Properties

Label 1734.2.a.b
Level $1734$
Weight $2$
Character orbit 1734.a
Self dual yes
Analytic conductor $13.846$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1734,2,Mod(1,1734)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1734, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1734.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,-1,1,0,1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.8460597105\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{6} - 2 q^{7} - q^{8} + q^{9} - q^{12} + 2 q^{13} + 2 q^{14} + q^{16} - q^{18} - 4 q^{19} + 2 q^{21} + 6 q^{23} + q^{24} - 5 q^{25} - 2 q^{26} - q^{27} - 2 q^{28}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 1.00000 0 1.00000 −2.00000 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1734.2.a.b 1
3.b odd 2 1 5202.2.a.j 1
17.b even 2 1 102.2.a.b 1
17.c even 4 2 1734.2.b.f 2
17.d even 8 4 1734.2.f.b 4
51.c odd 2 1 306.2.a.c 1
68.d odd 2 1 816.2.a.d 1
85.c even 2 1 2550.2.a.u 1
85.g odd 4 2 2550.2.d.g 2
119.d odd 2 1 4998.2.a.d 1
136.e odd 2 1 3264.2.a.w 1
136.h even 2 1 3264.2.a.i 1
204.h even 2 1 2448.2.a.i 1
255.h odd 2 1 7650.2.a.j 1
408.b odd 2 1 9792.2.a.bg 1
408.h even 2 1 9792.2.a.ba 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.a.b 1 17.b even 2 1
306.2.a.c 1 51.c odd 2 1
816.2.a.d 1 68.d odd 2 1
1734.2.a.b 1 1.a even 1 1 trivial
1734.2.b.f 2 17.c even 4 2
1734.2.f.b 4 17.d even 8 4
2448.2.a.i 1 204.h even 2 1
2550.2.a.u 1 85.c even 2 1
2550.2.d.g 2 85.g odd 4 2
3264.2.a.i 1 136.h even 2 1
3264.2.a.w 1 136.e odd 2 1
4998.2.a.d 1 119.d odd 2 1
5202.2.a.j 1 3.b odd 2 1
7650.2.a.j 1 255.h odd 2 1
9792.2.a.ba 1 408.h even 2 1
9792.2.a.bg 1 408.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1734))\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 10 \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T + 8 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 6 \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T - 10 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T + 18 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less