Properties

Label 1728.4.c.i.1727.2
Level $1728$
Weight $4$
Character 1728.1727
Analytic conductor $101.955$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(1727,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1727"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{10} + 112x^{8} - 368x^{6} + 928x^{4} - 256x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{12} \)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1727.2
Root \(-2.48442 - 1.43438i\) of defining polynomial
Character \(\chi\) \(=\) 1728.1727
Dual form 1728.4.c.i.1727.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.9230i q^{5} +30.0528i q^{7} +55.9380 q^{11} -57.4627 q^{13} -29.2840i q^{17} +0.709738i q^{19} -48.0368 q^{23} -97.6960 q^{25} -172.964i q^{29} +45.2268i q^{31} +448.477 q^{35} -248.625 q^{37} -51.3323i q^{41} -19.9660i q^{43} +10.8215 q^{47} -560.168 q^{49} -37.0817i q^{53} -834.763i q^{55} +411.262 q^{59} +308.855 q^{61} +857.516i q^{65} -113.616i q^{67} +1134.56 q^{71} +728.560 q^{73} +1681.09i q^{77} +487.025i q^{79} -1165.71 q^{83} -437.005 q^{85} -1198.68i q^{89} -1726.91i q^{91} +10.5914 q^{95} +624.472 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 36 q^{13} - 132 q^{25} - 516 q^{37} - 720 q^{49} + 972 q^{61} + 660 q^{73} - 1056 q^{85} + 2532 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 14.9230i − 1.33475i −0.744720 0.667377i \(-0.767417\pi\)
0.744720 0.667377i \(-0.232583\pi\)
\(6\) 0 0
\(7\) 30.0528i 1.62270i 0.584563 + 0.811348i \(0.301266\pi\)
−0.584563 + 0.811348i \(0.698734\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 55.9380 1.53327 0.766634 0.642085i \(-0.221930\pi\)
0.766634 + 0.642085i \(0.221930\pi\)
\(12\) 0 0
\(13\) −57.4627 −1.22594 −0.612972 0.790105i \(-0.710026\pi\)
−0.612972 + 0.790105i \(0.710026\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 29.2840i − 0.417789i −0.977938 0.208895i \(-0.933013\pi\)
0.977938 0.208895i \(-0.0669865\pi\)
\(18\) 0 0
\(19\) 0.709738i 0.00856974i 0.999991 + 0.00428487i \(0.00136392\pi\)
−0.999991 + 0.00428487i \(0.998636\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −48.0368 −0.435494 −0.217747 0.976005i \(-0.569871\pi\)
−0.217747 + 0.976005i \(0.569871\pi\)
\(24\) 0 0
\(25\) −97.6960 −0.781568
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 172.964i − 1.10754i −0.832670 0.553770i \(-0.813189\pi\)
0.832670 0.553770i \(-0.186811\pi\)
\(30\) 0 0
\(31\) 45.2268i 0.262031i 0.991380 + 0.131016i \(0.0418238\pi\)
−0.991380 + 0.131016i \(0.958176\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 448.477 2.16590
\(36\) 0 0
\(37\) −248.625 −1.10470 −0.552348 0.833613i \(-0.686268\pi\)
−0.552348 + 0.833613i \(0.686268\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 51.3323i − 0.195531i −0.995209 0.0977653i \(-0.968831\pi\)
0.995209 0.0977653i \(-0.0311695\pi\)
\(42\) 0 0
\(43\) − 19.9660i − 0.0708090i −0.999373 0.0354045i \(-0.988728\pi\)
0.999373 0.0354045i \(-0.0112720\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.8215 0.0335845 0.0167923 0.999859i \(-0.494655\pi\)
0.0167923 + 0.999859i \(0.494655\pi\)
\(48\) 0 0
\(49\) −560.168 −1.63314
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 37.0817i − 0.0961051i −0.998845 0.0480525i \(-0.984699\pi\)
0.998845 0.0480525i \(-0.0153015\pi\)
\(54\) 0 0
\(55\) − 834.763i − 2.04653i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 411.262 0.907487 0.453744 0.891132i \(-0.350088\pi\)
0.453744 + 0.891132i \(0.350088\pi\)
\(60\) 0 0
\(61\) 308.855 0.648275 0.324138 0.946010i \(-0.394926\pi\)
