Properties

Label 1728.4.f.h.863.10
Level $1728$
Weight $4$
Character 1728.863
Analytic conductor $101.955$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(863,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.863"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-384,0,304,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1248,0,-720] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(49)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 29x^{14} + 601x^{12} - 5608x^{10} + 37420x^{8} - 128832x^{6} + 318736x^{4} - 389376x^{2} + 331776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{30}\cdot 3^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 863.10
Root \(3.59605 - 2.07618i\) of defining polynomial
Character \(\chi\) \(=\) 1728.863
Dual form 1728.4.f.h.863.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.20969 q^{5} +10.6450i q^{7} -61.3898i q^{11} +46.7024i q^{13} -23.7154i q^{17} +145.390 q^{19} +57.4601 q^{23} -57.6010 q^{25} -48.8645 q^{29} +247.178i q^{31} +87.3922i q^{35} -71.1248i q^{37} -394.685i q^{41} +158.068 q^{43} -478.509 q^{47} +229.684 q^{49} +273.440 q^{53} -503.991i q^{55} +355.565i q^{59} -810.872i q^{61} +383.413i q^{65} -240.607 q^{67} +985.700 q^{71} +416.165 q^{73} +653.495 q^{77} +659.086i q^{79} -493.999i q^{83} -194.696i q^{85} -302.839i q^{89} -497.148 q^{91} +1193.61 q^{95} +537.681 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 384 q^{23} + 304 q^{25} + 1248 q^{47} - 720 q^{49} + 5088 q^{71} - 128 q^{73} + 11712 q^{95} + 4592 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.20969 0.734297 0.367149 0.930162i \(-0.380334\pi\)
0.367149 + 0.930162i \(0.380334\pi\)
\(6\) 0 0
\(7\) 10.6450i 0.574777i 0.957814 + 0.287388i \(0.0927870\pi\)
−0.957814 + 0.287388i \(0.907213\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 61.3898i − 1.68270i −0.540490 0.841351i \(-0.681761\pi\)
0.540490 0.841351i \(-0.318239\pi\)
\(12\) 0 0
\(13\) 46.7024i 0.996379i 0.867068 + 0.498190i \(0.166002\pi\)
−0.867068 + 0.498190i \(0.833998\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 23.7154i − 0.338343i −0.985587 0.169172i \(-0.945891\pi\)
0.985587 0.169172i \(-0.0541092\pi\)
\(18\) 0 0
\(19\) 145.390 1.75552 0.877758 0.479103i \(-0.159038\pi\)
0.877758 + 0.479103i \(0.159038\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 57.4601 0.520925 0.260462 0.965484i \(-0.416125\pi\)
0.260462 + 0.965484i \(0.416125\pi\)
\(24\) 0 0
\(25\) −57.6010 −0.460808
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −48.8645 −0.312893 −0.156447 0.987686i \(-0.550004\pi\)
−0.156447 + 0.987686i \(0.550004\pi\)
\(30\) 0 0
\(31\) 247.178i 1.43208i 0.698058 + 0.716041i \(0.254048\pi\)
−0.698058 + 0.716041i \(0.745952\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 87.3922i 0.422057i
\(36\) 0 0
\(37\) − 71.1248i − 0.316023i −0.987437 0.158011i \(-0.949492\pi\)
0.987437 0.158011i \(-0.0505083\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 394.685i − 1.50340i −0.659504 0.751701i \(-0.729234\pi\)
0.659504 0.751701i \(-0.270766\pi\)
\(42\) 0 0
\(43\) 158.068 0.560583 0.280292 0.959915i \(-0.409569\pi\)
0.280292 + 0.959915i \(0.409569\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −478.509 −1.48506 −0.742528 0.669815i \(-0.766373\pi\)
−0.742528 + 0.669815i \(0.766373\pi\)
\(48\) 0 0
\(49\) 229.684 0.669632
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 273.440 0.708677 0.354339 0.935117i \(-0.384706\pi\)
0.354339 + 0.935117i \(0.384706\pi\)
\(54\) 0 0
\(55\) − 503.991i − 1.23560i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 355.565i 0.784587i 0.919840 + 0.392293i \(0.128318\pi\)
−0.919840 + 0.392293i \(0.871682\pi\)
\(60\) 0 0
\(61\) − 810.872i − 1.70199i −0.525171 0.850996i \(-0.675999\pi\)
0.525171 0.850996i \(-0.324001\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 383.413i 0.731638i
\(66\) 0 0
\(67\) −240.607 −0.438729 −0.219364 0.975643i \(-0.570398\pi\)
−0.219364 + 0.975643i \(0.570398\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 985.700 1.64762 0.823811 0.566865i \(-0.191844\pi\)
0.823811 + 0.566865i \(0.191844\pi\)
