Properties

Label 1728.4.d.h.865.2
Level $1728$
Weight $4$
Character 1728.865
Analytic conductor $101.955$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(865,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.865"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,168,0,0,0,0,0,0,0,-296,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,24,0,0,0,0,0,0,0,280] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(49)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2261390379264.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 38x^{5} - 38x^{4} + 8x^{3} + 325x^{2} - 322x + 2122 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 865.2
Root \(3.75792 - 0.460416i\) of defining polynomial
Character \(\chi\) \(=\) 1728.865
Dual form 1728.4.d.h.865.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.7850i q^{5} +22.3100 q^{7} +51.9124i q^{11} +28.0451i q^{13} +60.9124 q^{17} -162.737i q^{19} +83.2950 q^{23} -156.737 q^{25} -217.575i q^{29} +174.005 q^{31} -374.474i q^{35} +407.946i q^{37} -196.562 q^{41} +345.474i q^{43} +335.701 q^{47} +154.737 q^{49} -234.360i q^{53} +871.351 q^{55} +321.124i q^{59} +739.381i q^{61} +470.737 q^{65} -20.0000i q^{67} +418.996 q^{71} +397.212 q^{73} +1158.17i q^{77} +95.6053 q^{79} -348.263i q^{83} -1022.42i q^{85} +1492.42 q^{89} +625.686i q^{91} -2731.55 q^{95} +881.949 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 168 q^{17} - 296 q^{25} + 24 q^{41} + 280 q^{49} + 2808 q^{65} + 304 q^{73} + 6192 q^{89} + 3224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 16.7850i − 1.50130i −0.660701 0.750649i \(-0.729741\pi\)
0.660701 0.750649i \(-0.270259\pi\)
\(6\) 0 0
\(7\) 22.3100 1.20463 0.602314 0.798259i \(-0.294245\pi\)
0.602314 + 0.798259i \(0.294245\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 51.9124i 1.42293i 0.702724 + 0.711463i \(0.251967\pi\)
−0.702724 + 0.711463i \(0.748033\pi\)
\(12\) 0 0
\(13\) 28.0451i 0.598331i 0.954201 + 0.299165i \(0.0967082\pi\)
−0.954201 + 0.299165i \(0.903292\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 60.9124 0.869025 0.434513 0.900666i \(-0.356921\pi\)
0.434513 + 0.900666i \(0.356921\pi\)
\(18\) 0 0
\(19\) − 162.737i − 1.96497i −0.186335 0.982486i \(-0.559661\pi\)
0.186335 0.982486i \(-0.440339\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 83.2950 0.755140 0.377570 0.925981i \(-0.376760\pi\)
0.377570 + 0.925981i \(0.376760\pi\)
\(24\) 0 0
\(25\) −156.737 −1.25390
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 217.575i − 1.39320i −0.717461 0.696598i \(-0.754696\pi\)
0.717461 0.696598i \(-0.245304\pi\)
\(30\) 0 0
\(31\) 174.005 1.00814 0.504069 0.863663i \(-0.331836\pi\)
0.504069 + 0.863663i \(0.331836\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 374.474i − 1.80851i
\(36\) 0 0
\(37\) 407.946i 1.81259i 0.422645 + 0.906295i \(0.361102\pi\)
−0.422645 + 0.906295i \(0.638898\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −196.562 −0.748728 −0.374364 0.927282i \(-0.622139\pi\)
−0.374364 + 0.927282i \(0.622139\pi\)
\(42\) 0 0
\(43\) 345.474i 1.22522i 0.790386 + 0.612609i \(0.209880\pi\)
−0.790386 + 0.612609i \(0.790120\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 335.701 1.04185 0.520925 0.853602i \(-0.325587\pi\)
0.520925 + 0.853602i \(0.325587\pi\)
\(48\) 0 0
\(49\) 154.737 0.451129
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 234.360i − 0.607394i −0.952769 0.303697i \(-0.901779\pi\)
0.952769 0.303697i \(-0.0982210\pi\)
\(54\) 0 0
\(55\) 871.351 2.13624
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 321.124i 0.708590i 0.935134 + 0.354295i \(0.115279\pi\)
−0.935134 + 0.354295i \(0.884721\pi\)
\(60\) 0 0
\(61\) 739.381i 1.55194i 0.630772 + 0.775968i \(0.282738\pi\)
−0.630772 + 0.775968i \(0.717262\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 470.737 0.898273
\(66\) 0 0
\(67\) − 20.0000i − 0.0364685i −0.999834 0.0182342i \(-0.994196\pi\)
0.999834 0.0182342i \(-0.00580446\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 418.996 0.700361 0.350180 0.936682i \(-0.386120\pi\)
0.350180 + 0.936682i \(0.386120\pi\)
