Properties

Label 1728.4.c.i.1727.7
Level $1728$
Weight $4$
Character 1728.1727
Analytic conductor $101.955$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(1727,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1727"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{10} + 112x^{8} - 368x^{6} + 928x^{4} - 256x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{12} \)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1727.7
Root \(1.61829 + 0.934317i\) of defining polynomial
Character \(\chi\) \(=\) 1728.1727
Dual form 1728.4.c.i.1727.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.33155i q^{5} -16.9016i q^{7} -16.8325 q^{11} -25.0775 q^{13} +116.919i q^{17} +85.4801i q^{19} -158.740 q^{23} +113.901 q^{25} -269.955i q^{29} +36.0884i q^{31} +56.3085 q^{35} +353.780 q^{37} +144.415i q^{41} -368.186i q^{43} +397.333 q^{47} +57.3363 q^{49} +96.0857i q^{53} -56.0783i q^{55} +294.902 q^{59} -146.724 q^{61} -83.5471i q^{65} -301.433i q^{67} -687.794 q^{71} -312.138 q^{73} +284.496i q^{77} -602.063i q^{79} -1334.44 q^{83} -389.521 q^{85} -856.292i q^{89} +423.850i q^{91} -284.781 q^{95} +218.564 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 36 q^{13} - 132 q^{25} - 516 q^{37} - 720 q^{49} + 972 q^{61} + 660 q^{73} - 1056 q^{85} + 2532 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.33155i 0.297983i 0.988838 + 0.148992i \(0.0476027\pi\)
−0.988838 + 0.148992i \(0.952397\pi\)
\(6\) 0 0
\(7\) − 16.9016i − 0.912600i −0.889826 0.456300i \(-0.849174\pi\)
0.889826 0.456300i \(-0.150826\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −16.8325 −0.461380 −0.230690 0.973027i \(-0.574098\pi\)
−0.230690 + 0.973027i \(0.574098\pi\)
\(12\) 0 0
\(13\) −25.0775 −0.535020 −0.267510 0.963555i \(-0.586201\pi\)
−0.267510 + 0.963555i \(0.586201\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 116.919i 1.66806i 0.551722 + 0.834028i \(0.313971\pi\)
−0.551722 + 0.834028i \(0.686029\pi\)
\(18\) 0 0
\(19\) 85.4801i 1.03213i 0.856549 + 0.516065i \(0.172604\pi\)
−0.856549 + 0.516065i \(0.827396\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −158.740 −1.43911 −0.719555 0.694436i \(-0.755654\pi\)
−0.719555 + 0.694436i \(0.755654\pi\)
\(24\) 0 0
\(25\) 113.901 0.911206
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 269.955i − 1.72860i −0.502976 0.864300i \(-0.667762\pi\)
0.502976 0.864300i \(-0.332238\pi\)
\(30\) 0 0
\(31\) 36.0884i 0.209086i 0.994520 + 0.104543i \(0.0333380\pi\)
−0.994520 + 0.104543i \(0.966662\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 56.3085 0.271939
\(36\) 0 0
\(37\) 353.780 1.57192 0.785960 0.618277i \(-0.212169\pi\)
0.785960 + 0.618277i \(0.212169\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 144.415i 0.550093i 0.961431 + 0.275046i \(0.0886932\pi\)
−0.961431 + 0.275046i \(0.911307\pi\)
\(42\) 0 0
\(43\) − 368.186i − 1.30576i −0.757460 0.652881i \(-0.773560\pi\)
0.757460 0.652881i \(-0.226440\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 397.333 1.23313 0.616563 0.787305i \(-0.288524\pi\)
0.616563 + 0.787305i \(0.288524\pi\)
\(48\) 0 0
\(49\) 57.3363 0.167161
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 96.0857i 0.249026i 0.992218 + 0.124513i \(0.0397369\pi\)
−0.992218 + 0.124513i \(0.960263\pi\)
\(54\) 0 0
\(55\) − 56.0783i − 0.137484i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 294.902 0.650727 0.325364 0.945589i \(-0.394513\pi\)
0.325364 + 0.945589i \(0.394513\pi\)
\(60\) 0 0
\(61\) −146.724 −0.307969 −0.153984 0.988073i \(-0.549211\pi\)
−0.153984 + 0.988073i \(0.549211\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 83.5471i − 0.159427i
\(66\) 0 0
\(67\) − 301.433i − 0.549641i −0.961496 0.274820i \(-0.911382\pi\)
0.961496 0.274820i \(-0.0886184\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −687.794 −1.14966 −0.574832 0.818272i \(-0.694933\pi\)
−0.574832 + 0.818272i \(0.694933\pi\)
\(72\) 0 0
\(73\) −312.138 −0.500452 −0.250226 0.968187i \(-0.580505\pi\)
−0.250226 + 0.968187i \(0.580505\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 284.496i 0.421056i