\(72\) 0 0
\(73\) 416.165 0.667239 0.333619 0.942708i \(-0.391730\pi\)
0.333619 + 0.942708i \(0.391730\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 653.495 0.967177
\(78\) 0 0
\(79\) 659.086i 0.938645i 0.883027 + 0.469322i \(0.155502\pi\)
−0.883027 + 0.469322i \(0.844498\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 493.999i − 0.653294i −0.945146 0.326647i \(-0.894081\pi\)
0.945146 0.326647i \(-0.105919\pi\)
\(84\) 0 0
\(85\) − 194.696i − 0.248445i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 302.839i − 0.360683i −0.983604 0.180342i \(-0.942280\pi\)
0.983604 0.180342i \(-0.0577203\pi\)
\(90\) 0 0
\(91\) −497.148 −0.572695
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1193.61 1.28907
\(96\) 0 0
\(97\) 537.681 0.562817 0.281409 0.959588i \(-0.409198\pi\)
0.281409 + 0.959588i \(0.409198\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −36.4333 −0.0358936 −0.0179468 0.999839i \(-0.505713\pi\)
−0.0179468 + 0.999839i \(0.505713\pi\)
\(102\) 0 0
\(103\) − 852.950i − 0.815958i −0.912991 0.407979i \(-0.866234\pi\)
0.912991 0.407979i \(-0.133766\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1305.74i 1.17973i 0.807503 + 0.589864i \(0.200819\pi\)
−0.807503 + 0.589864i \(0.799181\pi\)
\(108\) 0 0
\(109\) 753.700i 0.662306i 0.943577 + 0.331153i \(0.107438\pi\)
−0.943577 + 0.331153i \(0.892562\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1431.45i − 1.19168i −0.803103 0.595840i \(-0.796819\pi\)
0.803103 0.595840i \(-0.203181\pi\)
\(114\) 0 0
\(115\) 471.730 0.382513
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 252.451 0.194472
\(120\) 0 0
\(121\) −2437.70 −1.83148
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1499.10 −1.07267
\(126\) 0 0
\(127\) 1187.29i 0.829563i 0.909921 + 0.414782i \(0.136142\pi\)
−0.909921 + 0.414782i \(0.863858\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 318.570i 0.212470i 0.994341 + 0.106235i \(0.0338797\pi\)
−0.994341 + 0.106235i \(0.966120\pi\)
\(132\) 0 0
\(133\) 1547.68i 1.00903i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2531.92i − 1.57895i −0.613781 0.789476i \(-0.710352\pi\)
0.613781 0.789476i \(-0.289648\pi\)
\(138\) 0 0
\(139\) 1223.07 0.746329 0.373165 0.927765i \(-0.378273\pi\)
0.373165 + 0.927765i \(0.378273\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2867.05 1.67661
\(144\) 0 0
\(145\) −401.162 −0.229756
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 775.698 0.426494 0.213247 0.976998i \(-0.431596\pi\)
0.213247 + 0.976998i \(0.431596\pi\)
\(150\) 0 0
\(151\) − 787.215i − 0.424256i −0.977242 0.212128i \(-0.931961\pi\)
0.977242 0.212128i \(-0.0680394\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2029.26i 1.05157i
\(156\) 0 0
\(157\) 3280.61i 1.66765i 0.552028 + 0.833826i \(0.313854\pi\)
−0.552028 + 0.833826i \(0.686146\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 611.664i 0.299415i
\(162\) 0 0
\(163\) −1146.44 −0.550894 −0.275447 0.961316i \(-0.588826\pi\)
−0.275447 + 0.961316i \(0.588826\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 179.881 0.0833510 0.0416755 0.999131i \(-0.486730\pi\)
0.0416755 + 0.999131i \(0.486730\pi\)
\(168\) 0 0
\(169\) 15.8818 0.00722885
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4130.86 1.81539 0.907697 0.419626i \(-0.137839\pi\)
0.907697 + 0.419626i \(0.137839\pi\)
\(174\) 0 0
\(175\) − 613.163i − 0.264862i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1232.13i 0.514489i 0.966346 + 0.257244i \(0.0828145\pi\)
−0.966346 + 0.257244i \(0.917185\pi\)
\(180\) 0 0
\(181\) − 1739.78i − 0.714457i −0.934017 0.357229i \(-0.883722\pi\)
0.934017 0.357229i \(-0.116278\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 583.912i − 0.232055i
\(186\) 0 0
\(187\) −1455.89 −0.569331
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4019.49 1.52272 0.761362 0.648328i \(-0.224531\pi\)
0.761362 + 0.648328i \(0.224531\pi\)
\(192\) 0 0
\(193\) 2091.11 0.779904 0.389952 0.920835i \(-0.372492\pi\)
0.389952 + 0.920835i \(0.372492\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5104.49 1.84609 0.923046 0.384689i \(-0.125691\pi\)