\(72\) 0 0
\(73\) 397.212 0.636851 0.318425 0.947948i \(-0.396846\pi\)
0.318425 + 0.947948i \(0.396846\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1158.17i 1.71410i
\(78\) 0 0
\(79\) 95.6053 0.136157 0.0680787 0.997680i \(-0.478313\pi\)
0.0680787 + 0.997680i \(0.478313\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 348.263i − 0.460564i −0.973124 0.230282i \(-0.926035\pi\)
0.973124 0.230282i \(-0.0739649\pi\)
\(84\) 0 0
\(85\) − 1022.42i − 1.30467i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1492.42 1.77749 0.888745 0.458403i \(-0.151578\pi\)
0.888745 + 0.458403i \(0.151578\pi\)
\(90\) 0 0
\(91\) 625.686i 0.720766i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2731.55 −2.95001
\(96\) 0 0
\(97\) 881.949 0.923179 0.461589 0.887094i \(-0.347279\pi\)
0.461589 + 0.887094i \(0.347279\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 642.242i − 0.632727i −0.948638 0.316364i \(-0.897538\pi\)
0.948638 0.316364i \(-0.102462\pi\)
\(102\) 0 0
\(103\) −1322.03 −1.26469 −0.632345 0.774687i \(-0.717908\pi\)
−0.632345 + 0.774687i \(0.717908\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1671.77i − 1.51043i −0.655475 0.755217i \(-0.727531\pi\)
0.655475 0.755217i \(-0.272469\pi\)
\(108\) 0 0
\(109\) 1667.52i 1.46531i 0.680598 + 0.732657i \(0.261720\pi\)
−0.680598 + 0.732657i \(0.738280\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 418.314 0.348245 0.174122 0.984724i \(-0.444291\pi\)
0.174122 + 0.984724i \(0.444291\pi\)
\(114\) 0 0
\(115\) − 1398.11i − 1.13369i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1358.96 1.04685
\(120\) 0 0
\(121\) −1363.90 −1.02472
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 532.710i 0.381176i
\(126\) 0 0
\(127\) 106.509 0.0744185 0.0372093 0.999307i \(-0.488153\pi\)
0.0372093 + 0.999307i \(0.488153\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 1814.47i − 1.21016i −0.796163 0.605082i \(-0.793140\pi\)
0.796163 0.605082i \(-0.206860\pi\)
\(132\) 0 0
\(133\) − 3630.67i − 2.36706i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −401.197 −0.250194 −0.125097 0.992145i \(-0.539924\pi\)
−0.125097 + 0.992145i \(0.539924\pi\)
\(138\) 0 0
\(139\) − 381.474i − 0.232779i −0.993204 0.116389i \(-0.962868\pi\)
0.993204 0.116389i \(-0.0371320\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1455.89 −0.851380
\(144\) 0 0
\(145\) −3652.01 −2.09160
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3021.94i 1.66152i 0.556630 + 0.830760i \(0.312094\pi\)
−0.556630 + 0.830760i \(0.687906\pi\)
\(150\) 0 0
\(151\) −2165.27 −1.16693 −0.583467 0.812137i \(-0.698304\pi\)
−0.583467 + 0.812137i \(0.698304\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 2920.69i − 1.51352i
\(156\) 0 0
\(157\) − 1478.89i − 0.751773i −0.926666 0.375886i \(-0.877338\pi\)
0.926666 0.375886i \(-0.122662\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1858.31 0.909662
\(162\) 0 0
\(163\) − 1140.21i − 0.547903i −0.961743 0.273952i \(-0.911669\pi\)
0.961743 0.273952i \(-0.0883309\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −646.653 −0.299638 −0.149819 0.988713i \(-0.547869\pi\)
−0.149819 + 0.988713i \(0.547869\pi\)
\(168\) 0 0
\(169\) 1410.47 0.642000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 4036.37i − 1.77387i −0.461894 0.886935i \(-0.652830\pi\)
0.461894 0.886935i \(-0.347170\pi\)
\(174\) 0 0
\(175\) −3496.81 −1.51048
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1592.17i 0.664828i 0.943134 + 0.332414i \(0.107863\pi\)
−0.943134 + 0.332414i \(0.892137\pi\)
\(180\) 0 0
\(181\) − 3849.93i − 1.58101i −0.612456 0.790505i \(-0.709818\pi\)
0.612456 0.790505i \(-0.290182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6847.38 2.72124
\(186\) 0 0
\(187\) 3162.11i 1.23656i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4049.60 1.53413 0.767065 0.641569i \(-0.221716\pi\)
0.767065 + 0.641569i \(0.221716\pi\)
\(192\) 0 0
\(193\) 3421.96 1.27626 0.638129 0.769930i \(-0.279709\pi\)
0.638129 + 0.769930i \(0.279709\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1955.03i − 0.707055i −0.935424 0.353528i \(-0.884982\pi\)