0.324138 + 0.946010i \(0.394926\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 857.516i 1.63633i
\(66\) 0 0
\(67\) − 113.616i − 0.207170i −0.994621 0.103585i \(-0.966969\pi\)
0.994621 0.103585i \(-0.0330314\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1134.56 1.89645 0.948224 0.317603i \(-0.102878\pi\)
0.948224 + 0.317603i \(0.102878\pi\)
\(72\) 0 0
\(73\) 728.560 1.16810 0.584051 0.811717i \(-0.301467\pi\)
0.584051 + 0.811717i \(0.301467\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1681.09i 2.48803i
\(78\) 0 0
\(79\) 487.025i 0.693602i 0.937939 + 0.346801i \(0.112732\pi\)
−0.937939 + 0.346801i \(0.887268\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1165.71 −1.54161 −0.770803 0.637074i \(-0.780145\pi\)
−0.770803 + 0.637074i \(0.780145\pi\)
\(84\) 0 0
\(85\) −437.005 −0.557646
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 1198.68i − 1.42764i −0.700332 0.713818i \(-0.746965\pi\)
0.700332 0.713818i \(-0.253035\pi\)
\(90\) 0 0
\(91\) − 1726.91i − 1.98934i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.5914 0.0114385
\(96\) 0 0
\(97\) 624.472 0.653665 0.326833 0.945082i \(-0.394019\pi\)
0.326833 + 0.945082i \(0.394019\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1757.10i − 1.73107i −0.500849 0.865535i \(-0.666979\pi\)
0.500849 0.865535i \(-0.333021\pi\)
\(102\) 0 0
\(103\) 3.90175i 0.00373254i 0.999998 + 0.00186627i \(0.000594052\pi\)
−0.999998 + 0.00186627i \(0.999406\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −77.3509 −0.0698859 −0.0349429 0.999389i \(-0.511125\pi\)
−0.0349429 + 0.999389i \(0.511125\pi\)
\(108\) 0 0
\(109\) 1660.75 1.45937 0.729683 0.683785i \(-0.239667\pi\)
0.729683 + 0.683785i \(0.239667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 253.390i 0.210946i 0.994422 + 0.105473i \(0.0336357\pi\)
−0.994422 + 0.105473i \(0.966364\pi\)
\(114\) 0 0
\(115\) 716.853i 0.581277i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 880.065 0.677945
\(120\) 0 0
\(121\) 1798.06 1.35091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 407.457i − 0.291553i
\(126\) 0 0
\(127\) − 1429.82i − 0.999022i −0.866307 0.499511i \(-0.833513\pi\)
0.866307 0.499511i \(-0.166487\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2037.82 −1.35912 −0.679560 0.733620i \(-0.737829\pi\)
−0.679560 + 0.733620i \(0.737829\pi\)
\(132\) 0 0
\(133\) −21.3296 −0.0139061
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 804.869i − 0.501931i −0.967996 0.250966i \(-0.919252\pi\)
0.967996 0.250966i \(-0.0807481\pi\)
\(138\) 0 0
\(139\) 413.813i 0.252512i 0.991998 + 0.126256i \(0.0402961\pi\)
−0.991998 + 0.126256i \(0.959704\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3214.35 −1.87970
\(144\) 0 0
\(145\) −2581.15 −1.47829
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1459.08i 0.802233i 0.916027 + 0.401116i \(0.131378\pi\)
−0.916027 + 0.401116i \(0.868622\pi\)
\(150\) 0 0
\(151\) − 1668.38i − 0.899144i −0.893244 0.449572i \(-0.851576\pi\)
0.893244 0.449572i \(-0.148424\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 674.920 0.349747
\(156\) 0 0
\(157\) 1773.81 0.901691 0.450846 0.892602i \(-0.351123\pi\)
0.450846 + 0.892602i \(0.351123\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 1443.64i − 0.706674i
\(162\) 0 0
\(163\) − 3549.13i − 1.70546i −0.522356 0.852728i \(-0.674947\pi\)
0.522356 0.852728i \(-0.325053\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1888.67 −0.875146 −0.437573 0.899183i \(-0.644162\pi\)
−0.437573 + 0.899183i \(0.644162\pi\)
\(168\) 0 0
\(169\) 1104.96 0.502939
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2104.10i − 0.924694i −0.886699 0.462347i \(-0.847008\pi\)