0.923046 + 0.384689i \(0.125691\pi\)
\(198\) 0 0
\(199\) − 493.677i − 0.175859i −0.996127 0.0879293i \(-0.971975\pi\)
0.996127 0.0879293i \(-0.0280249\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 520.163i − 0.179844i
\(204\) 0 0
\(205\) − 3240.24i − 1.10394i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 8925.48i − 2.95401i
\(210\) 0 0
\(211\) −1638.64 −0.534640 −0.267320 0.963608i \(-0.586138\pi\)
−0.267320 + 0.963608i \(0.586138\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1297.69 0.411635
\(216\) 0 0
\(217\) −2631.22 −0.823127
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1107.57 0.337118
\(222\) 0 0
\(223\) − 3074.33i − 0.923196i −0.887089 0.461598i \(-0.847276\pi\)
0.887089 0.461598i \(-0.152724\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1613.66i 0.471817i 0.971775 + 0.235908i \(0.0758065\pi\)
−0.971775 + 0.235908i \(0.924194\pi\)
\(228\) 0 0
\(229\) − 4.35984i − 0.00125811i −1.00000 0.000629054i \(-0.999800\pi\)
1.00000 0.000629054i \(-0.000200234\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 2075.46i − 0.583553i −0.956486 0.291777i \(-0.905754\pi\)
0.956486 0.291777i \(-0.0942464\pi\)
\(234\) 0 0
\(235\) −3928.41 −1.09047
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1066.01 −0.288514 −0.144257 0.989540i \(-0.546079\pi\)
−0.144257 + 0.989540i \(0.546079\pi\)
\(240\) 0 0
\(241\) 3372.15 0.901324 0.450662 0.892695i \(-0.351188\pi\)
0.450662 + 0.892695i \(0.351188\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1885.63 0.491709
\(246\) 0 0
\(247\) 6790.08i 1.74916i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3234.55i 0.813399i 0.913562 + 0.406699i \(0.133320\pi\)
−0.913562 + 0.406699i \(0.866680\pi\)
\(252\) 0 0
\(253\) − 3527.46i − 0.876561i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 4146.07i − 1.00632i −0.864192 0.503162i \(-0.832170\pi\)
0.864192 0.503162i \(-0.167830\pi\)
\(258\) 0 0
\(259\) 757.124 0.181642
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7374.93 1.72912 0.864558 0.502532i \(-0.167598\pi\)
0.864558 + 0.502532i \(0.167598\pi\)
\(264\) 0 0
\(265\) 2244.86 0.520380
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7310.05 −1.65688 −0.828441 0.560076i \(-0.810772\pi\)
−0.828441 + 0.560076i \(0.810772\pi\)
\(270\) 0 0
\(271\) − 6232.53i − 1.39705i −0.715588 0.698523i \(-0.753841\pi\)
0.715588 0.698523i \(-0.246159\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3536.11i 0.775402i
\(276\) 0 0
\(277\) 232.295i 0.0503871i 0.999683 + 0.0251936i \(0.00802021\pi\)
−0.999683 + 0.0251936i \(0.991980\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 2063.02i − 0.437969i −0.975728 0.218985i \(-0.929726\pi\)
0.975728 0.218985i \(-0.0702744\pi\)
\(282\) 0 0
\(283\) 9043.90 1.89966 0.949830 0.312765i \(-0.101255\pi\)
0.949830 + 0.312765i \(0.101255\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4201.43 0.864120
\(288\) 0 0
\(289\) 4350.58 0.885524
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 608.707 0.121369 0.0606844 0.998157i \(-0.480672\pi\)
0.0606844 + 0.998157i \(0.480672\pi\)
\(294\) 0 0
\(295\) 2919.08i 0.576120i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2683.53i 0.519038i
\(300\) 0 0
\(301\) 1682.63i 0.322210i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 6657.01i − 1.24977i
\(306\) 0 0
\(307\) 6916.53 1.28582 0.642911 0.765941i \(-0.277727\pi\)
0.642911 + 0.765941i \(0.277727\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8623.54 1.57234 0.786168 0.618013i \(-0.212062\pi\)
0.786168 + 0.618013i \(0.212062\pi\)
\(312\) 0 0
\(313\) −9045.12 −1.63342 −0.816710 0.577048i \(-0.804205\pi\)
−0.816710 + 0.577048i \(0.804205\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3568.68 0.632293 0.316147 0.948710i \(-0.397611\pi\)
0.316147 + 0.948710i \(0.397611\pi\)
\(318\) 0 0
\(319\) 2999.78i 0.526506i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 3447.99i − 0.593968i
\(324\) 0 0
\(325\) − 2690.11i − 0.459139i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 5093.73i − 0.853576i
\(330\) 0 0