0.935424 0.353528i \(-0.115018\pi\)
\(198\) 0 0
\(199\) −109.030 −0.0388387 −0.0194194 0.999811i \(-0.506182\pi\)
−0.0194194 + 0.999811i \(0.506182\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 4854.11i − 1.67828i
\(204\) 0 0
\(205\) 3299.30i 1.12406i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8448.08 2.79601
\(210\) 0 0
\(211\) 1491.58i 0.486658i 0.969944 + 0.243329i \(0.0782395\pi\)
−0.969944 + 0.243329i \(0.921761\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5798.80 1.83942
\(216\) 0 0
\(217\) 3882.07 1.21443
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1708.29i 0.519965i
\(222\) 0 0
\(223\) 2183.67 0.655737 0.327869 0.944723i \(-0.393670\pi\)
0.327869 + 0.944723i \(0.393670\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 4868.07i − 1.42337i −0.702498 0.711686i \(-0.747932\pi\)
0.702498 0.711686i \(-0.252068\pi\)
\(228\) 0 0
\(229\) 1619.18i 0.467242i 0.972328 + 0.233621i \(0.0750575\pi\)
−0.972328 + 0.233621i \(0.924943\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4354.61 −1.22438 −0.612189 0.790711i \(-0.709711\pi\)
−0.612189 + 0.790711i \(0.709711\pi\)
\(234\) 0 0
\(235\) − 5634.74i − 1.56413i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2102.54 −0.569046 −0.284523 0.958669i \(-0.591835\pi\)
−0.284523 + 0.958669i \(0.591835\pi\)
\(240\) 0 0
\(241\) −664.744 −0.177676 −0.0888381 0.996046i \(-0.528315\pi\)
−0.0888381 + 0.996046i \(0.528315\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 2597.27i − 0.677279i
\(246\) 0 0
\(247\) 4563.98 1.17570
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 4513.82i − 1.13510i −0.823339 0.567550i \(-0.807891\pi\)
0.823339 0.567550i \(-0.192109\pi\)
\(252\) 0 0
\(253\) 4324.04i 1.07451i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 942.446 0.228748 0.114374 0.993438i \(-0.463514\pi\)
0.114374 + 0.993438i \(0.463514\pi\)
\(258\) 0 0
\(259\) 9101.28i 2.18350i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1570.46 −0.368208 −0.184104 0.982907i \(-0.558938\pi\)
−0.184104 + 0.982907i \(0.558938\pi\)
\(264\) 0 0
\(265\) −3933.74 −0.911879
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 3268.67i − 0.740871i −0.928858 0.370436i \(-0.879208\pi\)
0.928858 0.370436i \(-0.120792\pi\)
\(270\) 0 0
\(271\) −1081.79 −0.242486 −0.121243 0.992623i \(-0.538688\pi\)
−0.121243 + 0.992623i \(0.538688\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 8136.61i − 1.78420i
\(276\) 0 0
\(277\) − 1402.51i − 0.304219i −0.988364 0.152109i \(-0.951393\pi\)
0.988364 0.152109i \(-0.0486066\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 432.416 0.0918000 0.0459000 0.998946i \(-0.485384\pi\)
0.0459000 + 0.998946i \(0.485384\pi\)
\(282\) 0 0
\(283\) − 3529.48i − 0.741364i −0.928760 0.370682i \(-0.879124\pi\)
0.928760 0.370682i \(-0.120876\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4385.30 −0.901938
\(288\) 0 0
\(289\) −1202.68 −0.244795
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 985.906i − 0.196578i −0.995158 0.0982888i \(-0.968663\pi\)
0.995158 0.0982888i \(-0.0313369\pi\)
\(294\) 0 0
\(295\) 5390.08 1.06380
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2336.01i 0.451823i
\(300\) 0 0
\(301\) 7707.54i 1.47593i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12410.5 2.32992
\(306\) 0 0
\(307\) 1061.90i 0.197414i 0.995117 + 0.0987070i \(0.0314707\pi\)
−0.995117 + 0.0987070i \(0.968529\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2470.09 −0.450373 −0.225187 0.974316i \(-0.572299\pi\)
−0.225187 + 0.974316i \(0.572299\pi\)
\(312\) 0 0
\(313\) 3270.89 0.590676 0.295338 0.955393i \(-0.404568\pi\)
0.295338 + 0.955393i \(0.404568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7925.23i 1.40418i 0.712088 + 0.702090i \(0.247750\pi\)
−0.712088 + 0.702090i \(0.752250\pi\)
\(318\) 0 0
\(319\) 11294.9 1.98242
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 9912.71i − 1.70761i
\(324\) 0 0
\(325\) − 4395.71i − 0.750246i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7489.49 1.25504
\(330\) 0 0
\(331\) − 5577.08i − 0.926115i −0.886328 0.463057i \(-0.846752\pi\)