\(78\) 0 0
\(79\) − 602.063i − 0.857436i −0.903438 0.428718i \(-0.858965\pi\)
0.903438 0.428718i \(-0.141035\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1334.44 −1.76475 −0.882373 0.470551i \(-0.844055\pi\)
−0.882373 + 0.470551i \(0.844055\pi\)
\(84\) 0 0
\(85\) −389.521 −0.497053
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 856.292i − 1.01985i −0.860218 0.509926i \(-0.829673\pi\)
0.860218 0.509926i \(-0.170327\pi\)
\(90\) 0 0
\(91\) 423.850i 0.488259i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −284.781 −0.307557
\(96\) 0 0
\(97\) 218.564 0.228782 0.114391 0.993436i \(-0.463508\pi\)
0.114391 + 0.993436i \(0.463508\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 793.625i 0.781868i 0.920419 + 0.390934i \(0.127848\pi\)
−0.920419 + 0.390934i \(0.872152\pi\)
\(102\) 0 0
\(103\) − 1245.59i − 1.19157i −0.803145 0.595784i \(-0.796841\pi\)
0.803145 0.595784i \(-0.203159\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −95.7189 −0.0864813 −0.0432406 0.999065i \(-0.513768\pi\)
−0.0432406 + 0.999065i \(0.513768\pi\)
\(108\) 0 0
\(109\) −1349.09 −1.18550 −0.592749 0.805387i \(-0.701957\pi\)
−0.592749 + 0.805387i \(0.701957\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1885.41i − 1.56960i −0.619750 0.784799i \(-0.712766\pi\)
0.619750 0.784799i \(-0.287234\pi\)
\(114\) 0 0
\(115\) − 528.850i − 0.428831i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1976.11 1.52227
\(120\) 0 0
\(121\) −1047.67 −0.787128
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 795.911i 0.569507i
\(126\) 0 0
\(127\) 714.330i 0.499106i 0.968361 + 0.249553i \(0.0802838\pi\)
−0.968361 + 0.249553i \(0.919716\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2153.89 1.43654 0.718268 0.695766i \(-0.244935\pi\)
0.718268 + 0.695766i \(0.244935\pi\)
\(132\) 0 0
\(133\) 1444.75 0.941922
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2053.68i 1.28071i 0.768079 + 0.640356i \(0.221213\pi\)
−0.768079 + 0.640356i \(0.778787\pi\)
\(138\) 0 0
\(139\) − 2000.40i − 1.22066i −0.792148 0.610329i \(-0.791037\pi\)
0.792148 0.610329i \(-0.208963\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 422.117 0.246847
\(144\) 0 0
\(145\) 899.370 0.515094
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 988.026i − 0.543236i −0.962405 0.271618i \(-0.912441\pi\)
0.962405 0.271618i \(-0.0875588\pi\)
\(150\) 0 0
\(151\) − 1630.56i − 0.878764i −0.898300 0.439382i \(-0.855197\pi\)
0.898300 0.439382i \(-0.144803\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −120.231 −0.0623042
\(156\) 0 0
\(157\) 690.002 0.350752 0.175376 0.984501i \(-0.443886\pi\)
0.175376 + 0.984501i \(0.443886\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2682.95i 1.31333i
\(162\) 0 0
\(163\) − 3414.58i − 1.64080i −0.571790 0.820400i \(-0.693751\pi\)
0.571790 0.820400i \(-0.306249\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1372.95 −0.636180 −0.318090 0.948061i \(-0.603041\pi\)
−0.318090 + 0.948061i \(0.603041\pi\)
\(168\) 0 0
\(169\) −1568.12 −0.713754
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1118.25i − 0.491441i −0.969341 0.245721i \(-0.920975\pi\)
0.969341 0.245721i \(-0.0790246\pi\)
\(174\) 0 0
\(175\) − 1925.10i − 0.831567i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1755.59 0.733067 0.366534 0.930405i \(-0.380544\pi\)
0.366534 + 0.930405i \(0.380544\pi\)
\(180\) 0 0
\(181\) −312.973 −0.128525 −0.0642626 0.997933i \(-0.520470\pi\)
−0.0642626 + 0.997933i \(0.520470\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1178.64i 0.468406i
\(186\) 0 0
\(187\) − 1968.03i − 0.769608i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2024.40 −0.766915 −0.383457 0.923559i \(-0.625267\pi\)
−0.383457 + 0.923559i \(0.625267\pi\)
\(192\) 0 0
\(193\) 1138.00 0.424431 0.212216 0.977223i \(-0.431932\pi\)
0.212216 + 0.977223i \(0.431932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2345.77i − 0.848370i −0.905576 0.424185i \(-0.860561\pi\)
0.905576 0.424185i \(-0.139439\pi\)
\(198\) 0 0
\(199\) − 2839.16i − 1.01137i −0.862718 0.505686i \(-0.831240\pi\)