0.886699 0.462347i \(-0.152992\pi\)
\(174\) 0 0
\(175\) − 2936.03i − 1.26825i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1830.10 −0.764178 −0.382089 0.924126i \(-0.624795\pi\)
−0.382089 + 0.924126i \(0.624795\pi\)
\(180\) 0 0
\(181\) −3333.54 −1.36895 −0.684475 0.729036i \(-0.739968\pi\)
−0.684475 + 0.729036i \(0.739968\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3710.24i 1.47450i
\(186\) 0 0
\(187\) − 1638.09i − 0.640582i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3622.23 −1.37223 −0.686114 0.727494i \(-0.740685\pi\)
−0.686114 + 0.727494i \(0.740685\pi\)
\(192\) 0 0
\(193\) −2588.68 −0.965479 −0.482740 0.875764i \(-0.660358\pi\)
−0.482740 + 0.875764i \(0.660358\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1752.24i − 0.633717i −0.948473 0.316858i \(-0.897372\pi\)
0.948473 0.316858i \(-0.102628\pi\)
\(198\) 0 0
\(199\) − 3316.58i − 1.18144i −0.806877 0.590719i \(-0.798844\pi\)
0.806877 0.590719i \(-0.201156\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5198.05 1.79720
\(204\) 0 0
\(205\) −766.032 −0.260985
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 39.7013i 0.0131397i
\(210\) 0 0
\(211\) − 5960.10i − 1.94460i −0.233738 0.972300i \(-0.575096\pi\)
0.233738 0.972300i \(-0.424904\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −297.953 −0.0945125
\(216\) 0 0
\(217\) −1359.19 −0.425197
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1682.74i 0.512186i
\(222\) 0 0
\(223\) − 1995.23i − 0.599150i −0.954073 0.299575i \(-0.903155\pi\)
0.954073 0.299575i \(-0.0968449\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2280.12 0.666682 0.333341 0.942806i \(-0.391824\pi\)
0.333341 + 0.942806i \(0.391824\pi\)
\(228\) 0 0
\(229\) −4647.94 −1.34124 −0.670621 0.741800i \(-0.733972\pi\)
−0.670621 + 0.741800i \(0.733972\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2824.81i 0.794247i 0.917765 + 0.397124i \(0.129992\pi\)
−0.917765 + 0.397124i \(0.870008\pi\)
\(234\) 0 0
\(235\) − 161.489i − 0.0448271i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2405.85 0.651136 0.325568 0.945519i \(-0.394445\pi\)
0.325568 + 0.945519i \(0.394445\pi\)
\(240\) 0 0
\(241\) −226.108 −0.0604352 −0.0302176 0.999543i \(-0.509620\pi\)
−0.0302176 + 0.999543i \(0.509620\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8359.39i 2.17984i
\(246\) 0 0
\(247\) − 40.7834i − 0.0105060i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1071.12 −0.269357 −0.134679 0.990889i \(-0.543000\pi\)
−0.134679 + 0.990889i \(0.543000\pi\)
\(252\) 0 0
\(253\) −2687.08 −0.667729
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1844.28i 0.447638i 0.974631 + 0.223819i \(0.0718525\pi\)
−0.974631 + 0.223819i \(0.928148\pi\)
\(258\) 0 0
\(259\) − 7471.88i − 1.79259i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7502.45 1.75901 0.879507 0.475886i \(-0.157872\pi\)
0.879507 + 0.475886i \(0.157872\pi\)
\(264\) 0 0
\(265\) −553.371 −0.128277
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 3465.21i − 0.785418i −0.919663 0.392709i \(-0.871538\pi\)
0.919663 0.392709i \(-0.128462\pi\)
\(270\) 0 0
\(271\) 2922.27i 0.655038i 0.944845 + 0.327519i \(0.106212\pi\)
−0.944845 + 0.327519i \(0.893788\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5464.92 −1.19835
\(276\) 0 0
\(277\) 6644.62 1.44129 0.720643 0.693306i \(-0.243847\pi\)
0.720643 + 0.693306i \(0.243847\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 6612.13i − 1.40373i −0.712312 0.701863i \(-0.752352\pi\)
0.712312 0.701863i \(-0.247648\pi\)
\(282\) 0 0