0.886328 0.463057i \(-0.153248\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −335.701 −0.0547501
\(336\) 0 0
\(337\) −5957.59 −0.962999 −0.481499 0.876446i \(-0.659908\pi\)
−0.481499 + 0.876446i \(0.659908\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9033.04i 1.43451i
\(342\) 0 0
\(343\) −4200.15 −0.661186
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3873.30i 0.599221i 0.954062 + 0.299610i \(0.0968567\pi\)
−0.954062 + 0.299610i \(0.903143\pi\)
\(348\) 0 0
\(349\) 11789.8i 1.80830i 0.427218 + 0.904148i \(0.359494\pi\)
−0.427218 + 0.904148i \(0.640506\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6449.61 0.972460 0.486230 0.873831i \(-0.338372\pi\)
0.486230 + 0.873831i \(0.338372\pi\)
\(354\) 0 0
\(355\) − 7032.85i − 1.05145i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4333.86 −0.637138 −0.318569 0.947900i \(-0.603202\pi\)
−0.318569 + 0.947900i \(0.603202\pi\)
\(360\) 0 0
\(361\) −19624.4 −2.86112
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 6667.21i − 0.956103i
\(366\) 0 0
\(367\) −1773.77 −0.252289 −0.126144 0.992012i \(-0.540260\pi\)
−0.126144 + 0.992012i \(0.540260\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 5228.58i − 0.731683i
\(372\) 0 0
\(373\) 8187.21i 1.13651i 0.822853 + 0.568254i \(0.192381\pi\)
−0.822853 + 0.568254i \(0.807619\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6101.91 0.833593
\(378\) 0 0
\(379\) − 4548.20i − 0.616426i −0.951317 0.308213i \(-0.900269\pi\)
0.951317 0.308213i \(-0.0997310\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14304.4 1.90841 0.954204 0.299155i \(-0.0967049\pi\)
0.954204 + 0.299155i \(0.0967049\pi\)
\(384\) 0 0
\(385\) 19439.9 2.57337
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9949.97i 1.29687i 0.761269 + 0.648436i \(0.224577\pi\)
−0.761269 + 0.648436i \(0.775423\pi\)
\(390\) 0 0
\(391\) 5073.70 0.656235
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 1604.74i − 0.204413i
\(396\) 0 0
\(397\) − 8804.08i − 1.11301i −0.830845 0.556504i \(-0.812143\pi\)
0.830845 0.556504i \(-0.187857\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5447.33 −0.678370 −0.339185 0.940720i \(-0.610151\pi\)
−0.339185 + 0.940720i \(0.610151\pi\)
\(402\) 0 0
\(403\) 4879.99i 0.603200i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −21177.4 −2.57918
\(408\) 0 0
\(409\) 11192.0 1.35307 0.676537 0.736408i \(-0.263480\pi\)
0.676537 + 0.736408i \(0.263480\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7164.29i 0.853587i
\(414\) 0 0
\(415\) −5845.60 −0.691444
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8012.23i 0.934184i 0.884209 + 0.467092i \(0.154698\pi\)
−0.884209 + 0.467092i \(0.845302\pi\)
\(420\) 0 0
\(421\) − 5895.02i − 0.682436i −0.939984 0.341218i \(-0.889161\pi\)
0.939984 0.341218i \(-0.110839\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9547.24 −1.08967
\(426\) 0 0
\(427\) 16495.6i 1.86951i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3869.38 −0.432439 −0.216220 0.976345i \(-0.569373\pi\)
−0.216220 + 0.976345i \(0.569373\pi\)
\(432\) 0 0
\(433\) −2257.93 −0.250599 −0.125300 0.992119i \(-0.539989\pi\)
−0.125300 + 0.992119i \(0.539989\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 13555.2i − 1.48383i
\(438\) 0 0
\(439\) −13979.2 −1.51979 −0.759897 0.650043i \(-0.774751\pi\)
−0.759897 + 0.650043i \(0.774751\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 16551.5i − 1.77513i −0.460679 0.887567i \(-0.652394\pi\)
0.460679 0.887567i \(-0.347606\pi\)
\(444\) 0 0
\(445\) − 25050.4i − 2.66854i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4494.66 0.472419 0.236210 0.971702i \(-0.424095\pi\)
0.236210 + 0.971702i \(0.424095\pi\)
\(450\) 0 0
\(451\) − 10204.0i − 1.06538i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10502.2 1.08209
\(456\) 0 0
\(457\) 16034.1 1.64123 0.820615 0.571482i \(-0.193631\pi\)
0.820615 + 0.571482i \(0.193631\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1432.00i 0.144674i 0.997380 + 0.0723370i \(0.0230457\pi\)
−0.997380 + 0.0723370i \(0.976954\pi\)
\(462\) 0 0
