Properties

Label 1728.4.d.e
Level $1728$
Weight $4$
Character orbit 1728.d
Analytic conductor $101.955$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2261390379264.6
Defining polynomial: \( x^{8} - 4x^{7} - 8x^{6} + 38x^{5} - 38x^{4} + 8x^{3} + 325x^{2} - 322x + 2122 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{5} + (\beta_{6} + \beta_{4}) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{5} q^{5} + (\beta_{6} + \beta_{4}) q^{7} + ( - \beta_{2} - 12 \beta_1) q^{11} + ( - \beta_{7} - 2 \beta_{5}) q^{13} + ( - \beta_{3} - 21) q^{17} + ( - 3 \beta_{2} - 43 \beta_1) q^{19} + ( - 9 \beta_{6} - 2 \beta_{4}) q^{23} + ( - 3 \beta_{3} - 37) q^{25} + (9 \beta_{7} - 10 \beta_{5}) q^{29} + ( - 8 \beta_{6} + 13 \beta_{4}) q^{31} + (6 \beta_{2} + 135 \beta_1) q^{35} + (7 \beta_{7} - 22 \beta_{5}) q^{37} + (5 \beta_{3} - 3) q^{41} + (6 \beta_{2} + 106 \beta_1) q^{43} - 20 \beta_{4} q^{47} + (3 \beta_{3} + 35) q^{49} + (9 \beta_{7} - 11 \beta_{5}) q^{53} + (21 \beta_{6} + 45 \beta_{4}) q^{55} + ( - 10 \beta_{2} + 78 \beta_1) q^{59} + ( - 12 \beta_{7} - 48 \beta_{5}) q^{61} + ( - 3 \beta_{3} - 351) q^{65} - 20 \beta_1 q^{67} + ( - 9 \beta_{6} - 22 \beta_{4}) q^{71} + (9 \beta_{3} + 38) q^{73} + 69 \beta_{5} q^{77} + ( - 7 \beta_{6} + 8 \beta_{4}) q^{79} + ( - 3 \beta_{2} + 468 \beta_1) q^{83} + ( - 21 \beta_{7} + 54 \beta_{5}) q^{85} + ( - 18 \beta_{3} - 774) q^{89} + (15 \beta_{2} + 27 \beta_1) q^{91} + (63 \beta_{6} + 142 \beta_{4}) q^{95} + (12 \beta_{3} + 403) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 168 q^{17} - 296 q^{25} - 24 q^{41} + 280 q^{49} - 2808 q^{65} + 304 q^{73} - 6192 q^{89} + 3224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} - 8x^{6} + 38x^{5} - 38x^{4} + 8x^{3} + 325x^{2} - 322x + 2122 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{6} - 6\nu^{5} - 15\nu^{4} + 40\nu^{3} + 18\nu^{2} - 39\nu + 35 ) / 639 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 2\nu^{3} - 6\nu^{2} + 7\nu - 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{6} + 12\nu^{5} + 30\nu^{4} - 80\nu^{3} + 390\nu^{2} - 348\nu - 1561 ) / 71 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -50\nu^{7} + 175\nu^{6} - 2043\nu^{5} + 4670\nu^{4} + 36047\nu^{3} - 58653\nu^{2} + 85648\nu - 32897 ) / 51333 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -58\nu^{7} + 203\nu^{6} - 1001\nu^{5} + 1995\nu^{4} + 2117\nu^{3} - 5069\nu^{2} + 67183\nu - 32685 ) / 17111 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -740\nu^{7} + 2590\nu^{6} + 10830\nu^{5} - 33550\nu^{4} - 41434\nu^{3} + 96996\nu^{2} - 5468\nu - 14612 ) / 51333 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 280\nu^{7} - 980\nu^{6} - 2248\nu^{5} + 8070\nu^{4} - 10220\nu^{3} + 6770\nu^{2} + 150056\nu - 75864 ) / 17111 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} + 2\beta_{4} + 6 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} + \beta_{6} + 2\beta_{4} + 2\beta_{3} + 36\beta _1 + 48 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{7} + 3\beta_{6} - 10\beta_{5} + 24\beta_{4} + 3\beta_{3} + 54\beta _1 + 69 ) / 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{7} + 5\beta_{6} - 20\beta_{5} + 46\beta_{4} + 18\beta_{3} + 12\beta_{2} + 324\beta _1 + 660 ) / 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 43\beta_{7} + 77\beta_{6} - 190\beta_{5} + 244\beta_{4} + 40\beta_{3} + 30\beta_{2} + 720\beta _1 + 1536 ) / 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 122\beta_{7} + 219\beta_{6} - 520\beta_{5} + 618\beta_{4} + 177\beta_{3} + 180\beta_{2} + 7020\beta _1 + 7653 ) / 12 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 932 \beta_{7} + 790 \beta_{6} - 3134 \beta_{5} + 2552 \beta_{4} + 483 \beta_{3} + 525 \beta_{2} + 22113 \beta _1 + 21489 ) / 12 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
