.790418i \(-0.290137\pi\)
\(284\) 4004.40i 0.836682i
\(285\) −4142.76 + 2587.31i −0.861039 + 0.537751i
\(286\) −6242.58 −1.29067
\(287\) 4058.13 4058.13i 0.834648 0.834648i
\(288\) 280.901 + 817.062i 0.0574731 + 0.167173i
\(289\) 3212.24i 0.653825i
\(290\) 4811.53 1033.30i 0.974285 0.209233i
\(291\) 1499.67 + 2401.26i 0.302105 + 0.483725i
\(292\) 1778.50 1778.50i 0.356435 0.356435i
\(293\) 1480.87 + 1480.87i 0.295268 + 0.295268i 0.839157 0.543889i \(-0.183049\pi\)
−0.543889 + 0.839157i \(0.683049\pi\)
\(294\) 508.824 + 814.722i 0.100936 + 0.161617i
\(295\) 11375.2i 2.24504i
\(296\) −1085.94 −0.213240
\(297\) −711.594 6817.29i −0.139027 1.33192i
\(298\) 11.9450 + 11.9450i 0.00232199 + 0.00232199i
\(299\) 13001.0 2.51460
\(300\) −576.865 + 2495.96i −0.111018 + 0.480348i
\(301\) 5009.70 5009.70i 0.959317 0.959317i
\(302\) 574.602 574.602i 0.109486 0.109486i
\(303\) 6.49487 + 10.3995i 0.00123142 + 0.00197173i
\(304\) 674.965 674.965i 0.127342 0.127342i
\(305\) −8531.03 + 8531.03i −1.60159 + 1.60159i
\(306\) 977.195 2001.12i 0.182557 0.373845i
\(307\) 3216.65 3216.65i 0.597994 0.597994i −0.341784 0.939778i \(-0.611031\pi\)
0.939778 + 0.341784i \(0.111031\pi\)
\(308\) 2187.40 2187.40i 0.404672 0.404672i
\(309\) −3644.35 842.281i −0.670939 0.155067i
\(310\) 1252.54 0.229481
\(311\) −2206.75 2206.75i −0.402358 0.402358i 0.476705 0.879063i \(-0.341831\pi\)
−0.879063 + 0.476705i \(0.841831\pi\)
\(312\) 1406.79 + 2252.54i 0.255269 + 0.408733i
\(313\) −4828.14 −0.871894 −0.435947 0.899972i \(-0.643586\pi\)
−0.435947 + 0.899972i \(0.643586\pi\)
\(314\) 388.496i 0.0698219i
\(315\) 6051.10 + 2954.89i 1.08235 + 0.528538i
\(316\) 1243.62 + 1243.62i 0.221389 + 0.221389i
\(317\) 625.136 625.136i 0.110761 0.110761i −0.649554 0.760315i \(-0.725045\pi\)
0.760315 + 0.649554i \(0.225045\pi\)
\(318\) −527.595 + 329.503i −0.0930379 + 0.0581057i
\(319\) 7459.78 1602.02i 1.30930 0.281179i
\(320\) 1008.39i 0.176158i
\(321\) 183.271 792.972i 0.0318667 0.137880i
\(322\) −4555.54 + 4555.54i −0.788417 + 0.788417i
\(323\) −2460.35 −0.423832
\(324\) −2299.55 + 1793.08i −0.394299 + 0.307455i
\(325\) 7874.28i 1.34396i
\(326\) 2184.44i 0.371120i
\(327\) 334.587 1447.68i 0.0565832 0.244822i
\(328\) 2900.46i 0.488265i
\(329\) 3372.89 3372.89i 0.565208 0.565208i
\(330\) −1801.42 + 7794.32i −0.300500 + 1.30019i
\(331\) 1065.41 + 1065.41i 0.176919 + 0.176919i 0.790011 0.613092i \(-0.210075\pi\)
−0.613092 + 0.790011i \(0.710075\pi\)
\(332\) −762.795 −0.126096
\(333\) −1191.57 3465.94i −0.196089 0.570367i
\(334\) −4231.78 4231.78i −0.693271 0.693271i
\(335\) 6944.21i 1.13255i
\(336\) −1282.23 296.349i −0.208189 0.0481165i
\(337\) 1716.86 + 1716.86i 0.277517 + 0.277517i 0.832117 0.554600i \(-0.187129\pi\)
−0.554600 + 0.832117i \(0.687129\pi\)
\(338\) 2665.22 + 2665.22i 0.428902 + 0.428902i
\(339\) 795.559 496.857i 0.127460 0.0796034i
\(340\) −1837.86 + 1837.86i −0.293153 + 0.293153i
\(341\) 1941.93 0.308391
\(342\) 2894.87 + 1413.63i 0.457709 + 0.223510i
\(343\) −6892.60 −1.08503
\(344\) 3580.57i 0.561196i
\(345\) 3751.68 16232.6i 0.585460 2.53315i
\(346\) 4876.51 + 4876.51i 0.757696 + 0.757696i
\(347\) −4046.09 −0.625952 −0.312976 0.949761i \(-0.601326\pi\)
−0.312976 + 0.949761i \(0.601326\pi\)
\(348\) −2259.16 2330.72i −0.347999 0.359022i
\(349\) 11394.9 1.74772 0.873858 0.486182i \(-0.161611\pi\)
0.873858 + 0.486182i \(0.161611\pi\)
\(350\) −2759.15 2759.15i −0.421380 0.421380i
\(351\) −5645.67 + 6961.64i −0.858529 + 1.05865i
\(352\) 1563.40i 0.236731i
\(353\) 6741.35 1.01645 0.508224 0.861225i \(-0.330302\pi\)
0.508224 + 0.861225i \(0.330302\pi\)
\(354\) 6363.68 3974.36i 0.955440 0.596708i
\(355\) −15773.4 −2.35821
\(356\) 4454.04 4454.04i 0.663100 0.663100i
\(357\) 1796.85 + 2877.09i 0.266385 + 0.426531i
\(358\) 4934.74 + 4934.74i 0.728516 + 0.728516i
\(359\) 7472.84 + 7472.84i 1.09861 + 1.09861i 0.994573 + 0.104038i \(0.0331763\pi\)
0.104038 + 0.994573i \(0.466824\pi\)
\(360\) 3218.41 1106.47i 0.471182 0.161989i
\(361\) 3299.80i 0.481091i
\(362\) −1177.05 1177.05i −0.170896 0.170896i
\(363\) −1235.53 + 5345.83i −0.178645 + 0.772957i
\(364\) −4045.20 −0.582489
\(365\) −7005.54 7005.54i −1.00462 1.00462i
\(366\) 7753.21 + 1791.92i 1.10729 + 0.255915i
\(367\) 1472.34 1472.34i 0.209416 0.209416i −0.594603 0.804019i \(-0.702691\pi\)
0.804019 + 0.594603i \(0.202691\pi\)
\(368\) 3255.97i 0.461220i
\(369\) 9257.24 3182.58i 1.30600 0.448994i
\(370\) 4277.53i 0.601021i
\(371\) 947.476i 0.132589i
\(372\) −437.622 700.713i −0.0609936 0.0976621i
\(373\) 4644.75 0.644762 0.322381 0.946610i \(-0.395517\pi\)
0.322381 + 0.946610i \(0.395517\pi\)
\(374\) −2849.41 + 2849.41i −0.393956 + 0.393956i
\(375\) −139.386 32.2149i −0.0191944 0.00443619i