\(283\) 2658.33i 0.558379i 0.960236 + 0.279190i \(0.0900658\pi\)
−0.960236 + 0.279190i \(0.909934\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1542.68 0.317287
\(288\) 0 0
\(289\) 4055.45 0.825452
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 5553.60i − 1.10732i −0.832743 0.553660i \(-0.813231\pi\)
0.832743 0.553660i \(-0.186769\pi\)
\(294\) 0 0
\(295\) − 6137.26i − 1.21127i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2760.32 0.533891
\(300\) 0 0
\(301\) 600.033 0.114901
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 4609.04i − 0.865288i
\(306\) 0 0
\(307\) 8694.95i 1.61644i 0.588880 + 0.808220i \(0.299569\pi\)
−0.588880 + 0.808220i \(0.700431\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6717.09 1.22473 0.612365 0.790575i \(-0.290218\pi\)
0.612365 + 0.790575i \(0.290218\pi\)
\(312\) 0 0
\(313\) −1389.06 −0.250844 −0.125422 0.992103i \(-0.540028\pi\)
−0.125422 + 0.992103i \(0.540028\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1457.63i 0.258260i 0.991628 + 0.129130i \(0.0412185\pi\)
−0.991628 + 0.129130i \(0.958782\pi\)
\(318\) 0 0
\(319\) − 9675.28i − 1.69816i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.7840 0.00358034
\(324\) 0 0
\(325\) 5613.87 0.958159
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 325.215i 0.0544975i
\(330\) 0 0
\(331\) − 4966.82i − 0.824776i −0.911008 0.412388i \(-0.864695\pi\)
0.911008 0.412388i \(-0.135305\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1695.49 −0.276521
\(336\) 0 0
\(337\) −4892.90 −0.790899 −0.395450 0.918488i \(-0.629411\pi\)
−0.395450 + 0.918488i \(0.629411\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2529.90i 0.401764i
\(342\) 0 0
\(343\) − 6526.50i − 1.02740i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 253.981 0.0392923 0.0196461 0.999807i \(-0.493746\pi\)
0.0196461 + 0.999807i \(0.493746\pi\)
\(348\) 0 0
\(349\) 6464.21 0.991465 0.495732 0.868475i \(-0.334900\pi\)
0.495732 + 0.868475i \(0.334900\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 4033.67i − 0.608188i −0.952642 0.304094i \(-0.901646\pi\)
0.952642 0.304094i \(-0.0983537\pi\)
\(354\) 0 0
\(355\) − 16931.1i − 2.53129i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10670.4 1.56870 0.784350 0.620319i \(-0.212997\pi\)
0.784350 + 0.620319i \(0.212997\pi\)
\(360\) 0 0
\(361\) 6858.50 0.999927
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 10872.3i − 1.55913i
\(366\) 0 0
\(367\) − 2559.84i − 0.364094i −0.983290 0.182047i \(-0.941728\pi\)
0.983290 0.182047i \(-0.0582724\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1114.41 0.155949
\(372\) 0 0
\(373\) −1935.92 −0.268735 −0.134368 0.990932i \(-0.542900\pi\)
−0.134368 + 0.990932i \(0.542900\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9938.99i 1.35778i
\(378\) 0 0
\(379\) − 5944.90i − 0.805722i −0.915261 0.402861i \(-0.868016\pi\)
0.915261 0.402861i \(-0.131984\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1696.80 0.226378 0.113189 0.993573i \(-0.463893\pi\)
0.113189 + 0.993573i \(0.463893\pi\)
\(384\) 0 0
\(385\) 25086.9 3.32090
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3913.71i 0.510111i 0.966926 + 0.255055i \(0.0820937\pi\)
−0.966926 + 0.255055i \(0.917906\pi\)
\(390\) 0 0
\(391\) 1406.71i 0.181945i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7267.87 0.925788
\(396\) 0 0
\(397\) −5079.98 −0.642208 −0.321104 0.947044i \(-0.604054\pi\)
−0.321104 + 0.947044i \(0.604054\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 9374.44i − 1.16742i −0.811961 0.583712i \(-0.801600\pi\)
0.811961 0.583712i \(-0.198400\pi\)
\(402\) 0 0