\(463\) −12090.6 −1.21360 −0.606800 0.794855i \(-0.707547\pi\)
−0.606800 + 0.794855i \(0.707547\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 2767.50i − 0.274229i −0.990555 0.137114i \(-0.956217\pi\)
0.990555 0.137114i \(-0.0437828\pi\)
\(468\) 0 0
\(469\) − 446.200i − 0.0439310i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −17934.4 −1.74339
\(474\) 0 0
\(475\) 25507.0i 2.46387i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14484.6 1.38167 0.690834 0.723013i \(-0.257243\pi\)
0.690834 + 0.723013i \(0.257243\pi\)
\(480\) 0 0
\(481\) −11440.9 −1.08453
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 14803.5i − 1.38597i
\(486\) 0 0
\(487\) 3300.69 0.307122 0.153561 0.988139i \(-0.450926\pi\)
0.153561 + 0.988139i \(0.450926\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 8400.25i − 0.772094i −0.922479 0.386047i \(-0.873840\pi\)
0.922479 0.386047i \(-0.126160\pi\)
\(492\) 0 0
\(493\) − 13253.0i − 1.21072i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9347.80 0.843675
\(498\) 0 0
\(499\) − 5884.85i − 0.527940i −0.964531 0.263970i \(-0.914968\pi\)
0.964531 0.263970i \(-0.0850319\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15361.0 1.36166 0.680828 0.732443i \(-0.261620\pi\)
0.680828 + 0.732443i \(0.261620\pi\)
\(504\) 0 0
\(505\) −10780.1 −0.949913
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 4734.24i − 0.412262i −0.978524 0.206131i \(-0.933913\pi\)
0.978524 0.206131i \(-0.0660873\pi\)
\(510\) 0 0
\(511\) 8861.80 0.767168
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 22190.3i 1.89868i
\(516\) 0 0
\(517\) 17427.0i 1.48248i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1802.84 0.151600 0.0758002 0.997123i \(-0.475849\pi\)
0.0758002 + 0.997123i \(0.475849\pi\)
\(522\) 0 0
\(523\) − 14334.3i − 1.19846i −0.800576 0.599231i \(-0.795473\pi\)
0.800576 0.599231i \(-0.204527\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10599.1 0.876098
\(528\) 0 0
\(529\) −5228.94 −0.429764
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 5512.59i − 0.447987i
\(534\) 0 0
\(535\) −28060.8 −2.26761
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8032.78i 0.641923i
\(540\) 0 0
\(541\) − 80.7842i − 0.00641993i −0.999995 0.00320997i \(-0.998978\pi\)
0.999995 0.00320997i \(-0.00102177\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 27989.3 2.19987
\(546\) 0 0
\(547\) 16156.2i 1.26287i 0.775429 + 0.631435i \(0.217534\pi\)
−0.775429 + 0.631435i \(0.782466\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −35407.6 −2.73759
\(552\) 0 0
\(553\) 2132.96 0.164019
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 11647.7i − 0.886050i −0.896509 0.443025i \(-0.853905\pi\)
0.896509 0.443025i \(-0.146095\pi\)
\(558\) 0 0
\(559\) −9688.85 −0.733085
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15422.5i 1.15450i 0.816568 + 0.577249i \(0.195874\pi\)
−0.816568 + 0.577249i \(0.804126\pi\)
\(564\) 0 0
\(565\) − 7021.41i − 0.522819i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22141.8 −1.63134 −0.815669 0.578519i \(-0.803631\pi\)
−0.815669 + 0.578519i \(0.803631\pi\)
\(570\) 0 0
\(571\) − 22320.5i − 1.63587i −0.575309 0.817936i \(-0.695118\pi\)
0.575309 0.817936i \(-0.304882\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13055.4 −0.946868
\(576\) 0 0
\(577\) 1412.77 0.101932 0.0509658 0.998700i \(-0.483770\pi\)
0.0509658 + 0.998700i \(0.483770\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 7769.75i − 0.554808i
\(582\) 0 0
\(583\) 12166.2 0.864276
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20519.0i 1.44278i 0.692531 + 0.721388i \(0.256495\pi\)
−0.692531 + 0.721388i \(0.743505\pi\)
\(588\) 0 0
\(589\) − 28317.2i − 1.98096i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15003.2 −1.03897 −0.519483 0.854480i \(-0.673876\pi\)
−0.519483 + 0.854480i \(0.673876\pi\)
\(594\) 0 0
\(595\) − 22810.1i − 1.57164i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15673.9 1.06915 0.534573 0.845123i \(-0.320473\pi\)
0.534573 + 0.845123i \(0.320473\pi\)
\(600\) 0 0
\(601\) 8395.61 0.569824 0.284912 0.958554i \(-0.408036\pi\)