\(331\) −3121.11 −0.518284 −0.259142 0.965839i \(-0.583440\pi\)
−0.259142 + 0.965839i \(0.583440\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1975.31 −0.322157
\(336\) 0 0
\(337\) −9558.00 −1.54498 −0.772489 0.635028i \(-0.780988\pi\)
−0.772489 + 0.635028i \(0.780988\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15174.2 2.40977
\(342\) 0 0
\(343\) 6096.22i 0.959665i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1275.37i 0.197306i 0.995122 + 0.0986531i \(0.0314534\pi\)
−0.995122 + 0.0986531i \(0.968547\pi\)
\(348\) 0 0
\(349\) 4453.58i 0.683080i 0.939867 + 0.341540i \(0.110948\pi\)
−0.939867 + 0.341540i \(0.889052\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8349.61i 1.25894i 0.777026 + 0.629469i \(0.216727\pi\)
−0.777026 + 0.629469i \(0.783273\pi\)
\(354\) 0 0
\(355\) 8092.29 1.20984
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7012.99 1.03101 0.515503 0.856888i \(-0.327605\pi\)
0.515503 + 0.856888i \(0.327605\pi\)
\(360\) 0 0
\(361\) 14279.3 2.08184
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3416.59 0.489951
\(366\) 0 0
\(367\) 1863.72i 0.265083i 0.991177 + 0.132541i \(0.0423138\pi\)
−0.991177 + 0.132541i \(0.957686\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2910.77i 0.407331i
\(372\) 0 0
\(373\) 7551.94i 1.04832i 0.851619 + 0.524162i \(0.175621\pi\)
−0.851619 + 0.524162i \(0.824379\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2282.09i − 0.311760i
\(378\) 0 0
\(379\) −1940.37 −0.262982 −0.131491 0.991317i \(-0.541976\pi\)
−0.131491 + 0.991317i \(0.541976\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10872.4 1.45053 0.725267 0.688468i \(-0.241716\pi\)
0.725267 + 0.688468i \(0.241716\pi\)
\(384\) 0 0
\(385\) 5364.99 0.710195
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7412.83 −0.966184 −0.483092 0.875570i \(-0.660486\pi\)
−0.483092 + 0.875570i \(0.660486\pi\)
\(390\) 0 0
\(391\) − 1362.69i − 0.176251i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5410.89i 0.689244i
\(396\) 0 0
\(397\) − 3060.22i − 0.386872i −0.981113 0.193436i \(-0.938037\pi\)
0.981113 0.193436i \(-0.0619632\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2599.05i 0.323667i 0.986818 + 0.161833i \(0.0517407\pi\)
−0.986818 + 0.161833i \(0.948259\pi\)
\(402\) 0 0
\(403\) −11543.8 −1.42690
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4366.33 −0.531772
\(408\) 0 0
\(409\) −10830.9 −1.30942 −0.654712 0.755879i \(-0.727210\pi\)
−0.654712 + 0.755879i \(0.727210\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3784.99 −0.450962
\(414\) 0 0
\(415\) − 4055.58i − 0.479712i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15554.1i 1.81353i 0.421641 + 0.906763i \(0.361454\pi\)
−0.421641 + 0.906763i \(0.638546\pi\)
\(420\) 0 0
\(421\) − 10236.7i − 1.18505i −0.805551 0.592527i \(-0.798130\pi\)
0.805551 0.592527i \(-0.201870\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1366.03i 0.155911i
\(426\) 0 0
\(427\) 8631.75 0.978266
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9116.85 −1.01889 −0.509447 0.860502i \(-0.670150\pi\)
−0.509447 + 0.860502i \(0.670150\pi\)
\(432\) 0 0
\(433\) −2826.42 −0.313693 −0.156846 0.987623i \(-0.550133\pi\)
−0.156846 + 0.987623i \(0.550133\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8354.15 0.914492
\(438\) 0 0
\(439\) − 11154.6i − 1.21271i −0.795192 0.606357i \(-0.792630\pi\)
0.795192 0.606357i \(-0.207370\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 6265.18i − 0.671936i −0.941873 0.335968i \(-0.890937\pi\)
0.941873 0.335968i \(-0.109063\pi\)
\(444\) 0 0
\(445\) − 2486.21i − 0.264849i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 12554.1i − 1.31952i −0.751475 0.659761i \(-0.770657\pi\)
0.751475 0.659761i \(-0.229343\pi\)
\(450\) 0 0
\(451\) −24229.6 −2.52978
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4081.43 −0.420528
\(456\) 0 0
\(457\) 9759.09 0.998930 0.499465 0.866334i \(-0.333530\pi\)
0.499465 + 0.866334i \(0.333530\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13116.4 −1.32515 −0.662575 0.748996i \(-0.730536\pi\)
−0.662575 + 0.748996i \(0.730536\pi\)
\(462\) 0 0