\(376\) 2410.70i 0.330644i
\(377\) −8379.05 5416.41i −1.14468 0.739945i
\(378\) −461.113 4417.61i −0.0627437 0.601104i
\(379\) −8048.30 + 8048.30i −1.09080 + 1.09080i −0.0953577 + 0.995443i \(0.530400\pi\)
−0.995443 + 0.0953577i \(0.969600\pi\)
\(380\) −2658.69 2658.69i −0.358916 0.358916i
\(381\) −1507.82 + 941.694i −0.202751 + 0.126626i
\(382\) 3125.79i 0.418663i
\(383\) −6178.22 −0.824262 −0.412131 0.911125i \(-0.635215\pi\)
−0.412131 + 0.911125i \(0.635215\pi\)
\(384\) −564.127 + 352.319i −0.0749687 + 0.0468208i
\(385\) −8616.20 8616.20i −1.14058 1.14058i
\(386\) 4286.65 0.565245
\(387\) 11427.9 3928.85i 1.50107 0.516059i
\(388\) −1541.05 + 1541.05i −0.201636 + 0.201636i
\(389\) −305.839 + 305.839i −0.0398628 + 0.0398628i −0.726757 0.686894i \(-0.758973\pi\)
0.686894 + 0.726757i \(0.258973\pi\)
\(390\) 8872.76 5541.38i 1.15203 0.719483i
\(391\) 5934.26 5934.26i 0.767540 0.767540i
\(392\) −522.862 + 522.862i −0.0673687 + 0.0673687i
\(393\) 6755.45 4219.04i 0.867093 0.541532i
\(394\) 5045.74 5045.74i 0.645179 0.645179i
\(395\) 4898.61 4898.61i 0.623990 0.623990i
\(396\) 4989.82 1715.47i 0.633201 0.217691i
\(397\) 11435.0 1.44561 0.722804 0.691053i \(-0.242853\pi\)
0.722804 + 0.691053i \(0.242853\pi\)
\(398\) −3935.14 3935.14i −0.495604 0.495604i
\(399\) −4162.05 + 2599.36i −0.522214 + 0.326142i
\(400\) −1972.04 −0.246505
\(401\) 11572.9i 1.44120i −0.693350 0.720601i \(-0.743866\pi\)
0.693350 0.720601i \(-0.256134\pi\)
\(402\) 3884.84 2426.23i 0.481986 0.301018i
\(403\) −1795.61 1795.61i −0.221950 0.221950i
\(404\) −6.67405 + 6.67405i −0.000821897 + 0.000821897i
\(405\) 7062.94 + 9057.95i 0.866569 + 1.11134i
\(406\) 4833.94 1038.11i 0.590897 0.126898i
\(407\) 6631.86i 0.807688i
\(408\) 1670.29 + 386.037i 0.202676 + 0.0468424i
\(409\) 7947.71 7947.71i 0.960853 0.960853i −0.0384094 0.999262i \(-0.512229\pi\)
0.999262 + 0.0384094i \(0.0122291\pi\)
\(410\) −11424.9 −1.37619
\(411\) −1138.30 1822.63i −0.136614 0.218744i
\(412\) 2879.38i 0.344313i
\(413\) 11428.1i 1.36160i
\(414\) −10391.9 + 3572.68i −1.23366 + 0.424124i
\(415\) 3004.66i 0.355404i
\(416\) −1445.61 + 1445.61i −0.170377 + 0.170377i
\(417\) −2639.33 610.000i −0.309948 0.0716351i
\(418\) −4122.02 4122.02i −0.482332 0.482332i
\(419\) 14877.8 1.73467 0.867337 0.497721i \(-0.165830\pi\)
0.867337 + 0.497721i \(0.165830\pi\)
\(420\) −1167.32 + 5050.72i −0.135618 + 0.586786i
\(421\) −929.834 929.834i −0.107642 0.107642i 0.651234 0.758877i \(-0.274251\pi\)
−0.758877 + 0.651234i \(0.774251\pi\)
\(422\) 4894.76i 0.564629i
\(423\) 7694.10 2645.18i 0.884397 0.304050i
\(424\) −338.594 338.594i −0.0387820 0.0387820i
\(425\) 3594.20 + 3594.20i 0.410222 + 0.410222i
\(426\) 5511.04 + 8824.19i 0.626786 + 1.00360i
\(427\) −8570.76 + 8570.76i −0.971354 + 0.971354i
\(428\) 626.522 0.0707572
\(429\) 13756.3 8591.32i 1.54816 0.966884i
\(430\) −14103.9 −1.58174
\(431\) 9894.77i 1.10583i −0.833236 0.552917i \(-0.813515\pi\)
0.833236 0.552917i \(-0.186485\pi\)
\(432\) −1743.48 1413.91i −0.194174 0.157469i
\(433\) −7610.68 7610.68i −0.844679 0.844679i 0.144784 0.989463i \(-0.453751\pi\)
−0.989463 + 0.144784i \(0.953751\pi\)
\(434\) 1258.37 0.139179
\(435\) −9180.72 + 8898.85i −1.01191 + 0.980844i
\(436\) 1143.80 0.125638
\(437\) 8584.62 + 8584.62i 0.939721 + 0.939721i
\(438\) −1471.49 + 6366.80i −0.160526 + 0.694561i
\(439\) 4406.25i 0.479041i 0.970891 + 0.239520i \(0.0769902\pi\)
−0.970891 + 0.239520i \(0.923010\pi\)
\(440\) −6158.24 −0.667233
\(441\) −2242.51 1095.07i −0.242146 0.118245i
\(442\) 5269.46 0.567065
\(443\) −6094.79 + 6094.79i −0.653662 + 0.653662i −0.953873 0.300211i \(-0.902943\pi\)
0.300211 + 0.953873i \(0.402943\pi\)
\(444\) 2393.00 1494.52i 0.255781 0.159745i
\(445\) −17544.5 17544.5i −1.86896 1.86896i
\(446\) −7268.67 7268.67i −0.771708 0.771708i
\(447\) −42.7615 9.88300i −0.00452471 0.00104575i
\(448\) 1013.08i 0.106838i
\(449\) −3305.30 3305.30i −0.347410 0.347410i 0.511734 0.859144i \(-0.329003\pi\)
−0.859144 + 0.511734i \(0.829003\pi\)
\(450\) −2163.86 6294.06i −0.226679 0.659345i
\(451\) −17713.2 −1.84940
\(452\) 510.564 + 510.564i 0.0531304 + 0.0531304i
\(453\) −475.412 + 2057.00i −0.0493087 + 0.213347i
\(454\) 3831.49 3831.49i 0.396081 0.396081i
\(455\) 15934.1i 1.64176i
\(456\) −558.450 + 2416.28i −0.0573505 + 0.248142i
\(457\) 6262.39i 0.641011i 0.947247 + 0.320506i \(0.103853\pi\)
−0.947247 + 0.320506i \(0.896147\pi\)
\(458\) 330.445i 0.0337133i
\(459\) 600.667 + 5754.58i 0.0610823 + 0.585187i
\(460\) 12825.3 1.29996
\(461\) 11042.5 11042.5i 1.11562 1.11562i 0.123246 0.992376i \(-0.460670\pi\)
0.992376 0.123246i \(-0.0393303\pi\)
\(462\) −1809.81 + 7830.62i −0.182251 + 0.788557i