\(403\) − 2598.85i − 0.321236i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13907.6 −1.69379
\(408\) 0 0
\(409\) −12392.7 −1.49824 −0.749120 0.662434i \(-0.769523\pi\)
−0.749120 + 0.662434i \(0.769523\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12359.6i 1.47258i
\(414\) 0 0
\(415\) 17395.9i 2.05766i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −266.866 −0.0311151 −0.0155576 0.999879i \(-0.504952\pi\)
−0.0155576 + 0.999879i \(0.504952\pi\)
\(420\) 0 0
\(421\) 9952.62 1.15216 0.576082 0.817392i \(-0.304581\pi\)
0.576082 + 0.817392i \(0.304581\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2860.93i 0.326531i
\(426\) 0 0
\(427\) 9281.94i 1.05195i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6583.33 −0.735749 −0.367875 0.929875i \(-0.619914\pi\)
−0.367875 + 0.929875i \(0.619914\pi\)
\(432\) 0 0
\(433\) −13747.0 −1.52572 −0.762860 0.646564i \(-0.776205\pi\)
−0.762860 + 0.646564i \(0.776205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 34.0935i − 0.00373207i
\(438\) 0 0
\(439\) − 13380.0i − 1.45466i −0.686290 0.727328i \(-0.740762\pi\)
0.686290 0.727328i \(-0.259238\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16108.1 −1.72758 −0.863791 0.503851i \(-0.831916\pi\)
−0.863791 + 0.503851i \(0.831916\pi\)
\(444\) 0 0
\(445\) −17887.9 −1.90554
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11283.5i 1.18597i 0.805214 + 0.592984i \(0.202050\pi\)
−0.805214 + 0.592984i \(0.797950\pi\)
\(450\) 0 0
\(451\) − 2871.42i − 0.299801i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −25770.7 −2.65527
\(456\) 0 0
\(457\) 1984.72 0.203154 0.101577 0.994828i \(-0.467611\pi\)
0.101577 + 0.994828i \(0.467611\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 9634.41i − 0.973360i −0.873580 0.486680i \(-0.838208\pi\)
0.873580 0.486680i \(-0.161792\pi\)
\(462\) 0 0
\(463\) − 1392.38i − 0.139762i −0.997555 0.0698808i \(-0.977738\pi\)
0.997555 0.0698808i \(-0.0222619\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15161.4 1.50232 0.751161 0.660119i \(-0.229494\pi\)
0.751161 + 0.660119i \(0.229494\pi\)
\(468\) 0 0
\(469\) 3414.47 0.336174
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 1116.86i − 0.108569i
\(474\) 0 0
\(475\) − 69.3385i − 0.00669783i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 273.224 0.0260625 0.0130312 0.999915i \(-0.495852\pi\)
0.0130312 + 0.999915i \(0.495852\pi\)
\(480\) 0 0
\(481\) 14286.7 1.35430
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 9319.00i − 0.872482i
\(486\) 0 0
\(487\) − 8706.60i − 0.810131i −0.914288 0.405065i \(-0.867249\pi\)
0.914288 0.405065i \(-0.132751\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4442.47 0.408321 0.204161 0.978937i \(-0.434554\pi\)
0.204161 + 0.978937i \(0.434554\pi\)
\(492\) 0 0
\(493\) −5065.09 −0.462718
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 34096.7i 3.07736i
\(498\) 0 0
\(499\) 4920.29i 0.441408i 0.975341 + 0.220704i \(0.0708355\pi\)
−0.975341 + 0.220704i \(0.929165\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5575.54 −0.494237 −0.247118 0.968985i \(-0.579484\pi\)
−0.247118 + 0.968985i \(0.579484\pi\)
\(504\) 0 0
\(505\) −26221.2 −2.31055
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17508.5i 1.52466i 0.647190 + 0.762328i \(0.275944\pi\)
−0.647190 + 0.762328i \(0.724056\pi\)
\(510\) 0 0
\(511\) 21895.2i 1.89548i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 58.2259 0.00498202
\(516\) 0 0
\(517\) 605.331 0.0514941
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 12662.1i − 1.06475i −0.846507 0.532377i \(-0.821299\pi\)