\(463\) 3376.95i 0.338964i 0.985533 + 0.169482i \(0.0542094\pi\)
−0.985533 + 0.169482i \(0.945791\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3513.24i 0.348122i 0.984735 + 0.174061i \(0.0556891\pi\)
−0.984735 + 0.174061i \(0.944311\pi\)
\(468\) 0 0
\(469\) − 2561.26i − 0.252171i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 9703.73i − 0.943294i
\(474\) 0 0
\(475\) −8374.62 −0.808956
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5710.95 0.544760 0.272380 0.962190i \(-0.412189\pi\)
0.272380 + 0.962190i \(0.412189\pi\)
\(480\) 0 0
\(481\) 3321.70 0.314878
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4414.20 0.413275
\(486\) 0 0
\(487\) − 18464.0i − 1.71804i −0.511943 0.859019i \(-0.671074\pi\)
0.511943 0.859019i \(-0.328926\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 20448.8i − 1.87951i −0.341843 0.939757i \(-0.611051\pi\)
0.341843 0.939757i \(-0.388949\pi\)
\(492\) 0 0
\(493\) 1158.84i 0.105865i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10492.8i 0.947014i
\(498\) 0 0
\(499\) 10287.5 0.922910 0.461455 0.887164i \(-0.347328\pi\)
0.461455 + 0.887164i \(0.347328\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9960.84 −0.882966 −0.441483 0.897270i \(-0.645547\pi\)
−0.441483 + 0.897270i \(0.645547\pi\)
\(504\) 0 0
\(505\) −299.106 −0.0263565
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13898.1 −1.21026 −0.605129 0.796128i \(-0.706878\pi\)
−0.605129 + 0.796128i \(0.706878\pi\)
\(510\) 0 0
\(511\) 4430.08i 0.383513i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 7002.46i − 0.599156i
\(516\) 0 0
\(517\) 29375.5i 2.49891i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 8999.30i − 0.756750i −0.925652 0.378375i \(-0.876483\pi\)
0.925652 0.378375i \(-0.123517\pi\)
\(522\) 0 0
\(523\) −10212.0 −0.853801 −0.426901 0.904299i \(-0.640395\pi\)
−0.426901 + 0.904299i \(0.640395\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5861.94 0.484536
\(528\) 0 0
\(529\) −8865.33 −0.728638
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18432.8 1.49796
\(534\) 0 0
\(535\) 10719.7i 0.866271i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 14100.2i − 1.12679i
\(540\) 0 0
\(541\) − 13697.9i − 1.08857i −0.838900 0.544286i \(-0.816801\pi\)
0.838900 0.544286i \(-0.183199\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6187.64i 0.486329i
\(546\) 0 0
\(547\) 11731.3 0.916991 0.458496 0.888697i \(-0.348388\pi\)
0.458496 + 0.888697i \(0.348388\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7104.42 −0.549289
\(552\) 0 0
\(553\) −7015.97 −0.539511
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −286.608 −0.0218025 −0.0109012 0.999941i \(-0.503470\pi\)
−0.0109012 + 0.999941i \(0.503470\pi\)
\(558\) 0 0
\(559\) 7382.14i 0.558553i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 2157.26i − 0.161488i −0.996735 0.0807440i \(-0.974270\pi\)
0.996735 0.0807440i \(-0.0257296\pi\)
\(564\) 0 0
\(565\) − 11751.8i − 0.875047i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7387.12i 0.544260i 0.962260 + 0.272130i \(0.0877281\pi\)
−0.962260 + 0.272130i \(0.912272\pi\)
\(570\) 0 0
\(571\) −4047.04 −0.296608 −0.148304 0.988942i \(-0.547381\pi\)
−0.148304 + 0.988942i \(0.547381\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3309.76 −0.240046
\(576\) 0 0
\(577\) −19124.2 −1.37981 −0.689904 0.723901i \(-0.742347\pi\)
−0.689904 + 0.723901i \(0.742347\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5258.62 0.375498
\(582\) 0 0
\(583\) − 16786.4i − 1.19249i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15564.6i 1.09441i 0.836998 + 0.547205i \(0.184308\pi\)
−0.836998 + 0.547205i \(0.815692\pi\)
\(588\) 0 0
\(589\) 35937.3i 2.51404i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 27560.4i 1.90855i 0.298925 + 0.954276i \(0.403372\pi\)
−0.298925 + 0.954276i \(0.596628\pi\)
\(594\) 0 0
\(595\) 2072.55 0.142800
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14408.7 −0.982843 −0.491422 0.870922i \(-0.663523\pi\)
−0.491422 + 0.870922i \(0.663523\pi\)
\(600\) 0 0
\(601\) 11543.6 0.783482 0.391741 0.920076i \(-0.371873\pi\)