865.1
−2.75792 0.460416i
3.75792 0.460416i
−0.297464 + 1.88096i
1.29746 + 1.88096i
−0.297464 1.88096i
1.29746 1.88096i
−2.75792 + 0.460416i
3.75792 + 0.460416i
0 0 0 16.7850i 0 −22.3100 0 0 0
865.2 0 0 0 16.7850i 0 22.3100 0 0 0
865.3 0 0 0 6.50098i 0 −16.0706 0 0 0
865.4 0 0 0 6.50098i 0 16.0706 0 0 0
865.5 0 0 0 6.50098i 0 −16.0706 0 0 0
865.6 0 0 0 6.50098i 0 16.0706 0 0 0
865.7 0 0 0 16.7850i 0 −22.3100 0 0 0
865.8 0 0 0 16.7850i 0 22.3100 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 865.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1728.4.d.e 8
3.b odd 2 1 1728.4.d.h yes 8
4.b odd 2 1 inner 1728.4.d.e 8
8.b even 2 1 inner 1728.4.d.e 8
8.d odd 2 1 inner 1728.4.d.e 8
12.b even 2 1 1728.4.d.h yes 8
24.f even 2 1 1728.4.d.h yes 8
24.h odd 2 1 1728.4.d.h yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1728.4.d.e 8 1.a even 1 1 trivial
1728.4.d.e 8 4.b odd 2 1 inner
1728.4.d.e 8 8.b even 2 1 inner
1728.4.d.e 8 8.d odd 2 1 inner
1728.4.d.h yes 8 3.b odd 2 1
1728.4.d.h yes 8 12.b even 2 1
1728.4.d.h yes 8 24.f even 2 1
1728.4.d.h yes 8 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1728, [\chi])\):

\( T_{5}^{4} + 324T_{5}^{2} + 11907 \) Copy content Toggle raw display
\( T_{7}^{4} - 756T_{7}^{2} + 128547 \) Copy content Toggle raw display
\( T_{17}^{2} + 42T_{17} - 1152 \) Copy content Toggle raw display
\( T_{23}^{4} - 43092T_{23}^{2} + 250838208 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 324 T^{2} + 11907)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} - 756 T^{2} + 128547)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 3474 T^{2} + 2099601)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 2052 T^{2} + 995328)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 42 T - 1152)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + 32372 T^{2} + \cdots + 155950144)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 43092 T^{2} + \cdots + 250838208)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 66420 T^{2} + \cdots + 903275712)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 100548 T^{2} + \cdots + 2127630483)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 166644 T^{2} + \cdots + 37340352)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 6 T - 39816)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 137168 T^{2} + \cdots + 2126316544)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 129600 T^{2} + \cdots + 1905120000)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 72252 T^{2} + \cdots + 951695163)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 330768 T^{2} + \cdots + 23475142656)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 886464 T^{2} + \cdots + 185752092672)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 400)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} - 179172 T^{2} + \cdots + 634583808)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 76 T - 127589)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 53244 T^{2} + \cdots + 403123392)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 466722 T^{2} + \cdots + 41896767969)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 1548 T + 82944)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 806 T - 66983)^{4} \) Copy content Toggle raw display
show more
show less