0.862718 0.505686i \(-0.168760\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4562.67 −1.57752
\(204\) 0 0
\(205\) −481.126 −0.163918
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 1438.84i − 0.476204i
\(210\) 0 0
\(211\) − 256.564i − 0.0837091i −0.999124 0.0418545i \(-0.986673\pi\)
0.999124 0.0418545i \(-0.0133266\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1226.63 0.389095
\(216\) 0 0
\(217\) 609.952 0.190812
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 2932.03i − 0.892443i
\(222\) 0 0
\(223\) − 4020.58i − 1.20734i −0.797233 0.603672i \(-0.793704\pi\)
0.797233 0.603672i \(-0.206296\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2958.44 0.865016 0.432508 0.901630i \(-0.357629\pi\)
0.432508 + 0.901630i \(0.357629\pi\)
\(228\) 0 0
\(229\) −226.069 −0.0652360 −0.0326180 0.999468i \(-0.510384\pi\)
−0.0326180 + 0.999468i \(0.510384\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 2356.56i − 0.662591i −0.943527 0.331295i \(-0.892514\pi\)
0.943527 0.331295i \(-0.107486\pi\)
\(234\) 0 0
\(235\) 1323.74i 0.367451i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2191.70 0.593176 0.296588 0.955006i \(-0.404151\pi\)
0.296588 + 0.955006i \(0.404151\pi\)
\(240\) 0 0
\(241\) 6532.08 1.74593 0.872963 0.487787i \(-0.162196\pi\)
0.872963 + 0.487787i \(0.162196\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 191.019i 0.0498113i
\(246\) 0 0
\(247\) − 2143.63i − 0.552210i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −34.6697 −0.00871844 −0.00435922 0.999990i \(-0.501388\pi\)
−0.00435922 + 0.999990i \(0.501388\pi\)
\(252\) 0 0
\(253\) 2671.98 0.663977
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3945.92i 0.957742i 0.877885 + 0.478871i \(0.158954\pi\)
−0.877885 + 0.478871i \(0.841046\pi\)
\(258\) 0 0
\(259\) − 5979.44i − 1.43453i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6558.79 −1.53777 −0.768883 0.639390i \(-0.779187\pi\)
−0.768883 + 0.639390i \(0.779187\pi\)
\(264\) 0 0
\(265\) −320.115 −0.0742056
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3741.27i 0.847991i 0.905664 + 0.423995i \(0.139373\pi\)
−0.905664 + 0.423995i \(0.860627\pi\)
\(270\) 0 0
\(271\) − 6011.98i − 1.34761i −0.738910 0.673804i \(-0.764659\pi\)
0.738910 0.673804i \(-0.235341\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1917.23 −0.420412
\(276\) 0 0
\(277\) 4524.48 0.981407 0.490704 0.871327i \(-0.336740\pi\)
0.490704 + 0.871327i \(0.336740\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 4251.22i − 0.902514i −0.892394 0.451257i \(-0.850976\pi\)
0.892394 0.451257i \(-0.149024\pi\)
\(282\) 0 0
\(283\) − 4433.04i − 0.931154i −0.885007 0.465577i \(-0.845847\pi\)
0.885007 0.465577i \(-0.154153\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2440.84 0.502015
\(288\) 0 0
\(289\) −8756.99 −1.78241
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7734.73i 1.54221i 0.636708 + 0.771105i \(0.280296\pi\)
−0.636708 + 0.771105i \(0.719704\pi\)
\(294\) 0 0
\(295\) 982.480i 0.193906i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3980.80 0.769952
\(300\) 0 0
\(301\) −6222.92 −1.19164
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 488.819i − 0.0917694i
\(306\) 0 0
\(307\) − 8510.18i − 1.58209i −0.611759 0.791045i \(-0.709538\pi\)
0.611759 0.791045i \(-0.290462\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8133.65 1.48301 0.741507 0.670945i \(-0.234112\pi\)
0.741507 + 0.670945i \(0.234112\pi\)
\(312\) 0 0
\(313\) 5066.73 0.914979 0.457489 0.889215i \(-0.348749\pi\)
0.457489 + 0.889215i \(0.348749\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4122.54i 0.730425i 0.930924 + 0.365212i \(0.119004\pi\)
−0.930924 + 0.365212i \(0.880996\pi\)
\(318\) 0 0
\(319\) 4544.01i 0.797542i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −9994.22 −1.72165
\(324\) 0 0
\(325\) −2856.35 −0.487513
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 6715.55i − 1.12535i
\(330\) 0 0
\(331\) 3819.96i 0.634332i 0.948370 + 0.317166i \(0.102731\pi\)
−0.948370 + 0.317166i \(0.897269\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1004.24 0.163784