0.391741 + 0.920076i \(0.371873\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −20012.8 −1.34485
\(606\) 0 0
\(607\) 23862.3i 1.59562i 0.602911 + 0.797809i \(0.294007\pi\)
−0.602911 + 0.797809i \(0.705993\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 22347.5i − 1.47968i
\(612\) 0 0
\(613\) − 14046.2i − 0.925481i −0.886494 0.462741i \(-0.846866\pi\)
0.886494 0.462741i \(-0.153134\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28656.3i 1.86979i 0.354926 + 0.934895i \(0.384506\pi\)
−0.354926 + 0.934895i \(0.615494\pi\)
\(618\) 0 0
\(619\) 15085.3 0.979532 0.489766 0.871854i \(-0.337082\pi\)
0.489766 + 0.871854i \(0.337082\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3223.72 0.207312
\(624\) 0 0
\(625\) −5107.00 −0.326848
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1686.76 −0.106924
\(630\) 0 0
\(631\) 609.214i 0.0384349i 0.999815 + 0.0192175i \(0.00611748\pi\)
−0.999815 + 0.0192175i \(0.993883\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9747.25i 0.609146i
\(636\) 0 0
\(637\) 10726.8i 0.667207i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 25186.8i − 1.55198i −0.630744 0.775991i \(-0.717250\pi\)
0.630744 0.775991i \(-0.282750\pi\)
\(642\) 0 0
\(643\) 30058.0 1.84350 0.921750 0.387783i \(-0.126759\pi\)
0.921750 + 0.387783i \(0.126759\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21515.3 −1.30735 −0.653673 0.756777i \(-0.726773\pi\)
−0.653673 + 0.756777i \(0.726773\pi\)
\(648\) 0 0
\(649\) 21828.1 1.32023
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25835.0 −1.54824 −0.774120 0.633039i \(-0.781807\pi\)
−0.774120 + 0.633039i \(0.781807\pi\)
\(654\) 0 0
\(655\) 2615.36i 0.156016i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 246.463i − 0.0145688i −0.999973 0.00728440i \(-0.997681\pi\)
0.999973 0.00728440i \(-0.00231872\pi\)
\(660\) 0 0
\(661\) 10481.9i 0.616791i 0.951258 + 0.308396i \(0.0997921\pi\)
−0.951258 + 0.308396i \(0.900208\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12706.0i 0.740928i
\(666\) 0 0
\(667\) −2807.76 −0.162994
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −49779.3 −2.86395
\(672\) 0 0
\(673\) 8394.98 0.480836 0.240418 0.970669i \(-0.422715\pi\)
0.240418 + 0.970669i \(0.422715\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18608.4 1.05639 0.528197 0.849122i \(-0.322868\pi\)
0.528197 + 0.849122i \(0.322868\pi\)
\(678\) 0 0
\(679\) 5723.62i 0.323494i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15757.8i 0.882803i 0.897310 + 0.441402i \(0.145519\pi\)
−0.897310 + 0.441402i \(0.854481\pi\)
\(684\) 0 0
\(685\) − 20786.3i − 1.15942i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12770.3i 0.706111i
\(690\) 0 0
\(691\) −24645.1 −1.35679 −0.678396 0.734696i \(-0.737325\pi\)
−0.678396 + 0.734696i \(0.737325\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10041.1 0.548027
\(696\) 0 0
\(697\) −9360.13 −0.508666
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23093.0 −1.24424 −0.622118 0.782923i \(-0.713728\pi\)
−0.622118 + 0.782923i \(0.713728\pi\)
\(702\) 0 0
\(703\) − 10340.9i − 0.554783i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 387.833i − 0.0206308i
\(708\) 0 0
\(709\) − 24428.3i − 1.29397i −0.762503 0.646985i \(-0.776030\pi\)
0.762503 0.646985i \(-0.223970\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14202.9i 0.746007i
\(714\) 0 0
\(715\) 23537.6 1.23113
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4996.04 −0.259139 −0.129569 0.991570i \(-0.541360\pi\)
−0.129569 + 0.991570i \(0.541360\pi\)
\(720\) 0 0
\(721\) 9079.67 0.468994
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2814.64 0.144184
\(726\) 0 0
\(727\) 11510.2i 0.587195i 0.955929 + 0.293598i \(0.0948526\pi\)
−0.955929 + 0.293598i \(0.905147\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 3748.64i − 0.189670i
\(732\) 0 0
\(733\) − 2628.53i − 0.132452i −0.997805 0.0662259i \(-0.978904\pi\)
0.997805 0.0662259i \(-0.0210958\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14770.8i 0.738249i
\(738\) 0 0
\(739\) −30793.5 −1.53282 −0.766412 0.642350i \(-0.777960\pi\)
