Properties

Label 1728.4.d
Level $1728$
Weight $4$
Character orbit 1728.d
Rep. character $\chi_{1728}(865,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $11$
Sturm bound $1152$
Trace bound $49$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 11 \)
Sturm bound: \(1152\)
Trace bound: \(49\)
Distinguishing \(T_p\): \(5\), \(7\), \(17\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1728, [\chi])\).

Total New Old
Modular forms 900 96 804
Cusp forms 828 96 732
Eisenstein series 72 0 72

Trace form

\( 96 q - 2400 q^{25} + 5424 q^{49} + 432 q^{73} - 6048 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1728.4.d.a 1728.d 8.b $4$ $101.955$ \(\Q(i, \sqrt{19})\) None 1728.4.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-12\beta _{1}q^{5}-\beta _{2}q^{7}+4\beta _{3}q^{11}-5\beta _{3}q^{13}+\cdots\)
1728.4.d.b 1728.d 8.b $4$ $101.955$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 1728.4.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta_{3} q^{7}-53\beta_{2} q^{13}+163\beta_1 q^{19}+\cdots\)
1728.4.d.c 1728.d 8.b $4$ $101.955$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 1728.4.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-19\beta_{3} q^{7}+17\beta_{2} q^{13}+107\beta_1 q^{19}+\cdots\)
1728.4.d.d 1728.d 8.b $4$ $101.955$ \(\Q(i, \sqrt{19})\) None 1728.4.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-12\beta _{1}q^{5}+\beta _{2}q^{7}-4\beta _{3}q^{11}-5\beta _{3}q^{13}+\cdots\)
1728.4.d.e 1728.d 8.b $8$ $101.955$ 8.0.\(\cdots\).6 None 1728.4.d.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}+(\beta _{4}+\beta _{6})q^{7}+(-12\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\)
1728.4.d.f 1728.d 8.b $8$ $101.955$ 8.0.592240896.1 None 1728.4.d.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{5}+7\beta _{1}q^{7}-\beta _{7}q^{11}-9\beta _{2}q^{13}+\cdots\)
1728.4.d.g 1728.d 8.b $8$ $101.955$ 8.0.1731891456.1 None 1728.4.d.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{5}+\beta _{6}q^{7}-\beta _{7}q^{11}+\beta _{5}q^{13}+\cdots\)
1728.4.d.h 1728.d 8.b $8$ $101.955$ 8.0.\(\cdots\).6 None 1728.4.d.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}+(\beta _{4}+\beta _{6})q^{7}+(-12\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots\)
1728.4.d.i 1728.d 8.b $16$ $101.955$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 1728.4.d.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{8}q^{5}+\beta _{7}q^{7}+(-6\beta _{4}+\beta _{12})q^{11}+\cdots\)
1728.4.d.j 1728.d 8.b $16$ $101.955$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1728.4.d.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{11}q^{5}+(-\beta _{5}+\beta _{8})q^{7}-\beta _{7}q^{11}+\cdots\)
1728.4.d.k 1728.d 8.b $16$ $101.955$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 1728.4.d.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{8}q^{5}-\beta _{7}q^{7}+(6\beta _{4}-\beta _{12})q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)