\(336\) 0 0
\(337\) −9712.35 −1.56993 −0.784963 0.619542i \(-0.787318\pi\)
−0.784963 + 0.619542i \(0.787318\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 607.457i − 0.0964682i
\(342\) 0 0
\(343\) − 6766.32i − 1.06515i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3315.20 0.512880 0.256440 0.966560i \(-0.417450\pi\)
0.256440 + 0.966560i \(0.417450\pi\)
\(348\) 0 0
\(349\) 2864.88 0.439408 0.219704 0.975567i \(-0.429491\pi\)
0.219704 + 0.975567i \(0.429491\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 4904.72i − 0.739523i −0.929127 0.369762i \(-0.879439\pi\)
0.929127 0.369762i \(-0.120561\pi\)
\(354\) 0 0
\(355\) − 2291.42i − 0.342580i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4185.24 −0.615288 −0.307644 0.951501i \(-0.599541\pi\)
−0.307644 + 0.951501i \(0.599541\pi\)
\(360\) 0 0
\(361\) −447.841 −0.0652924
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 1039.90i − 0.149126i
\(366\) 0 0
\(367\) 4979.97i 0.708317i 0.935185 + 0.354158i \(0.115233\pi\)
−0.935185 + 0.354158i \(0.884767\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1624.00 0.227261
\(372\) 0 0
\(373\) −6411.84 −0.890060 −0.445030 0.895516i \(-0.646807\pi\)
−0.445030 + 0.895516i \(0.646807\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6769.81i 0.924835i
\(378\) 0 0
\(379\) − 5294.51i − 0.717574i −0.933419 0.358787i \(-0.883190\pi\)
0.933419 0.358787i \(-0.116810\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5923.23 −0.790242 −0.395121 0.918629i \(-0.629297\pi\)
−0.395121 + 0.918629i \(0.629297\pi\)
\(384\) 0 0
\(385\) −947.812 −0.125467
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 4084.92i − 0.532426i −0.963914 0.266213i \(-0.914228\pi\)
0.963914 0.266213i \(-0.0857724\pi\)
\(390\) 0 0
\(391\) − 18559.6i − 2.40052i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2005.81 0.255501
\(396\) 0 0
\(397\) −2821.56 −0.356700 −0.178350 0.983967i \(-0.557076\pi\)
−0.178350 + 0.983967i \(0.557076\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4215.14i 0.524923i 0.964942 + 0.262461i \(0.0845343\pi\)
−0.964942 + 0.262461i \(0.915466\pi\)
\(402\) 0 0
\(403\) − 905.009i − 0.111865i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5954.99 −0.725253
\(408\) 0 0
\(409\) 605.285 0.0731771 0.0365885 0.999330i \(-0.488351\pi\)
0.0365885 + 0.999330i \(0.488351\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 4984.30i − 0.593854i
\(414\) 0 0
\(415\) − 4445.76i − 0.525865i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6479.90 −0.755523 −0.377761 0.925903i \(-0.623306\pi\)
−0.377761 + 0.925903i \(0.623306\pi\)
\(420\) 0 0
\(421\) 363.812 0.0421166 0.0210583 0.999778i \(-0.493296\pi\)
0.0210583 + 0.999778i \(0.493296\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13317.1i 1.51994i
\(426\) 0 0
\(427\) 2479.87i 0.281052i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1486.97 0.166182 0.0830912 0.996542i \(-0.473521\pi\)
0.0830912 + 0.996542i \(0.473521\pi\)
\(432\) 0 0
\(433\) 12322.8 1.36765 0.683827 0.729644i \(-0.260314\pi\)
0.683827 + 0.729644i \(0.260314\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 13569.1i − 1.48535i
\(438\) 0 0
\(439\) − 10918.0i − 1.18698i −0.804840 0.593492i \(-0.797749\pi\)
0.804840 0.593492i \(-0.202251\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3934.04 −0.421923 −0.210961 0.977494i \(-0.567659\pi\)
−0.210961 + 0.977494i \(0.567659\pi\)
\(444\) 0 0
\(445\) 2852.78 0.303899
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 9560.84i − 1.00491i −0.864604 0.502454i \(-0.832430\pi\)
0.864604 0.502454i \(-0.167570\pi\)
\(450\) 0 0
\(451\) − 2430.86i − 0.253802i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1412.08 −0.145493
\(456\) 0 0
\(457\) 6479.90 0.663276 0.331638 0.943407i \(-0.392399\pi\)
0.331638 + 0.943407i \(0.392399\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3560.77i 0.359743i 0.983690 + 0.179872i \(0.0575682\pi\)
−0.983690 + 0.179872i \(0.942432\pi\)
\(462\) 0 0
\(463\) 15775.3i 1.58346i 0.610874 + 0.791728i \(0.290818\pi\)