\(463\) 16393.4i 1.64550i 0.568407 + 0.822748i \(0.307560\pi\)
−0.568407 + 0.822748i \(0.692440\pi\)
\(464\) 1356.49 2098.46i 0.135719 0.209953i
\(465\) −2760.12 + 1723.80i −0.275263 + 0.171912i
\(466\) −734.049 + 734.049i −0.0729703 + 0.0729703i
\(467\) 4301.55 + 4301.55i 0.426236 + 0.426236i 0.887344 0.461108i \(-0.152548\pi\)
−0.461108 + 0.887344i \(0.652548\pi\)
\(468\) −6200.09 3027.65i −0.612391 0.299045i
\(469\) 6976.55i 0.686881i
\(470\) −9495.75 −0.931929
\(471\) 534.665 + 856.098i 0.0523059 + 0.0837514i
\(472\) 4084.00 + 4084.00i 0.398266 + 0.398266i
\(473\) −21866.6 −2.12564
\(474\) −4451.98 1028.94i −0.431405 0.0997062i
\(475\) −5199.45 + 5199.45i −0.502246 + 0.502246i
\(476\) −1846.42 + 1846.42i −0.177795 + 0.177795i
\(477\) 709.143 1452.20i 0.0680701 0.139396i
\(478\) −3826.78 + 3826.78i −0.366177 + 0.366177i
\(479\) 5678.46 5678.46i 0.541661 0.541661i −0.382355 0.924016i \(-0.624887\pi\)
0.924016 + 0.382355i \(0.124887\pi\)
\(480\) 1387.79 + 2222.10i 0.131966 + 0.211301i
\(481\) 6132.19 6132.19i 0.581297 0.581297i
\(482\) 9138.72 9138.72i 0.863604 0.863604i
\(483\) 3769.15 16308.2i 0.355077 1.53634i
\(484\) −4223.70 −0.396666
\(485\) 6070.20 + 6070.20i 0.568317 + 0.568317i
\(486\) 2599.63 7116.01i 0.242637 0.664174i
\(487\) −9649.48 −0.897864 −0.448932 0.893566i \(-0.648195\pi\)
−0.448932 + 0.893566i \(0.648195\pi\)
\(488\) 6125.75i 0.568237i
\(489\) −3006.33 4813.69i −0.278018 0.445159i
\(490\) 2059.56 + 2059.56i 0.189880 + 0.189880i
\(491\) 11222.4 11222.4i 1.03149 1.03149i 0.0320000 0.999488i \(-0.489812\pi\)
0.999488 0.0320000i \(-0.0101877\pi\)
\(492\) 3991.74 + 6391.51i 0.365775 + 0.585674i
\(493\) −6296.91 + 1352.29i −0.575250 + 0.123538i
\(494\) 7622.91i 0.694273i
\(495\) −6757.25 19654.9i −0.613567 1.78469i
\(496\) 449.695 449.695i 0.0407095 0.0407095i
\(497\) −15846.8 −1.43024
\(498\) 1680.91 1049.79i 0.151252 0.0944625i
\(499\) 13718.4i 1.23070i −0.788253 0.615351i \(-0.789014\pi\)
0.788253 0.615351i \(-0.210986\pi\)
\(500\) 110.128i 0.00985017i
\(501\) 15149.2 + 3501.28i 1.35093 + 0.312226i
\(502\) 144.733i 0.0128681i
\(503\) −9744.83 + 9744.83i −0.863819 + 0.863819i −0.991779 0.127961i \(-0.959157\pi\)
0.127961 + 0.991779i \(0.459157\pi\)
\(504\) 3233.40 1111.62i 0.285768 0.0982454i
\(505\) 26.2891 + 26.2891i 0.00231654 + 0.00231654i
\(506\) 19884.3 1.74696
\(507\) −9541.13 2205.14i −0.835772 0.193163i
\(508\) −967.673 967.673i −0.0845149 0.0845149i
\(509\) 3483.49i 0.303345i 0.988431 + 0.151673i \(0.0484660\pi\)
−0.988431 + 0.151673i \(0.951534\pi\)
\(510\) 1520.60 6579.30i 0.132026 0.571248i
\(511\) −7038.16 7038.16i −0.609295 0.609295i
\(512\) −362.039 362.039i −0.0312500 0.0312500i
\(513\) −8324.70 + 868.939i −0.716461 + 0.0747848i
\(514\) 976.607 976.607i 0.0838060 0.0838060i
\(515\) −11341.9 −0.970453
\(516\) 4927.74 + 7890.22i 0.420410 + 0.673154i
\(517\) −14722.2 −1.25238
\(518\) 4297.45i 0.364515i
\(519\) −17457.2 4034.71i −1.47647 0.341241i
\(520\) 5694.25 + 5694.25i 0.480211 + 0.480211i
\(521\) 2368.28 0.199148 0.0995742 0.995030i \(-0.468252\pi\)
0.0995742 + 0.995030i \(0.468252\pi\)
\(522\) 8185.97 + 2026.87i 0.686380 + 0.169949i
\(523\) 9106.60 0.761384 0.380692 0.924702i \(-0.375686\pi\)
0.380692 + 0.924702i \(0.375686\pi\)
\(524\) 4335.43 + 4335.43i 0.361439 + 0.361439i
\(525\) 9877.40 + 2282.86i 0.821114 + 0.189776i
\(526\) 2340.15i 0.193984i
\(527\) −1639.21 −0.135493
\(528\) 2151.62 + 3445.14i 0.177343 + 0.283959i
\(529\) −29244.5 −2.40359
\(530\) −1333.72 + 1333.72i −0.109308 + 0.109308i
\(531\) −8553.45 + 17516.0i −0.699036 + 1.43150i
\(532\) −2671.07 2671.07i −0.217680 0.217680i
\(533\) 16378.6 + 16378.6i 1.33102 + 1.33102i
\(534\) −3685.17 + 15944.9i −0.298638 + 1.29214i
\(535\) 2467.87i 0.199431i
\(536\) 2493.17 + 2493.17i 0.200911 + 0.200911i
\(537\) −17665.7 4082.89i −1.41961 0.328100i
\(538\) 9857.95 0.789974
\(539\) 3193.13 + 3193.13i 0.255172 + 0.255172i
\(540\) −5569.39 + 6867.57i −0.443831 + 0.547284i
\(541\) 14412.0 14412.0i 1.14532 1.14532i 0.157861 0.987461i \(-0.449540\pi\)
0.987461 0.157861i \(-0.0504598\pi\)
\(542\) 11078.8i 0.877999i
\(543\) 4213.68 + 973.864i 0.333014 + 0.0769660i
\(544\) 1319.69i 0.104009i
\(545\) 4505.44i 0.354114i
\(546\) 8914.08 5567.18i 0.698695 0.436361i
\(547\) 6306.06 0.492920 0.246460 0.969153i \(-0.420733\pi\)
0.246460 + 0.969153i \(0.420733\pi\)
\(548\) 1169.71 1169.71i 0.0911812 0.0911812i
\(549\) −19551.3 + 6721.60i −1.51990 + 0.522534i
\(550\) 12043.3i 0.933687i
\(551\) −1956.26 9109.24i −0.151251 0.704296i
\(552\) −4481.01 7174.92i −0.345515 0.553234i
\(553\) 4921.42 4921.42i 0.378445 0.378445i
\(554\) −12776.6 12776.6i −0.979830 0.979830i
\(555\) −5886.92 9426.05i −0.450245 0.720925i
\(556\) 2085.31i 0.159059i