0.284912 + 0.958554i \(0.408036\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22893.1i 1.53841i
\(606\) 0 0
\(607\) 5507.73 0.368290 0.184145 0.982899i \(-0.441048\pi\)
0.184145 + 0.982899i \(0.441048\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9414.74i 0.623371i
\(612\) 0 0
\(613\) 22607.4i 1.48956i 0.667308 + 0.744782i \(0.267446\pi\)
−0.667308 + 0.744782i \(0.732554\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −28342.0 −1.84928 −0.924639 0.380844i \(-0.875634\pi\)
−0.924639 + 0.380844i \(0.875634\pi\)
\(618\) 0 0
\(619\) 22779.4i 1.47913i 0.673086 + 0.739564i \(0.264968\pi\)
−0.673086 + 0.739564i \(0.735032\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 33296.0 2.14121
\(624\) 0 0
\(625\) −10650.6 −0.681638
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 24848.9i 1.57519i
\(630\) 0 0
\(631\) 19354.6 1.22107 0.610536 0.791989i \(-0.290954\pi\)
0.610536 + 0.791989i \(0.290954\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1787.76i − 0.111724i
\(636\) 0 0
\(637\) 4339.61i 0.269924i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1458.61 −0.0898775 −0.0449387 0.998990i \(-0.514309\pi\)
−0.0449387 + 0.998990i \(0.514309\pi\)
\(642\) 0 0
\(643\) − 14874.5i − 0.912278i −0.889909 0.456139i \(-0.849232\pi\)
0.889909 0.456139i \(-0.150768\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13724.8 0.833966 0.416983 0.908914i \(-0.363087\pi\)
0.416983 + 0.908914i \(0.363087\pi\)
\(648\) 0 0
\(649\) −16670.3 −1.00827
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 14706.2i − 0.881311i −0.897676 0.440656i \(-0.854746\pi\)
0.897676 0.440656i \(-0.145254\pi\)
\(654\) 0 0
\(655\) −30456.0 −1.81682
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 14302.2i − 0.845426i −0.906264 0.422713i \(-0.861078\pi\)
0.906264 0.422713i \(-0.138922\pi\)
\(660\) 0 0
\(661\) 18402.5i 1.08287i 0.840743 + 0.541434i \(0.182118\pi\)
−0.840743 + 0.541434i \(0.817882\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −60940.9 −3.55367
\(666\) 0 0
\(667\) − 18122.9i − 1.05206i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −38383.1 −2.20829
\(672\) 0 0
\(673\) 20057.4 1.14882 0.574411 0.818567i \(-0.305231\pi\)
0.574411 + 0.818567i \(0.305231\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3332.38i 0.189178i 0.995516 + 0.0945891i \(0.0301537\pi\)
−0.995516 + 0.0945891i \(0.969846\pi\)
\(678\) 0 0
\(679\) 19676.3 1.11209
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25093.2i 1.40581i 0.711286 + 0.702903i \(0.248113\pi\)
−0.711286 + 0.702903i \(0.751887\pi\)
\(684\) 0 0
\(685\) 6734.10i 0.375616i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6572.65 0.363422
\(690\) 0 0
\(691\) 5265.23i 0.289868i 0.989441 + 0.144934i \(0.0462970\pi\)
−0.989441 + 0.144934i \(0.953703\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6403.06 −0.349470
\(696\) 0 0
\(697\) −11973.1 −0.650663
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20984.1i 1.13061i 0.824882 + 0.565306i \(0.191242\pi\)
−0.824882 + 0.565306i \(0.808758\pi\)
\(702\) 0 0
\(703\) 66387.9 3.56169
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 14328.4i − 0.762201i
\(708\) 0 0
\(709\) 12441.7i 0.659036i 0.944149 + 0.329518i \(0.106886\pi\)
−0.944149 + 0.329518i \(0.893114\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14493.8 0.761285
\(714\) 0 0
\(715\) 24437.1i 1.27818i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −34573.7 −1.79330 −0.896650 0.442740i \(-0.854006\pi\)
−0.896650 + 0.442740i \(0.854006\pi\)
\(720\) 0 0
\(721\) −29494.4 −1.52348
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 34102.1i 1.74693i
\(726\) 0 0
\(727\) 20704.6 1.05624 0.528122 0.849168i \(-0.322896\pi\)
0.528122 + 0.849168i \(0.322896\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21043.7i 1.06474i
\(732\) 0 0
\(733\) 11999.1i 0.604633i 0.953208 + 0.302317i \(0.0977600\pi\)
−0.953208 + 0.302317i \(0.902240\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1038.25 0.0518919
\(738\) 0 0
\(739\) 4576.46i 0.227805i 0.993492 + 0.113902i \(0.0363351\pi\)