−0.610874 + 0.791728i \(0.709182\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14291.6 1.41614 0.708071 0.706141i \(-0.249566\pi\)
0.708071 + 0.706141i \(0.249566\pi\)
\(468\) 0 0
\(469\) −5094.70 −0.501602
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6197.48i 0.602453i
\(474\) 0 0
\(475\) 9736.24i 0.940483i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14630.0 1.39553 0.697766 0.716326i \(-0.254178\pi\)
0.697766 + 0.716326i \(0.254178\pi\)
\(480\) 0 0
\(481\) −8871.92 −0.841008
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 728.159i 0.0681732i
\(486\) 0 0
\(487\) 16742.7i 1.55787i 0.627102 + 0.778937i \(0.284241\pi\)
−0.627102 + 0.778937i \(0.715759\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7342.23 0.674847 0.337424 0.941353i \(-0.390445\pi\)
0.337424 + 0.941353i \(0.390445\pi\)
\(492\) 0 0
\(493\) 31562.8 2.88340
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11624.8i 1.04918i
\(498\) 0 0
\(499\) − 1565.06i − 0.140404i −0.997533 0.0702020i \(-0.977636\pi\)
0.997533 0.0702020i \(-0.0223644\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1257.87 0.111503 0.0557513 0.998445i \(-0.482245\pi\)
0.0557513 + 0.998445i \(0.482245\pi\)
\(504\) 0 0
\(505\) −2644.00 −0.232983
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3160.96i 0.275260i 0.990484 + 0.137630i \(0.0439484\pi\)
−0.990484 + 0.137630i \(0.956052\pi\)
\(510\) 0 0
\(511\) 5275.63i 0.456712i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4149.75 0.355067
\(516\) 0 0
\(517\) −6688.09 −0.568940
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 2973.62i − 0.250051i −0.992154 0.125026i \(-0.960099\pi\)
0.992154 0.125026i \(-0.0399013\pi\)
\(522\) 0 0
\(523\) 8019.43i 0.670488i 0.942131 + 0.335244i \(0.108819\pi\)
−0.942131 + 0.335244i \(0.891181\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4219.41 −0.348768
\(528\) 0 0
\(529\) 13031.3 1.07104
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3621.57i − 0.294311i
\(534\) 0 0
\(535\) − 318.893i − 0.0257700i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −965.112 −0.0771249
\(540\) 0 0
\(541\) −11815.3 −0.938961 −0.469480 0.882943i \(-0.655559\pi\)
−0.469480 + 0.882943i \(0.655559\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 4494.56i − 0.353259i
\(546\) 0 0
\(547\) − 15596.6i − 1.21913i −0.792737 0.609564i \(-0.791345\pi\)
0.792737 0.609564i \(-0.208655\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 23075.8 1.78414
\(552\) 0 0
\(553\) −10175.8 −0.782496
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 19104.3i − 1.45327i −0.687022 0.726637i \(-0.741082\pi\)
0.687022 0.726637i \(-0.258918\pi\)
\(558\) 0 0
\(559\) 9233.19i 0.698608i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13747.5 1.02911 0.514555 0.857458i \(-0.327957\pi\)
0.514555 + 0.857458i \(0.327957\pi\)
\(564\) 0 0
\(565\) 6281.35 0.467714
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 18303.4i − 1.34854i −0.738486 0.674269i \(-0.764459\pi\)
0.738486 0.674269i \(-0.235541\pi\)
\(570\) 0 0
\(571\) 8345.58i 0.611649i 0.952088 + 0.305824i \(0.0989320\pi\)
−0.952088 + 0.305824i \(0.901068\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −18080.6 −1.31133
\(576\) 0 0
\(577\) −21336.5 −1.53943 −0.769713 0.638390i \(-0.779601\pi\)
−0.769713 + 0.638390i \(0.779601\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22554.2i 1.61051i
\(582\) 0 0
\(583\) − 1617.36i − 0.114896i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −26431.2 −1.85849 −0.929244 0.369467i \(-0.879540\pi\)
−0.929244 + 0.369467i \(0.879540\pi\)
\(588\) 0 0
\(589\) −3084.84 −0.215804
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 248.904i 0.0172366i 0.999963 + 0.00861828i \(0.00274332\pi\)
−0.999963 + 0.00861828i \(0.997257\pi\)
\(594\) 0 0
\(595\) 6583.52i 0.453610i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14995.9 −1.02290 −0.511449 0.859313i \(-0.670891\pi\)
−0.511449 + 0.859313i \(0.670891\pi\)
\(600\) 0 0
\(601\) 23747.1 1.61175 0.805876 0.592085i \(-0.201695\pi\)
0.805876 + 0.592085i \(0.201695\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 3490.36i − 0.234551i