\(557\) 3114.66 0.236934 0.118467 0.992958i \(-0.462202\pi\)
0.118467 + 0.992958i \(0.462202\pi\)
\(558\) 1928.71 + 941.832i 0.146324 + 0.0714533i
\(559\) 20219.1 + 20219.1i 1.52983 + 1.52983i
\(560\) −3990.54 −0.301127
\(561\) 2357.54 10200.5i 0.177425 0.767676i
\(562\) 9439.77 9439.77i 0.708528 0.708528i
\(563\) −3327.41 + 3327.41i −0.249083 + 0.249083i −0.820594 0.571511i \(-0.806357\pi\)
0.571511 + 0.820594i \(0.306357\pi\)
\(564\) 3317.71 + 5312.26i 0.247696 + 0.396608i
\(565\) 2011.12 2011.12i 0.149749 0.149749i
\(566\) −10643.4 + 10643.4i −0.790418 + 0.790418i
\(567\) 7095.83 + 9100.13i 0.525568 + 0.674021i
\(568\) −5663.08 + 5663.08i −0.418341 + 0.418341i
\(569\) 8542.39 8542.39i 0.629377 0.629377i −0.318534 0.947911i \(-0.603191\pi\)
0.947911 + 0.318534i \(0.103191\pi\)
\(570\) 9517.76 + 2199.74i 0.699395 + 0.161644i
\(571\) −367.898 −0.0269633 −0.0134817 0.999909i \(-0.504291\pi\)
−0.0134817 + 0.999909i \(0.504291\pi\)
\(572\) 8828.35 + 8828.35i 0.645335 + 0.645335i
\(573\) −4301.85 6888.06i −0.313634 0.502186i
\(574\) −11478.1 −0.834648
\(575\) 25081.7i 1.81909i
\(576\) 758.246 1552.75i 0.0548500 0.112323i
\(577\) 1122.03 + 1122.03i 0.0809544 + 0.0809544i 0.746425 0.665470i \(-0.231769\pi\)
−0.665470 + 0.746425i \(0.731769\pi\)
\(578\) −4542.80 + 4542.80i −0.326913 + 0.326913i
\(579\) −9446.15 + 5899.48i −0.678012 + 0.423444i
\(580\) −8265.84 5343.22i −0.591759 0.382526i
\(581\) 3018.65i 0.215550i
\(582\) 1275.03 5516.75i 0.0908103 0.392915i
\(583\) −2067.80 + 2067.80i −0.146894 + 0.146894i
\(584\) −5030.36 −0.356435
\(585\) −11925.9 + 24422.2i −0.842865 + 1.72604i
\(586\) 4188.54i 0.295268i
\(587\) 20052.3i 1.40996i −0.709227 0.704980i \(-0.750956\pi\)
0.709227 0.704980i \(-0.249044\pi\)
\(588\) 432.604 1871.78i 0.0303406 0.131277i
\(589\) 2371.32i 0.165889i
\(590\) 16086.9 16086.9i 1.12252 1.12252i
\(591\) −4174.73 + 18063.1i −0.290567 + 1.25722i
\(592\) 1535.75 + 1535.75i 0.106620 + 0.106620i
\(593\) 11309.6 0.783185 0.391592 0.920139i \(-0.371924\pi\)
0.391592 + 0.920139i \(0.371924\pi\)
\(594\) −8634.76 + 10647.5i −0.596445 + 0.735472i
\(595\) 7273.07 + 7273.07i 0.501121 + 0.501121i
\(596\) 33.7855i 0.00232199i
\(597\) 14087.3 + 3255.84i 0.965751 + 0.223204i
\(598\) −18386.1 18386.1i −1.25730 1.25730i
\(599\) −272.130 272.130i −0.0185625 0.0185625i 0.697765 0.716327i \(-0.254178\pi\)
−0.716327 + 0.697765i \(0.754178\pi\)
\(600\) 4345.63 2714.01i 0.295683 0.184665i
\(601\) −4879.02 + 4879.02i −0.331147 + 0.331147i −0.853022 0.521875i \(-0.825233\pi\)
0.521875 + 0.853022i \(0.325233\pi\)
\(602\) −14169.6 −0.959317
\(603\) −5221.63 + 10693.0i −0.352639 + 0.722143i
\(604\) −1625.22 −0.109486
\(605\) 16637.2i 1.11801i
\(606\) 5.52195 23.8922i 0.000370155 0.00160158i
\(607\) −6436.61 6436.61i −0.430402 0.430402i 0.458363 0.888765i \(-0.348436\pi\)
−0.888765 + 0.458363i \(0.848436\pi\)
\(608\) −1909.09 −0.127342
\(609\) −9223.47 + 8940.29i −0.613718 + 0.594875i
\(610\) 24129.4 1.60159
\(611\) 13613.0 + 13613.0i 0.901344 + 0.901344i
\(612\) −4211.98 + 1448.05i −0.278201 + 0.0956439i
\(613\) 28676.9i 1.88948i 0.327827 + 0.944738i \(0.393684\pi\)
−0.327827 + 0.944738i \(0.606316\pi\)
\(614\) −9098.07 −0.597994
\(615\) 25176.2 15723.5i 1.65074 1.03095i
\(616\) −6186.91 −0.404672
\(617\) −11787.2 + 11787.2i −0.769101 + 0.769101i −0.977948 0.208847i \(-0.933029\pi\)
0.208847 + 0.977948i \(0.433029\pi\)
\(618\) 3962.73 + 6345.06i 0.257936 + 0.413003i
\(619\) 8372.80 + 8372.80i 0.543670 + 0.543670i 0.924603 0.380933i \(-0.124397\pi\)
−0.380933 + 0.924603i \(0.624397\pi\)
\(620\) −1771.35 1771.35i −0.114741 0.114741i
\(621\) 17983.0 22174.6i 1.16205 1.43291i
\(622\) 6241.63i 0.402358i
\(623\) −17626.2 17626.2i −1.13351 1.13351i
\(624\) 1196.06 5175.08i 0.0767320 0.332001i
\(625\) −15840.4 −1.01378
\(626\) 6828.03 + 6828.03i 0.435947 + 0.435947i
\(627\) 14756.3 + 3410.47i 0.939888 + 0.217226i
\(628\) −549.416 + 549.416i −0.0349110 + 0.0349110i
\(629\) 5598.05i 0.354863i
\(630\) −4378.70 12736.4i −0.276907 0.805445i
\(631\) 13809.1i 0.871208i 0.900139 + 0.435604i \(0.143465\pi\)
−0.900139 + 0.435604i \(0.856535\pi\)
\(632\) 3517.48i 0.221389i
\(633\) −6736.39 10786.2i −0.422982 0.677272i
\(634\) −1768.15 −0.110761
\(635\) −3811.67 + 3811.67i −0.238207 + 0.238207i
\(636\) 1212.12 + 280.145i 0.0755718 + 0.0174661i
\(637\) 5905.10i 0.367298i
\(638\) −12815.3 8284.11i −0.795240 0.514061i
\(639\) −24288.5 11860.6i −1.50366 0.734272i
\(640\) −1426.07 + 1426.07i −0.0880789 + 0.0880789i
\(641\) 4606.16 + 4606.16i 0.283826 + 0.283826i 0.834633 0.550807i \(-0.185680\pi\)
−0.550807 + 0.834633i \(0.685680\pi\)
\(642\) −1380.62 + 862.247i −0.0848732 + 0.0530065i