−0.993492 + 0.113902i \(0.963665\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −457.260 −0.0225777 −0.0112889 0.999936i \(-0.503593\pi\)
−0.0112889 + 0.999936i \(0.503593\pi\)
\(744\) 0 0
\(745\) 50723.3 2.49444
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 37297.3i − 1.81951i
\(750\) 0 0
\(751\) −15889.2 −0.772045 −0.386022 0.922489i \(-0.626151\pi\)
−0.386022 + 0.922489i \(0.626151\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 36344.1i 1.75192i
\(756\) 0 0
\(757\) 34433.6i 1.65325i 0.562754 + 0.826624i \(0.309742\pi\)
−0.562754 + 0.826624i \(0.690258\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21391.1 −1.01896 −0.509480 0.860483i \(-0.670162\pi\)
−0.509480 + 0.860483i \(0.670162\pi\)
\(762\) 0 0
\(763\) 37202.3i 1.76516i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9005.94 −0.423971
\(768\) 0 0
\(769\) 23915.1 1.12146 0.560728 0.828000i \(-0.310521\pi\)
0.560728 + 0.828000i \(0.310521\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 19446.0i − 0.904818i −0.891811 0.452409i \(-0.850565\pi\)
0.891811 0.452409i \(-0.149435\pi\)
\(774\) 0 0
\(775\) −27273.1 −1.26410
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 31988.0i 1.47123i
\(780\) 0 0
\(781\) 21751.1i 0.996561i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −24823.2 −1.12864
\(786\) 0 0
\(787\) 29340.7i 1.32895i 0.747310 + 0.664475i \(0.231345\pi\)
−0.747310 + 0.664475i \(0.768655\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9332.59 0.419506
\(792\) 0 0
\(793\) −20736.0 −0.928571
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33505.7i 1.48913i 0.667552 + 0.744563i \(0.267342\pi\)
−0.667552 + 0.744563i \(0.732658\pi\)
\(798\) 0 0
\(799\) 20448.3 0.905394
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 20620.2i 0.906191i
\(804\) 0 0
\(805\) − 31191.9i − 1.36568i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −19418.0 −0.843882 −0.421941 0.906623i \(-0.638651\pi\)
−0.421941 + 0.906623i \(0.638651\pi\)
\(810\) 0 0
\(811\) − 24228.8i − 1.04906i −0.851391 0.524531i \(-0.824241\pi\)
0.851391 0.524531i \(-0.175759\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −19138.5 −0.822567
\(816\) 0 0
\(817\) 56221.5 2.40752
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16355.5i 0.695263i 0.937631 + 0.347631i \(0.113014\pi\)
−0.937631 + 0.347631i \(0.886986\pi\)
\(822\) 0 0
\(823\) 3280.51 0.138945 0.0694724 0.997584i \(-0.477868\pi\)
0.0694724 + 0.997584i \(0.477868\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23480.5i 0.987298i 0.869661 + 0.493649i \(0.164337\pi\)
−0.869661 + 0.493649i \(0.835663\pi\)
\(828\) 0 0
\(829\) − 16306.2i − 0.683160i −0.939853 0.341580i \(-0.889038\pi\)
0.939853 0.341580i \(-0.110962\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9425.42 0.392042
\(834\) 0 0
\(835\) 10854.1i 0.449846i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29259.0 1.20397 0.601986 0.798506i \(-0.294376\pi\)
0.601986 + 0.798506i \(0.294376\pi\)
\(840\) 0 0
\(841\) −22950.0 −0.940998
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 23674.9i − 0.963834i
\(846\) 0 0
\(847\) −30428.6 −1.23440
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 33979.8i 1.36876i
\(852\) 0 0
\(853\) 14076.0i 0.565008i 0.959266 + 0.282504i \(0.0911651\pi\)
−0.959266 + 0.282504i \(0.908835\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −43553.3 −1.73600 −0.868000 0.496565i \(-0.834595\pi\)
−0.868000 + 0.496565i \(0.834595\pi\)
\(858\) 0 0
\(859\) − 43728.9i − 1.73692i −0.495761 0.868459i \(-0.665111\pi\)
0.495761 0.868459i \(-0.334889\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21807.9 0.860198 0.430099 0.902782i \(-0.358479\pi\)
0.430099 + 0.902782i \(0.358479\pi\)
\(864\) 0 0
\(865\) −67750.6 −2.66311
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4963.10i 0.193742i
\(870\) 0 0
\(871\) 560.901 0.0218202
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11884.8i 0.459176i
\(876\) 0 0
\(877\) − 6228.27i − 0.239810i −0.992785 0.119905i \(-0.961741\pi\)
0.992785 0.119905i \(-0.0382591\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 40608.1 1.55292 0.776459 0.630168i \(-0.217014\pi\)