\(606\) 0 0
\(607\) 6539.02i 0.437250i 0.975809 + 0.218625i \(0.0701571\pi\)
−0.975809 + 0.218625i \(0.929843\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9964.12 −0.659747
\(612\) 0 0
\(613\) 5985.95 0.394405 0.197202 0.980363i \(-0.436814\pi\)
0.197202 + 0.980363i \(0.436814\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 6168.16i − 0.402465i −0.979544 0.201232i \(-0.935505\pi\)
0.979544 0.201232i \(-0.0644947\pi\)
\(618\) 0 0
\(619\) 6667.31i 0.432927i 0.976291 + 0.216464i \(0.0694523\pi\)
−0.976291 + 0.216464i \(0.930548\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14472.7 −0.930717
\(624\) 0 0
\(625\) 11586.0 0.741502
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 41363.5i 2.62205i
\(630\) 0 0
\(631\) − 8168.49i − 0.515344i −0.966232 0.257672i \(-0.917045\pi\)
0.966232 0.257672i \(-0.0829554\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2379.83 −0.148725
\(636\) 0 0
\(637\) −1437.85 −0.0894346
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 6332.36i − 0.390192i −0.980784 0.195096i \(-0.937498\pi\)
0.980784 0.195096i \(-0.0625018\pi\)
\(642\) 0 0
\(643\) 9433.98i 0.578600i 0.957239 + 0.289300i \(0.0934225\pi\)
−0.957239 + 0.289300i \(0.906578\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20479.8 1.24442 0.622212 0.782848i \(-0.286234\pi\)
0.622212 + 0.782848i \(0.286234\pi\)
\(648\) 0 0
\(649\) −4963.92 −0.300233
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24435.7i 1.46438i 0.681099 + 0.732192i \(0.261502\pi\)
−0.681099 + 0.732192i \(0.738498\pi\)
\(654\) 0 0
\(655\) 7175.80i 0.428064i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −32183.0 −1.90238 −0.951192 0.308601i \(-0.900139\pi\)
−0.951192 + 0.308601i \(0.900139\pi\)
\(660\) 0 0
\(661\) −13990.4 −0.823245 −0.411622 0.911355i \(-0.635038\pi\)
−0.411622 + 0.911355i \(0.635038\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4813.26i 0.280677i
\(666\) 0 0
\(667\) 42852.6i 2.48765i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2469.73 0.142091
\(672\) 0 0
\(673\) 12289.9 0.703923 0.351961 0.936014i \(-0.385515\pi\)
0.351961 + 0.936014i \(0.385515\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 16303.5i − 0.925548i −0.886476 0.462774i \(-0.846854\pi\)
0.886476 0.462774i \(-0.153146\pi\)
\(678\) 0 0
\(679\) − 3694.09i − 0.208786i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9720.93 0.544599 0.272299 0.962213i \(-0.412216\pi\)
0.272299 + 0.962213i \(0.412216\pi\)
\(684\) 0 0
\(685\) −6841.93 −0.381630
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 2409.59i − 0.133234i
\(690\) 0 0
\(691\) 80.4083i 0.00442674i 0.999998 + 0.00221337i \(0.000704538\pi\)
−0.999998 + 0.00221337i \(0.999295\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6664.43 0.363736
\(696\) 0 0
\(697\) −16884.8 −0.917586
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4285.46i 0.230898i 0.993313 + 0.115449i \(0.0368307\pi\)
−0.993313 + 0.115449i \(0.963169\pi\)
\(702\) 0 0
\(703\) 30241.1i 1.62243i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13413.5 0.713532
\(708\) 0 0
\(709\) 8587.44 0.454878 0.227439 0.973792i \(-0.426965\pi\)
0.227439 + 0.973792i \(0.426965\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 5728.67i − 0.300898i
\(714\) 0 0
\(715\) 1406.30i 0.0735564i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 665.197 0.0345030 0.0172515 0.999851i \(-0.494508\pi\)
0.0172515 + 0.999851i \(0.494508\pi\)
\(720\) 0 0
\(721\) −21052.4 −1.08742
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 30748.1i − 1.57511i
\(726\) 0 0
\(727\) − 1269.94i − 0.0647860i −0.999475 0.0323930i \(-0.989687\pi\)
0.999475 0.0323930i \(-0.0103128\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 43047.8 2.17809
\(732\) 0 0
\(733\) −26425.0 −1.33155 −0.665777 0.746151i \(-0.731900\pi\)
−0.665777 + 0.746151i \(0.731900\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5073.87i 0.253593i
\(738\) 0 0
\(739\) − 4732.65i − 0.235579i −0.993039 0.117790i \(-0.962419\pi\)