\(643\) 18074.2i 1.10852i −0.832345 0.554258i \(-0.813002\pi\)
0.832345 0.554258i \(-0.186998\pi\)
\(644\) 12885.0 0.788417
\(645\) 31079.7 19410.4i 1.89730 1.18494i
\(646\) 3479.46 + 3479.46i 0.211916 + 0.211916i
\(647\) 4761.60 0.289332 0.144666 0.989481i \(-0.453789\pi\)
0.144666 + 0.989481i \(0.453789\pi\)
\(648\) 5787.85 + 716.265i 0.350877 + 0.0434221i
\(649\) 24941.1 24941.1i 1.50851 1.50851i
\(650\) 11135.9 11135.9i 0.671979 0.671979i
\(651\) −2772.97 + 1731.82i −0.166945 + 0.104263i
\(652\) 3089.27 3089.27i 0.185560 0.185560i
\(653\) 1332.45 1332.45i 0.0798512 0.0798512i −0.666053 0.745904i \(-0.732018\pi\)
0.745904 + 0.666053i \(0.232018\pi\)
\(654\) −2520.51 + 1574.15i −0.150703 + 0.0941195i
\(655\) 17077.3 17077.3i 1.01873 1.01873i
\(656\) −4101.87 + 4101.87i −0.244133 + 0.244133i
\(657\) −5519.67 16055.2i −0.327767 0.953381i
\(658\) −9539.97 −0.565208
\(659\) −6743.81 6743.81i −0.398636 0.398636i 0.479115 0.877752i \(-0.340958\pi\)
−0.877752 + 0.479115i \(0.840958\pi\)
\(660\) 13570.4 8475.24i 0.800346 0.499846i
\(661\) 7758.25 0.456522 0.228261 0.973600i \(-0.426696\pi\)
0.228261 + 0.973600i \(0.426696\pi\)
\(662\) 3013.44i 0.176919i
\(663\) −11611.9 + 7252.07i −0.680194 + 0.424807i
\(664\) 1078.75 + 1078.75i 0.0630479 + 0.0630479i
\(665\) −10521.4 + 10521.4i −0.613536 + 0.613536i
\(666\) −3216.44 + 6586.71i −0.187139 + 0.383228i
\(667\) 26689.5 + 17252.7i 1.54936 + 1.00154i
\(668\) 11969.3i 0.693271i
\(669\) 26020.9 + 6013.93i 1.50378 + 0.347552i
\(670\) 9820.60 9820.60i 0.566273 0.566273i
\(671\) 37410.1 2.15231
\(672\) 1394.25 + 2232.45i 0.0800362 + 0.128153i
\(673\) 576.439i 0.0330165i 0.999864 + 0.0165082i \(0.00525498\pi\)
−0.999864 + 0.0165082i \(0.994745\pi\)
\(674\) 4856.00i 0.277517i
\(675\) 13430.5 + 10891.7i 0.765838 + 0.621071i
\(676\) 7538.38i 0.428902i
\(677\) −16837.8 + 16837.8i −0.955876 + 0.955876i −0.999067 0.0431909i \(-0.986248\pi\)
0.0431909 + 0.999067i \(0.486248\pi\)
\(678\) −1827.75 422.429i −0.103532 0.0239282i
\(679\) 6098.47 + 6098.47i 0.344680 + 0.344680i
\(680\) 5198.26 0.293153
\(681\) −3170.09 + 13716.2i −0.178382 + 0.771816i
\(682\) −2746.30 2746.30i −0.154195 0.154195i
\(683\) 27769.5i 1.55574i −0.628424 0.777871i \(-0.716300\pi\)
0.628424 0.777871i \(-0.283700\pi\)
\(684\) −2094.79 6093.14i −0.117100 0.340610i
\(685\) −4607.48 4607.48i −0.256997 0.256997i
\(686\) 9747.60 + 9747.60i 0.542515 + 0.542515i
\(687\) −454.773 728.176i −0.0252557 0.0404391i
\(688\) −5063.69 + 5063.69i −0.280598 + 0.280598i
\(689\) 3824.01 0.211441
\(690\) −28262.1 + 17650.7i −1.55930 + 0.973844i
\(691\) −7657.03 −0.421544 −0.210772 0.977535i \(-0.567598\pi\)
−0.210772 + 0.977535i \(0.567598\pi\)
\(692\) 13792.8i 0.757696i
\(693\) −6788.72 19746.5i −0.372124 1.08240i
\(694\) 5722.03 + 5722.03i 0.312976 + 0.312976i
\(695\) −8214.07 −0.448313
\(696\) −101.200 + 6491.07i −0.00551145 + 0.353510i
\(697\) 14951.9 0.812547
\(698\) −16114.8 16114.8i −0.873858 0.873858i
\(699\) 607.335 2627.80i 0.0328634 0.142192i
\(700\) 7804.06i 0.421380i
\(701\) 27473.0 1.48023 0.740114 0.672481i \(-0.234771\pi\)
0.740114 + 0.672481i \(0.234771\pi\)
\(702\) 17829.4 1861.05i 0.958588 0.100058i
\(703\) 8098.26 0.434469
\(704\) −2210.98 + 2210.98i −0.118366 + 0.118366i
\(705\) 20925.1 13068.5i 1.11785 0.698138i
\(706\) −9533.71 9533.71i −0.508224 0.508224i
\(707\) 26.4116 + 26.4116i 0.00140496 + 0.00140496i
\(708\) −14620.2 3379.01i −0.776074 0.179366i
\(709\) 20013.9i 1.06014i 0.847955 + 0.530068i \(0.177834\pi\)
−0.847955 + 0.530068i \(0.822166\pi\)
\(710\) 22306.9 + 22306.9i 1.17910 + 1.17910i
\(711\) 11226.5 3859.62i 0.592164 0.203582i
\(712\) −12597.9 −0.663100
\(713\) 5719.51 + 5719.51i 0.300417 + 0.300417i
\(714\) 1527.69 6609.94i 0.0800731 0.346458i
\(715\) 34774.9 34774.9i 1.81889 1.81889i
\(716\) 13957.5i 0.728516i
\(717\) 3166.19 13699.3i 0.164914 0.713545i
\(718\) 21136.4i 1.09861i
\(719\) 9112.14i 0.472636i −0.971676 0.236318i \(-0.924059\pi\)
0.971676 0.236318i \(-0.0759407\pi\)
\(720\) −6116.31 2986.74i −0.316585 0.154596i
\(721\) −11394.7 −0.588573
\(722\) 4666.63 4666.63i 0.240545 0.240545i
\(723\) −7561.17 + 32715.4i −0.388939 + 1.68285i
\(724\) 3329.20i 0.170896i
\(725\) −10449.4 + 16165.0i −0.535286 + 0.828074i
\(726\) 9307.44 5812.85i 0.475801 0.297156i
\(727\) −4344.61 + 4344.61i −0.221640 + 0.221640i −0.809189 0.587549i \(-0.800093\pi\)
0.587549 + 0.809189i \(0.300093\pi\)
\(728\) 5720.77 + 5720.77i 0.291244 + 0.291244i
\(729\) 4064.77 + 19258.7i 0.206512 + 0.978444i
\(730\) 19814.7i 1.00462i
\(731\) 18457.9 0.933915
\(732\) −8430.54 13498.8i −0.425685 0.681601i
\(733\) 12615.9 + 12615.9i 0.635716 + 0.635716i 0.949496 0.313780i \(-0.101595\pi\)
−0.313780 + 0.949496i \(0.601595\pi\)