−0.766412 + 0.642350i \(0.777960\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15961.2 0.788103 0.394052 0.919088i \(-0.371073\pi\)
0.394052 + 0.919088i \(0.371073\pi\)
\(744\) 0 0
\(745\) 6368.24 0.313174
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13899.6 −0.678080
\(750\) 0 0
\(751\) − 26899.6i − 1.30703i −0.756913 0.653516i \(-0.773293\pi\)
0.756913 0.653516i \(-0.226707\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 6462.79i − 0.311530i
\(756\) 0 0
\(757\) − 8061.29i − 0.387045i −0.981096 0.193522i \(-0.938009\pi\)
0.981096 0.193522i \(-0.0619912\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25377.0i 1.20883i 0.796671 + 0.604413i \(0.206592\pi\)
−0.796671 + 0.604413i \(0.793408\pi\)
\(762\) 0 0
\(763\) −8023.14 −0.380678
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16605.8 −0.781746
\(768\) 0 0
\(769\) −33750.4 −1.58267 −0.791334 0.611385i \(-0.790613\pi\)
−0.791334 + 0.611385i \(0.790613\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −21502.9 −1.00052 −0.500262 0.865874i \(-0.666763\pi\)
−0.500262 + 0.865874i \(0.666763\pi\)
\(774\) 0 0
\(775\) − 14237.7i − 0.659915i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 57383.4i − 2.63925i
\(780\) 0 0
\(781\) − 60511.9i − 2.77245i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 26932.8i 1.22455i
\(786\) 0 0
\(787\) 25947.2 1.17525 0.587623 0.809135i \(-0.300064\pi\)
0.587623 + 0.809135i \(0.300064\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15237.8 0.684950
\(792\) 0 0
\(793\) 37869.7 1.69583
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31007.1 −1.37808 −0.689040 0.724724i \(-0.741967\pi\)
−0.689040 + 0.724724i \(0.741967\pi\)
\(798\) 0 0
\(799\) 11348.0i 0.502459i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 25548.3i − 1.12276i
\(804\) 0 0
\(805\) 5021.57i 0.219860i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37947.6i 1.64916i 0.565749 + 0.824578i \(0.308587\pi\)
−0.565749 + 0.824578i \(0.691413\pi\)
\(810\) 0 0
\(811\) −24889.4 −1.07766 −0.538832 0.842413i \(-0.681134\pi\)
−0.538832 + 0.842413i \(0.681134\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9411.88 −0.404520
\(816\) 0 0
\(817\) 22981.5 0.984113
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24317.3 1.03371 0.516856 0.856072i \(-0.327102\pi\)
0.516856 + 0.856072i \(0.327102\pi\)
\(822\) 0 0
\(823\) 39460.8i 1.67134i 0.549229 + 0.835672i \(0.314921\pi\)
−0.549229 + 0.835672i \(0.685079\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3828.93i − 0.160997i −0.996755 0.0804987i \(-0.974349\pi\)
0.996755 0.0804987i \(-0.0256513\pi\)
\(828\) 0 0
\(829\) 3707.97i 0.155348i 0.996979 + 0.0776738i \(0.0247493\pi\)
−0.996979 + 0.0776738i \(0.975251\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 5447.05i − 0.226566i
\(834\) 0 0
\(835\) 1476.77 0.0612044
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −27919.4 −1.14885 −0.574426 0.818557i \(-0.694775\pi\)
−0.574426 + 0.818557i \(0.694775\pi\)
\(840\) 0 0
\(841\) −22001.3 −0.902098
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 130.384 0.00530812
\(846\) 0 0
\(847\) − 25949.4i − 1.05269i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 4086.84i − 0.164624i
\(852\) 0 0
\(853\) 32727.5i 1.31368i 0.754030 + 0.656840i \(0.228107\pi\)
−0.754030 + 0.656840i \(0.771893\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 19168.1i − 0.764024i −0.924157 0.382012i \(-0.875231\pi\)
0.924157 0.382012i \(-0.124769\pi\)
\(858\) 0 0
\(859\) 17878.7 0.710144 0.355072 0.934839i \(-0.384456\pi\)
0.355072 + 0.934839i \(0.384456\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22113.8 −0.872261 −0.436130 0.899883i \(-0.643651\pi\)
−0.436130 + 0.899883i \(0.643651\pi\)
\(864\) 0 0
\(865\) 33913.0 1.33304
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 40461.1 1.57946
\(870\) 0 0
\(871\) − 11236.9i − 0.437140i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 15957.9i − 0.616544i
\(876\) 0 0
\(877\) 40530.5i 1.56057i 0.625426 + 0.780284i \(0.284925\pi\)
−0.625426 + 0.780284i \(0.715075\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 8719.62i − 0.333452i −0.986003 0.166726i \(-0.946680\pi\)