0.993039 0.117790i \(-0.0375809\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14771.2 0.729346 0.364673 0.931136i \(-0.381181\pi\)
0.364673 + 0.931136i \(0.381181\pi\)
\(744\) 0 0
\(745\) 3291.66 0.161875
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1617.80i 0.0789228i
\(750\) 0 0
\(751\) 27071.9i 1.31540i 0.753280 + 0.657700i \(0.228471\pi\)
−0.753280 + 0.657700i \(0.771529\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5432.31 0.261857
\(756\) 0 0
\(757\) 12404.5 0.595576 0.297788 0.954632i \(-0.403751\pi\)
0.297788 + 0.954632i \(0.403751\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8564.67i 0.407975i 0.978973 + 0.203988i \(0.0653902\pi\)
−0.978973 + 0.203988i \(0.934610\pi\)
\(762\) 0 0
\(763\) 22801.8i 1.08189i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7395.40 −0.348152
\(768\) 0 0
\(769\) −19117.5 −0.896483 −0.448241 0.893913i \(-0.647949\pi\)
−0.448241 + 0.893913i \(0.647949\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 28145.2i − 1.30959i −0.755807 0.654794i \(-0.772755\pi\)
0.755807 0.654794i \(-0.227245\pi\)
\(774\) 0 0
\(775\) 4110.50i 0.190521i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12344.6 −0.567767
\(780\) 0 0
\(781\) 11577.3 0.530432
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2298.78i 0.104518i
\(786\) 0 0
\(787\) − 15895.3i − 0.719959i −0.932960 0.359979i \(-0.882784\pi\)
0.932960 0.359979i \(-0.117216\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −31866.4 −1.43242
\(792\) 0 0
\(793\) 3679.47 0.164769
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 39051.2i − 1.73559i −0.496924 0.867794i \(-0.665537\pi\)
0.496924 0.867794i \(-0.334463\pi\)
\(798\) 0 0
\(799\) 46455.6i 2.05692i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5254.05 0.230898
\(804\) 0 0
\(805\) −8938.40 −0.391351
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 67.6844i 0.00294148i 0.999999 + 0.00147074i \(0.000468151\pi\)
−0.999999 + 0.00147074i \(0.999532\pi\)
\(810\) 0 0
\(811\) 26390.7i 1.14267i 0.820718 + 0.571334i \(0.193574\pi\)
−0.820718 + 0.571334i \(0.806426\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11375.9 0.488931
\(816\) 0 0
\(817\) 31472.5 1.34772
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15840.6i 0.673374i 0.941617 + 0.336687i \(0.109306\pi\)
−0.941617 + 0.336687i \(0.890694\pi\)
\(822\) 0 0
\(823\) 227.779i 0.00964747i 0.999988 + 0.00482373i \(0.00153545\pi\)
−0.999988 + 0.00482373i \(0.998465\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11468.2 −0.482209 −0.241105 0.970499i \(-0.577510\pi\)
−0.241105 + 0.970499i \(0.577510\pi\)
\(828\) 0 0
\(829\) −15188.4 −0.636327 −0.318164 0.948036i \(-0.603066\pi\)
−0.318164 + 0.948036i \(0.603066\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6703.69i 0.278835i
\(834\) 0 0
\(835\) − 4574.06i − 0.189571i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −28109.4 −1.15667 −0.578334 0.815800i \(-0.696297\pi\)
−0.578334 + 0.815800i \(0.696297\pi\)
\(840\) 0 0
\(841\) −48486.8 −1.98806
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 5224.27i − 0.212687i
\(846\) 0 0
\(847\) 17707.2i 0.718333i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −56158.9 −2.26217
\(852\) 0 0
\(853\) 41817.8 1.67856 0.839281 0.543699i \(-0.182977\pi\)
0.839281 + 0.543699i \(0.182977\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38510.6i 1.53500i 0.641048 + 0.767501i \(0.278500\pi\)
−0.641048 + 0.767501i \(0.721500\pi\)
\(858\) 0 0
\(859\) 43912.4i 1.74421i 0.489322 + 0.872103i \(0.337244\pi\)
−0.489322 + 0.872103i \(0.662756\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40298.8 1.58956 0.794779 0.606899i \(-0.207587\pi\)
0.794779 + 0.606899i \(0.207587\pi\)
\(864\) 0 0
\(865\) 3725.52 0.146441
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10134.2i 0.395604i
\(870\) 0 0
\(871\) 7559.20i 0.294069i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 13452.2 0.519732
\(876\) 0 0
\(877\) −17806.9 −0.685629 −0.342814 0.939403i \(-0.611380\pi\)
−0.342814 + 0.939403i \(0.611380\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4232.13i 0.161843i 0.996720 + 0.0809217i \(0.0257864\pi\)