\(734\) −4164.42 −0.209416
\(735\) −7372.95 1704.03i −0.370007 0.0855158i
\(736\) 4604.64 4604.64i 0.230610 0.230610i
\(737\) 15225.8 15225.8i 0.760991 0.760991i
\(738\) −17592.6 8590.86i −0.877495 0.428501i
\(739\) −22751.0 + 22751.0i −1.13249 + 1.13249i −0.142725 + 0.989762i \(0.545586\pi\)
−0.989762 + 0.142725i \(0.954414\pi\)
\(740\) 6049.33 6049.33i 0.300511 0.300511i
\(741\) −10491.0 16798.0i −0.520103 0.832781i
\(742\) −1339.93 + 1339.93i −0.0662945 + 0.0662945i
\(743\) −25472.2 + 25472.2i −1.25772 + 1.25772i −0.305541 + 0.952179i \(0.598837\pi\)
−0.952179 + 0.305541i \(0.901163\pi\)
\(744\) −372.067 + 1609.85i −0.0183342 + 0.0793279i
\(745\) −133.081 −0.00654460
\(746\) −6568.67 6568.67i −0.322381 0.322381i
\(747\) −2259.32 + 4626.69i −0.110662 + 0.226616i
\(748\) 8059.36 0.393956
\(749\) 2479.37i 0.120953i
\(750\) 151.563 + 242.681i 0.00737908 + 0.0118153i
\(751\) −10634.2 10634.2i −0.516707 0.516707i 0.399867 0.916573i \(-0.369056\pi\)
−0.916573 + 0.399867i \(0.869056\pi\)
\(752\) −3409.24 + 3409.24i −0.165322 + 0.165322i
\(753\) −199.189 318.938i −0.00963989 0.0154352i
\(754\) 4189.81 + 19509.7i 0.202366 + 0.942311i
\(755\) 6401.75i 0.308588i
\(756\) −5595.33 + 6899.55i −0.269180 + 0.331924i
\(757\) −1529.77 + 1529.77i −0.0734485 + 0.0734485i −0.742877 0.669428i \(-0.766539\pi\)
0.669428 + 0.742877i \(0.266539\pi\)
\(758\) 22764.0 1.09080
\(759\) −43817.4 + 27365.6i −2.09548 + 1.30871i
\(760\) 7519.92i 0.358916i
\(761\) 18885.3i 0.899594i −0.893131 0.449797i \(-0.851496\pi\)
0.893131 0.449797i \(-0.148504\pi\)
\(762\) 3464.14 + 800.631i 0.164688 + 0.0380627i
\(763\) 4526.42i 0.214767i
\(764\) 4420.53 4420.53i 0.209331 0.209331i
\(765\) 5703.89 + 16591.0i 0.269575 + 0.784117i
\(766\) 8737.33 + 8737.33i 0.412131 + 0.412131i
\(767\) −46123.9 −2.17137
\(768\) 1296.05 + 299.542i 0.0608948 + 0.0140740i
\(769\) 26440.6 + 26440.6i 1.23989 + 1.23989i 0.960047 + 0.279840i \(0.0902814\pi\)
0.279840 + 0.960047i \(0.409719\pi\)
\(770\) 24370.3i 1.14058i
\(771\) −808.022 + 3496.12i −0.0377435 + 0.163307i
\(772\) −6062.24 6062.24i −0.282623 0.282623i
\(773\) −4598.80 4598.80i −0.213981 0.213981i 0.591975 0.805956i \(-0.298348\pi\)
−0.805956 + 0.591975i \(0.798348\pi\)
\(774\) −21717.8 10605.3i −1.00856 0.492505i
\(775\) −3464.13 + 3464.13i −0.160562 + 0.160562i
\(776\) 4358.74 0.201636
\(777\) −5914.34 9469.94i −0.273070 0.437236i
\(778\) 865.043 0.0398628
\(779\) 21629.8i 0.994824i
\(780\) −20384.7 4711.29i −0.935754 0.216271i
\(781\) 34584.6 + 34584.6i 1.58455 + 1.58455i
\(782\) −16784.6 −0.767540
\(783\) −20828.3 + 6799.46i −0.950627 + 0.310336i
\(784\) 1478.88 0.0673687
\(785\) 2164.15 + 2164.15i 0.0983974 + 0.0983974i
\(786\) −15520.3 3587.04i −0.704313 0.162780i
\(787\) 3842.32i 0.174033i −0.996207 0.0870164i \(-0.972267\pi\)
0.996207 0.0870164i \(-0.0277333\pi\)
\(788\) −14271.5 −0.645179
\(789\) −3220.62 5156.81i −0.145320 0.232683i
\(790\) −13855.4 −0.623990
\(791\) 2020.48 2020.48i 0.0908219 0.0908219i
\(792\) −9482.71 4630.63i −0.425446 0.207755i
\(793\) −34591.5 34591.5i −1.54903 1.54903i
\(794\) −16171.5 16171.5i −0.722804 0.722804i
\(795\) 1103.49 4774.55i 0.0492287 0.213001i
\(796\) 11130.2i 0.495604i
\(797\) 9321.29 + 9321.29i 0.414275 + 0.414275i 0.883225 0.468950i \(-0.155368\pi\)
−0.468950 + 0.883225i \(0.655368\pi\)
\(798\) 9562.09 + 2209.98i 0.424178 + 0.0980358i
\(799\) 12427.2 0.550242
\(800\) 2788.89 + 2788.89i 0.123253 + 0.123253i
\(801\) −13823.3 40208.1i −0.609767 1.77364i
\(802\) −16366.5 + 16366.5i −0.720601 + 0.720601i
\(803\) 30720.5i 1.35007i
\(804\) −8925.20 2062.79i −0.391502 0.0904837i
\(805\) 50754.2i 2.22217i
\(806\) 5078.77i 0.221950i
\(807\) −21723.2 + 13567.0i −0.947574 + 0.591796i
\(808\) 18.8771 0.000821897
\(809\) 2010.56 2010.56i 0.0873766 0.0873766i −0.662068 0.749444i \(-0.730321\pi\)
0.749444 + 0.662068i \(0.230321\pi\)
\(810\) 2821.37 22798.4i 0.122386 0.988955i
\(811\) 40158.1i 1.73877i 0.494135 + 0.869385i \(0.335485\pi\)
−0.494135 + 0.869385i \(0.664515\pi\)
\(812\) −8304.33 5368.11i −0.358898 0.232000i
\(813\) 15247.1 + 24413.5i 0.657738 + 1.05316i
\(814\) 9378.86 9378.86i 0.403844 0.403844i
\(815\) −12168.7 12168.7i −0.523006 0.523006i
\(816\) −1816.21 2908.09i −0.0779169 0.124759i
\(817\) 26701.7i 1.14342i
\(818\) −22479.5 −0.960853
\(819\) −11981.5 + 24535.9i −0.511192 + 1.04683i
\(820\) 16157.3 + 16157.3i 0.688094 + 0.688094i
\(821\) −32496.9 −1.38142 −0.690711 0.723131i \(-0.742702\pi\)
−0.690711 + 0.723131i \(0.742702\pi\)
\(822\) −967.787 + 4187.39i −0.0410650 + 0.177679i
\(823\) 20109.0 20109.0i 0.851707 0.851707i −0.138637 0.990343i \(-0.544272\pi\)
0.990343 + 0.138637i \(0.0442720\pi\)