0.776459 + 0.630168i \(0.217014\pi\)
\(882\) 0 0
\(883\) 78.9699i 0.00300968i 0.999999 + 0.00150484i \(0.000479006\pi\)
−0.999999 + 0.00150484i \(0.999521\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33039.9 −1.25070 −0.625351 0.780344i \(-0.715044\pi\)
−0.625351 + 0.780344i \(0.715044\pi\)
\(888\) 0 0
\(889\) 2376.22 0.0896467
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 54631.0i − 2.04721i
\(894\) 0 0
\(895\) 26724.6 0.998105
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 37859.3i − 1.40454i
\(900\) 0 0
\(901\) − 14275.4i − 0.527840i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −64621.1 −2.37357
\(906\) 0 0
\(907\) − 23459.7i − 0.858838i −0.903105 0.429419i \(-0.858718\pi\)
0.903105 0.429419i \(-0.141282\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36386.3 1.32331 0.661653 0.749811i \(-0.269855\pi\)
0.661653 + 0.749811i \(0.269855\pi\)
\(912\) 0 0
\(913\) 18079.2 0.655348
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 40481.0i − 1.45780i
\(918\) 0 0
\(919\) −19058.6 −0.684097 −0.342049 0.939682i \(-0.611121\pi\)
−0.342049 + 0.939682i \(0.611121\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11750.8i 0.419048i
\(924\) 0 0
\(925\) − 63940.3i − 2.27280i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27020.7 −0.954274 −0.477137 0.878829i \(-0.658326\pi\)
−0.477137 + 0.878829i \(0.658326\pi\)
\(930\) 0 0
\(931\) − 25181.5i − 0.886456i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 53076.1 1.85644
\(936\) 0 0
\(937\) 11862.3 0.413581 0.206791 0.978385i \(-0.433698\pi\)
0.206791 + 0.978385i \(0.433698\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 53659.9i 1.85894i 0.368897 + 0.929470i \(0.379735\pi\)
−0.368897 + 0.929470i \(0.620265\pi\)
\(942\) 0 0
\(943\) −16372.6 −0.565394
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1063.85i 0.0365052i 0.999833 + 0.0182526i \(0.00581030\pi\)
−0.999833 + 0.0182526i \(0.994190\pi\)
\(948\) 0 0
\(949\) 11139.8i 0.381047i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5715.17 −0.194263 −0.0971314 0.995272i \(-0.530967\pi\)
−0.0971314 + 0.995272i \(0.530967\pi\)
\(954\) 0 0
\(955\) − 67972.7i − 2.30319i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8950.71 −0.301391
\(960\) 0 0
\(961\) 486.886 0.0163434
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 57437.6i − 1.91604i
\(966\) 0 0
\(967\) −124.600 −0.00414360 −0.00207180 0.999998i \(-0.500659\pi\)
−0.00207180 + 0.999998i \(0.500659\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 40767.0i − 1.34735i −0.739028 0.673674i \(-0.764715\pi\)
0.739028 0.673674i \(-0.235285\pi\)
\(972\) 0 0
\(973\) − 8510.70i − 0.280412i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11600.1 0.379856 0.189928 0.981798i \(-0.439175\pi\)
0.189928 + 0.981798i \(0.439175\pi\)
\(978\) 0 0
\(979\) 77475.3i 2.52923i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16979.6 0.550930 0.275465 0.961311i \(-0.411168\pi\)
0.275465 + 0.961311i \(0.411168\pi\)
\(984\) 0 0
\(985\) −32815.2 −1.06150
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28776.3i 0.925210i
\(990\) 0 0
\(991\) −15762.5 −0.505259 −0.252630 0.967563i \(-0.581295\pi\)
−0.252630 + 0.967563i \(0.581295\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1830.07i 0.0583085i
\(996\) 0 0
\(997\) 8861.70i 0.281497i 0.990045 + 0.140749i \(0.0449509\pi\)
−0.990045 + 0.140749i \(0.955049\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.d.h.865.2 yes 8
3.2 odd 2 1728.4.d.e.865.8 yes 8
4.3 odd 2 inner 1728.4.d.h.865.1 yes 8
8.3 odd 2 inner 1728.4.d.h.865.7 yes 8
8.5 even 2 inner 1728.4.d.h.865.8 yes 8
12.11 even 2 1728.4.d.e.865.7 yes 8
24.5 odd 2 1728.4.d.e.865.2 yes 8
24.11 even 2 1728.4.d.e.865.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1728.4.d.e.865.1 8 24.11 even 2
1728.4.d.e.865.2 yes 8 24.5 odd 2
1728.4.d.e.865.7 yes 8 12.11 even 2
1728.4.d.e.865.8 yes 8 3.2 odd 2
1728.4.d.h.865.1 yes 8 4.3 odd 2 inner
1728.4.d.h.865.2 yes 8 1.1 even 1 trivial
1728.4.d.h.865.7 yes 8 8.3 odd 2 inner
1728.4.d.h.865.8 yes 8 8.5 even 2 inner