0.986003 0.166726i \(-0.0533196\pi\)
\(882\) 0 0
\(883\) −6891.50 −0.262647 −0.131324 0.991340i \(-0.541923\pi\)
−0.131324 + 0.991340i \(0.541923\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −29891.9 −1.13153 −0.565767 0.824565i \(-0.691420\pi\)
−0.565767 + 0.824565i \(0.691420\pi\)
\(888\) 0 0
\(889\) −12638.7 −0.476814
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −69570.5 −2.60704
\(894\) 0 0
\(895\) 10115.4i 0.377787i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 12078.2i − 0.448089i
\(900\) 0 0
\(901\) − 6484.75i − 0.239776i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 14283.0i − 0.524624i
\(906\) 0 0
\(907\) −23084.5 −0.845103 −0.422551 0.906339i \(-0.638865\pi\)
−0.422551 + 0.906339i \(0.638865\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −44048.4 −1.60196 −0.800981 0.598690i \(-0.795688\pi\)
−0.800981 + 0.598690i \(0.795688\pi\)
\(912\) 0 0
\(913\) −30326.5 −1.09930
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3391.19 −0.122123
\(918\) 0 0
\(919\) 23633.3i 0.848304i 0.905591 + 0.424152i \(0.139428\pi\)
−0.905591 + 0.424152i \(0.860572\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 46034.6i 1.64166i
\(924\) 0 0
\(925\) 4096.86i 0.145626i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25750.4i 0.909410i 0.890642 + 0.454705i \(0.150255\pi\)
−0.890642 + 0.454705i \(0.849745\pi\)
\(930\) 0 0
\(931\) 33393.8 1.17555
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11952.4 −0.418058
\(936\) 0 0
\(937\) −49356.4 −1.72081 −0.860407 0.509607i \(-0.829791\pi\)
−0.860407 + 0.509607i \(0.829791\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23129.7 −0.801282 −0.400641 0.916235i \(-0.631213\pi\)
−0.400641 + 0.916235i \(0.631213\pi\)
\(942\) 0 0
\(943\) − 22678.7i − 0.783159i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 5076.56i − 0.174199i −0.996200 0.0870993i \(-0.972240\pi\)
0.996200 0.0870993i \(-0.0277597\pi\)
\(948\) 0 0
\(949\) 19435.9i 0.664823i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22339.4i 0.759334i 0.925123 + 0.379667i \(0.123961\pi\)
−0.925123 + 0.379667i \(0.876039\pi\)
\(954\) 0 0
\(955\) 32998.8 1.11813
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 26952.3 0.907545
\(960\) 0 0
\(961\) −31306.1 −1.05086
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 17167.4 0.572681
\(966\) 0 0
\(967\) 35904.7i 1.19402i 0.802233 + 0.597011i \(0.203645\pi\)
−0.802233 + 0.597011i \(0.796355\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 37659.4i 1.24464i 0.782762 + 0.622321i \(0.213810\pi\)
−0.782762 + 0.622321i \(0.786190\pi\)
\(972\) 0 0
\(973\) 13019.6i 0.428972i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 19792.1i − 0.648111i −0.946038 0.324055i \(-0.894954\pi\)
0.946038 0.324055i \(-0.105046\pi\)
\(978\) 0 0
\(979\) −18591.2 −0.606922
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −45179.0 −1.46591 −0.732953 0.680279i \(-0.761859\pi\)
−0.732953 + 0.680279i \(0.761859\pi\)
\(984\) 0 0
\(985\) 41906.3 1.35558
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9082.58 0.292022
\(990\) 0 0
\(991\) − 48553.2i − 1.55635i −0.628046 0.778176i \(-0.716145\pi\)
0.628046 0.778176i \(-0.283855\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 4052.94i − 0.129132i
\(996\) 0 0
\(997\) 36769.8i 1.16801i 0.811749 + 0.584007i \(0.198516\pi\)
−0.811749 + 0.584007i \(0.801484\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.f.h.863.10 yes 16
3.2 odd 2 1728.4.f.j.863.8 yes 16
4.3 odd 2 1728.4.f.j.863.9 yes 16
8.3 odd 2 1728.4.f.j.863.7 yes 16
8.5 even 2 inner 1728.4.f.h.863.8 yes 16
12.11 even 2 inner 1728.4.f.h.863.7 16
24.5 odd 2 1728.4.f.j.863.10 yes 16
24.11 even 2 inner 1728.4.f.h.863.9 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1728.4.f.h.863.7 16 12.11 even 2 inner
1728.4.f.h.863.8 yes 16 8.5 even 2 inner
1728.4.f.h.863.9 yes 16 24.11 even 2 inner
1728.4.f.h.863.10 yes 16 1.1 even 1 trivial
1728.4.f.j.863.7 yes 16 8.3 odd 2
1728.4.f.j.863.8 yes 16 3.2 odd 2
1728.4.f.j.863.9 yes 16 4.3 odd 2
1728.4.f.j.863.10 yes 16 24.5 odd 2