\(824\) −4072.05 + 4072.05i −0.172156 + 0.172156i
\(825\) −16574.5 26538.9i −0.699456 1.11996i
\(826\) 16161.8 16161.8i 0.680802 0.680802i
\(827\) 15846.7 15846.7i 0.666315 0.666315i −0.290546 0.956861i \(-0.593837\pi\)
0.956861 + 0.290546i \(0.0938369\pi\)
\(828\) 19748.9 + 9643.85i 0.828891 + 0.404767i
\(829\) 10339.2 10339.2i 0.433166 0.433166i −0.456538 0.889704i \(-0.650911\pi\)
0.889704 + 0.456538i \(0.150911\pi\)
\(830\) 4249.22 4249.22i 0.177702 0.177702i
\(831\) 45738.5 + 10571.1i 1.90933 + 0.441283i
\(832\) 4088.79 0.170377
\(833\) −2695.37 2695.37i −0.112112 0.112112i
\(834\) 2869.90 + 4595.24i 0.119157 + 0.190792i
\(835\) 47147.1 1.95400
\(836\) 11658.8i 0.482332i
\(837\) −5546.33 + 578.930i −0.229043 + 0.0239077i
\(838\) −21040.4 21040.4i −0.867337 0.867337i
\(839\) −3428.47 + 3428.47i −0.141078 + 0.141078i −0.774118 0.633041i \(-0.781807\pi\)
0.633041 + 0.774118i \(0.281807\pi\)
\(840\) 8793.64 5491.96i 0.361202 0.225584i
\(841\) −10013.5 22238.6i −0.410574 0.911827i
\(842\) 2629.97i 0.107642i
\(843\) −7810.25 + 33793.1i −0.319097 + 1.38066i
\(844\) 6922.24 6922.24i 0.282314 0.282314i
\(845\) −29693.7 −1.20887
\(846\) −14622.0 7140.24i −0.594223 0.290173i
\(847\) 16714.7i 0.678067i
\(848\) 957.687i 0.0387820i
\(849\) 8806.13 38102.1i 0.355978 1.54024i
\(850\) 10165.9i 0.410222i
\(851\) −19532.6 + 19532.6i −0.786804 + 0.786804i
\(852\) 4685.50 20273.1i 0.188407 0.815193i
\(853\) −6684.17 6684.17i −0.268302 0.268302i 0.560114 0.828416i \(-0.310757\pi\)
−0.828416 + 0.560114i \(0.810757\pi\)
\(854\) 24241.8 0.971354
\(855\) −24000.9 + 8251.38i −0.960017 + 0.330048i
\(856\) −886.035 886.035i −0.0353786 0.0353786i
\(857\) 13072.3i 0.521051i 0.965467 + 0.260526i \(0.0838959\pi\)
−0.965467 + 0.260526i \(0.916104\pi\)
\(858\) −31604.3 7304.37i −1.25752 0.290638i
\(859\) −20319.2 20319.2i −0.807079 0.807079i 0.177112 0.984191i \(-0.443325\pi\)
−0.984191 + 0.177112i \(0.943325\pi\)
\(860\) 19945.9 + 19945.9i 0.790872 + 0.790872i
\(861\) 25293.5 15796.7i 1.00116 0.625262i
\(862\) −13993.3 + 13993.3i −0.552917 + 0.552917i
\(863\) 26448.5 1.04324 0.521621 0.853177i \(-0.325327\pi\)
0.521621 + 0.853177i \(0.325327\pi\)
\(864\) 466.083 + 4465.22i 0.0183524 + 0.175821i
\(865\) −54330.1 −2.13558
\(866\) 21526.3i 0.844679i
\(867\) 3758.61 16262.6i 0.147231 0.637033i
\(868\) −1779.60 1779.60i −0.0695894 0.0695894i
\(869\) −21481.3 −0.838554
\(870\) 25568.4 + 398.627i 0.996378 + 0.0155342i
\(871\) −28157.3 −1.09538
\(872\) −1617.58 1617.58i −0.0628190 0.0628190i
\(873\) 4782.72 + 13911.6i 0.185419 + 0.539331i
\(874\) 24281.0i 0.939721i
\(875\) −435.816 −0.0168380
\(876\) 11085.0 6923.01i 0.427544 0.267017i
\(877\) 14409.3 0.554809 0.277404 0.960753i \(-0.410526\pi\)
0.277404 + 0.960753i \(0.410526\pi\)
\(878\) 6231.38 6231.38i 0.239520 0.239520i
\(879\) 5764.46 + 9229.97i 0.221195 + 0.354174i
\(880\) 8709.06 + 8709.06i 0.333616 + 0.333616i
\(881\) −36266.6 36266.6i −1.38689 1.38689i −0.831765 0.555127i \(-0.812670\pi\)
−0.555127 0.831765i \(-0.687330\pi\)
\(882\) 1622.73 + 4720.06i 0.0619502 + 0.180196i
\(883\) 42460.6i 1.61825i −0.587638 0.809124i \(-0.699942\pi\)
0.587638 0.809124i \(-0.300058\pi\)
\(884\) −7452.14 7452.14i −0.283532 0.283532i
\(885\) −13310.0 + 57589.1i −0.505547 + 2.18738i
\(886\) 17238.7 0.653662
\(887\) 27396.7 + 27396.7i 1.03708 + 1.03708i 0.999285 + 0.0377971i \(0.0120340\pi\)
0.0377971 + 0.999285i \(0.487966\pi\)
\(888\) −5497.78 1270.64i −0.207763 0.0480181i
\(889\) −3829.42 + 3829.42i −0.144471 + 0.144471i
\(890\) 49623.3i 1.86896i
\(891\) 4374.24 35346.5i 0.164470 1.32902i
\(892\) 20558.9i 0.771708i
\(893\) 17977.5i 0.673676i
\(894\) 46.4972 + 74.4505i 0.00173948 + 0.00278523i
\(895\) −54978.9 −2.05334
\(896\) −1432.71 + 1432.71i −0.0534192 + 0.0534192i
\(897\) 65819.9 + 15212.3i 2.45001 + 0.566246i
\(898\) 9348.81i 0.347410i
\(899\) −1303.36 6069.03i −0.0483530 0.225154i
\(900\) −5840.99 + 11961.3i −0.216333 + 0.443012i
\(901\) 1745.46 1745.46i 0.0645391 0.0645391i
\(902\) 25050.2 + 25050.2i 0.924701 + 0.924701i
\(903\) 31224.4 19500.8i 1.15070 0.718656i
\(904\) 1444.09i 0.0531304i
\(905\) 13113.8 0.481675
\(906\) 3581.37 2236.70i 0.131328 0.0820192i
\(907\) 6667.55 + 6667.55i 0.244093 + 0.244093i 0.818541 0.574448i \(-0.194783\pi\)
−0.574448 + 0.818541i \(0.694783\pi\)
\(908\) −10837.1 −0.396081
\(909\) 20.7132 + 60.2490i 0.000755792 + 0.00219838i
\(910\) 22534.2 22534.2i 0.820879 0.820879i
\(911\) 14589.7 14589.7i 0.530600 0.530600i −0.390151 0.920751i \(-0.627577\pi\)
0.920751 + 0.390151i \(0.127577\pi\)
\(912\) 4206.91 2627.37i 0.152746 0.0953959i
\(913\) 6587.98 6587.98i 0.238806 0.238806i
\(914\) 8856.36 8856.36i 0.320506 0.320506i
\(915\) −53172.1 + 33208.0i −1.92111 + 1.19980i