−0.996720 + 0.0809217i \(0.974214\pi\)
\(882\) 0 0
\(883\) − 36881.3i − 1.40561i −0.711382 0.702806i \(-0.751930\pi\)
0.711382 0.702806i \(-0.248070\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −31760.2 −1.20226 −0.601128 0.799152i \(-0.705282\pi\)
−0.601128 + 0.799152i \(0.705282\pi\)
\(888\) 0 0
\(889\) 12073.3 0.455485
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33964.0i 1.27275i
\(894\) 0 0
\(895\) 5848.84i 0.218442i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9742.26 0.361427
\(900\) 0 0
\(901\) −11234.2 −0.415390
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1042.68i − 0.0382984i
\(906\) 0 0
\(907\) 50257.3i 1.83987i 0.392066 + 0.919937i \(0.371760\pi\)
−0.392066 + 0.919937i \(0.628240\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −22485.6 −0.817763 −0.408881 0.912588i \(-0.634081\pi\)
−0.408881 + 0.912588i \(0.634081\pi\)
\(912\) 0 0
\(913\) 22461.9 0.814219
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 36404.2i − 1.31098i
\(918\) 0 0
\(919\) − 26918.9i − 0.966240i −0.875554 0.483120i \(-0.839504\pi\)
0.875554 0.483120i \(-0.160496\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17248.2 0.615093
\(924\) 0 0
\(925\) 40295.8 1.43234
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11212.4i 0.395983i 0.980204 + 0.197991i \(0.0634418\pi\)
−0.980204 + 0.197991i \(0.936558\pi\)
\(930\) 0 0
\(931\) 4901.11i 0.172532i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6556.60 0.229330
\(936\) 0 0
\(937\) 38358.1 1.33736 0.668679 0.743551i \(-0.266860\pi\)
0.668679 + 0.743551i \(0.266860\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 7558.00i − 0.261832i −0.991393 0.130916i \(-0.958208\pi\)
0.991393 0.130916i \(-0.0417918\pi\)
\(942\) 0 0
\(943\) − 22924.4i − 0.791644i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 50708.7 1.74003 0.870016 0.493023i \(-0.164108\pi\)
0.870016 + 0.493023i \(0.164108\pi\)
\(948\) 0 0
\(949\) 7827.65 0.267751
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 16440.9i − 0.558837i −0.960169 0.279419i \(-0.909858\pi\)
0.960169 0.279419i \(-0.0901417\pi\)
\(954\) 0 0
\(955\) − 6744.41i − 0.228528i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 34710.4 1.16878
\(960\) 0 0
\(961\) 28488.6 0.956283
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3791.32i 0.126473i
\(966\) 0 0
\(967\) − 488.917i − 0.0162591i −0.999967 0.00812953i \(-0.997412\pi\)
0.999967 0.00812953i \(-0.00258774\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −31950.1 −1.05595 −0.527975 0.849260i \(-0.677049\pi\)
−0.527975 + 0.849260i \(0.677049\pi\)
\(972\) 0 0
\(973\) −33809.9 −1.11397
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 5271.73i − 0.172628i −0.996268 0.0863140i \(-0.972491\pi\)
0.996268 0.0863140i \(-0.0275088\pi\)
\(978\) 0 0
\(979\) 14413.5i 0.470539i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11052.1 0.358603 0.179302 0.983794i \(-0.442616\pi\)
0.179302 + 0.983794i \(0.442616\pi\)
\(984\) 0 0
\(985\) 7815.04 0.252800
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 58445.7i 1.87914i
\(990\) 0 0
\(991\) 41203.4i 1.32076i 0.750933 + 0.660378i \(0.229604\pi\)
−0.750933 + 0.660378i \(0.770396\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9458.82 0.301372
\(996\) 0 0
\(997\) 14951.3 0.474938 0.237469 0.971395i \(-0.423682\pi\)
0.237469 + 0.971395i \(0.423682\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.c.i.1727.7 12
3.2 odd 2 inner 1728.4.c.i.1727.5 12
4.3 odd 2 inner 1728.4.c.i.1727.8 12
8.3 odd 2 108.4.b.a.107.1 12
8.5 even 2 108.4.b.a.107.11 yes 12
12.11 even 2 inner 1728.4.c.i.1727.6 12
24.5 odd 2 108.4.b.a.107.2 yes 12
24.11 even 2 108.4.b.a.107.12 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.4.b.a.107.1 12 8.3 odd 2
108.4.b.a.107.2 yes 12 24.5 odd 2
108.4.b.a.107.11 yes 12 8.5 even 2
108.4.b.a.107.12 yes 12 24.11 even 2
1728.4.c.i.1727.5 12 3.2 odd 2 inner
1728.4.c.i.1727.6 12 12.11 even 2 inner
1728.4.c.i.1727.7 12 1.1 even 1 trivial
1728.4.c.i.1727.8 12 4.3 odd 2 inner