\(916\) 467.320 467.320i 0.0168566 0.0168566i
\(917\) 17156.8 17156.8i 0.617850 0.617850i
\(918\) 7288.73 8987.68i 0.262052 0.323135i
\(919\) 44892.2 1.61138 0.805689 0.592339i \(-0.201795\pi\)
0.805689 + 0.592339i \(0.201795\pi\)
\(920\) −18137.7 18137.7i −0.649981 0.649981i
\(921\) 20048.7 12521.2i 0.717294 0.447977i
\(922\) −31233.0 −1.11562
\(923\) 63957.7i 2.28082i
\(924\) 13633.6 8514.71i 0.485404 0.303153i
\(925\) −11830.3 11830.3i −0.420518 0.420518i
\(926\) 23183.7 23183.7i 0.822748 0.822748i
\(927\) −17464.7 8528.43i −0.618788 0.302169i
\(928\) −4886.03 + 1049.30i −0.172836 + 0.0371174i
\(929\) 16441.3i 0.580647i 0.956929 + 0.290323i \(0.0937628\pi\)
−0.956929 + 0.290323i \(0.906237\pi\)
\(930\) 6341.21 + 1465.58i 0.223588 + 0.0516754i
\(931\) 3899.18 3899.18i 0.137262 0.137262i
\(932\) 2076.20 0.0729703
\(933\) −8590.01 13754.2i −0.301419 0.482628i
\(934\) 12166.6i 0.426236i
\(935\) 31745.9i 1.11038i
\(936\) 4486.51 + 13050.0i 0.156673 + 0.455718i
\(937\) 7348.83i 0.256218i 0.991760 + 0.128109i \(0.0408907\pi\)
−0.991760 + 0.128109i \(0.959109\pi\)
\(938\) 9866.33 9866.33i 0.343440 0.343440i
\(939\) −24443.4 5649.35i −0.849501 0.196336i
\(940\) 13429.0 + 13429.0i 0.465964 + 0.465964i
\(941\) −47721.4 −1.65321 −0.826607 0.562780i \(-0.809732\pi\)
−0.826607 + 0.562780i \(0.809732\pi\)
\(942\) 454.574 1966.84i 0.0157227 0.0680287i
\(943\) −52170.1 52170.1i −1.80158 1.80158i
\(944\) 11551.3i 0.398266i
\(945\) 27177.4 + 22040.0i 0.935535 + 0.758691i
\(946\) 30924.1 + 30924.1i 1.06282 + 1.06282i
\(947\) 12280.8 + 12280.8i 0.421408 + 0.421408i 0.885688 0.464280i \(-0.153687\pi\)
−0.464280 + 0.885688i \(0.653687\pi\)
\(948\) 4840.91 + 7751.19i 0.165850 + 0.265556i
\(949\) 28406.0 28406.0i 0.971651 0.971651i
\(950\) 14706.3 0.502246
\(951\) 3896.34 2433.41i 0.132857 0.0829745i
\(952\) 5222.47 0.177795
\(953\) 5527.47i 0.187883i 0.995578 + 0.0939414i \(0.0299466\pi\)
−0.995578 + 0.0939414i \(0.970053\pi\)
\(954\) −3056.60 + 1050.84i −0.103733 + 0.0356627i
\(955\) −17412.5 17412.5i −0.590006 0.590006i
\(956\) 10823.8 0.366177
\(957\) 39641.1 + 618.030i 1.33899 + 0.0208757i
\(958\) −16061.1 −0.541661
\(959\) −4628.93 4628.93i −0.155867 0.155867i
\(960\) 1179.90 5105.15i 0.0396678 0.171633i
\(961\) 28211.1i 0.946968i
\(962\) −17344.5 −0.581297
\(963\) 1855.69 3800.13i 0.0620965 0.127163i
\(964\) −25848.2 −0.863604
\(965\) −23879.2 + 23879.2i −0.796579 + 0.796579i
\(966\) −28393.7 + 17732.9i −0.945706 + 0.590629i
\(967\) −27095.3 27095.3i −0.901061 0.901061i 0.0944673 0.995528i \(-0.469885\pi\)
−0.995528 + 0.0944673i \(0.969885\pi\)
\(968\) 5973.22 + 5973.22i 0.198333 + 0.198333i
\(969\) −12456.0 2878.83i −0.412946 0.0954399i
\(970\) 17169.1i 0.568317i
\(971\) 2685.79 + 2685.79i 0.0887652 + 0.0887652i 0.750095 0.661330i \(-0.230008\pi\)
−0.661330 + 0.750095i \(0.730008\pi\)
\(972\) −13740.0 + 6387.12i −0.453406 + 0.210769i
\(973\) −8252.32 −0.271898
\(974\) 13646.4 + 13646.4i 0.448932 + 0.448932i
\(975\) −9213.60 + 39865.1i −0.302637 + 1.30944i
\(976\) 8663.12 8663.12i 0.284119 0.284119i
\(977\) 30679.8i 1.00464i 0.864682 + 0.502320i \(0.167520\pi\)
−0.864682 + 0.502320i \(0.832480\pi\)
\(978\) −2555.99 + 11059.2i −0.0835701 + 0.361589i
\(979\) 76935.8i 2.51162i
\(980\) 5825.31i 0.189880i
\(981\) 3387.82 6937.67i 0.110260 0.225793i
\(982\) −31741.8 −1.03149
\(983\) 17932.1 17932.1i 0.581836 0.581836i −0.353571 0.935408i \(-0.615033\pi\)
0.935408 + 0.353571i \(0.115033\pi\)
\(984\) 3393.79 14684.1i 0.109949 0.475725i
\(985\) 56215.6i 1.81845i
\(986\) 10817.6 + 6992.74i 0.349394 + 0.225856i
\(987\) 21022.5 13129.3i 0.677967 0.423416i
\(988\) 10780.4 10780.4i 0.347137 0.347137i
\(989\) −64403.2 64403.2i −2.07068 2.07068i
\(990\) −18240.1 + 37352.5i −0.585563 + 1.19913i
\(991\) 28659.4i 0.918664i 0.888265 + 0.459332i \(0.151911\pi\)
−0.888265 + 0.459332i \(0.848089\pi\)
\(992\) −1271.93 −0.0407095
\(993\) 4147.23 + 6640.48i 0.132536 + 0.212215i
\(994\) 22410.8 + 22410.8i 0.715118 + 0.715118i
\(995\) 43842.1 1.39687
\(996\) −3861.80 892.537i −0.122857 0.0283947i
\(997\) −2279.88 + 2279.88i −0.0724217 + 0.0724217i −0.742390 0.669968i \(-0.766308\pi\)
0.669968 + 0.742390i \(0.266308\pi\)
\(998\) −19400.8 + 19400.8i −0.615351 + 0.615351i
\(999\) −1977.10 18941.2i −0.0626153 0.599874i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 174.4.f.a.17.13 60
3.2 odd 2 inner 174.4.f.a.17.21 yes 60
29.12 odd 4 inner 174.4.f.a.41.21 yes 60
87.41 even 4 inner 174.4.f.a.41.13 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
174.4.f.a.17.13 60 1.1 even 1 trivial
174.4.f.a.17.21 yes 60 3.2 odd 2 inner
174.4.f.a.41.13 yes 60 87.41 even 4 inner
174.4.f.a.41.21 yes 60 29.12 odd 4 inner