0.846507 0.532377i \(-0.178701\pi\)
\(522\) 0 0
\(523\) 2988.40i 0.249854i 0.992166 + 0.124927i \(0.0398697\pi\)
−0.992166 + 0.124927i \(0.960130\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1324.42 0.109474
\(528\) 0 0
\(529\) −9859.47 −0.810345
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2949.69i 0.239710i
\(534\) 0 0
\(535\) 1154.31i 0.0932805i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −31334.7 −2.50404
\(540\) 0 0
\(541\) −9079.39 −0.721541 −0.360770 0.932655i \(-0.617486\pi\)
−0.360770 + 0.932655i \(0.617486\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 24783.4i − 1.94790i
\(546\) 0 0
\(547\) 21690.2i 1.69544i 0.530444 + 0.847720i \(0.322025\pi\)
−0.530444 + 0.847720i \(0.677975\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 122.759 0.00949133
\(552\) 0 0
\(553\) −14636.4 −1.12551
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18129.0i 1.37908i 0.724247 + 0.689541i \(0.242188\pi\)
−0.724247 + 0.689541i \(0.757812\pi\)
\(558\) 0 0
\(559\) 1147.30i 0.0868078i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4922.54 −0.368491 −0.184245 0.982880i \(-0.558984\pi\)
−0.184245 + 0.982880i \(0.558984\pi\)
\(564\) 0 0
\(565\) 3781.34 0.281562
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 17731.7i − 1.30641i −0.757179 0.653207i \(-0.773423\pi\)
0.757179 0.653207i \(-0.226577\pi\)
\(570\) 0 0
\(571\) 17237.0i 1.26330i 0.775254 + 0.631650i \(0.217622\pi\)
−0.775254 + 0.631650i \(0.782378\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4693.00 0.340368
\(576\) 0 0
\(577\) 6166.73 0.444929 0.222465 0.974941i \(-0.428590\pi\)
0.222465 + 0.974941i \(0.428590\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 35032.8i − 2.50156i
\(582\) 0 0
\(583\) − 2074.28i − 0.147355i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11268.2 0.792311 0.396155 0.918183i \(-0.370344\pi\)
0.396155 + 0.918183i \(0.370344\pi\)
\(588\) 0 0
\(589\) −32.0992 −0.00224554
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 4766.20i − 0.330058i −0.986289 0.165029i \(-0.947228\pi\)
0.986289 0.165029i \(-0.0527718\pi\)
\(594\) 0 0
\(595\) − 13133.2i − 0.904889i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11994.7 0.818177 0.409089 0.912495i \(-0.365847\pi\)
0.409089 + 0.912495i \(0.365847\pi\)
\(600\) 0 0
\(601\) 23975.3 1.62724 0.813622 0.581394i \(-0.197493\pi\)
0.813622 + 0.581394i \(0.197493\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 26832.4i − 1.80313i
\(606\) 0 0
\(607\) 18629.0i 1.24568i 0.782349 + 0.622840i \(0.214021\pi\)
−0.782349 + 0.622840i \(0.785979\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −621.830 −0.0411728
\(612\) 0 0
\(613\) −18552.5 −1.22240 −0.611198 0.791478i \(-0.709312\pi\)
−0.611198 + 0.791478i \(0.709312\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 7836.95i − 0.511351i −0.966763 0.255676i \(-0.917702\pi\)
0.966763 0.255676i \(-0.0822979\pi\)
\(618\) 0 0
\(619\) 16023.6i 1.04045i 0.854028 + 0.520227i \(0.174153\pi\)
−0.854028 + 0.520227i \(0.825847\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 36023.6 2.31662
\(624\) 0 0
\(625\) −18292.5 −1.17072
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7280.75i 0.461530i
\(630\) 0 0
\(631\) − 18451.1i − 1.16407i −0.813164 0.582035i \(-0.802257\pi\)
0.813164 0.582035i \(-0.197743\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −21337.2 −1.33345
\(636\) 0 0
\(637\) 32188.7 2.00214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20544.4i 1.26592i 0.774185 + 0.632960i \(0.218160\pi\)
−0.774185 + 0.632960i \(0.781840\pi\)
\(642\) 0 0
\(643\) − 27413.8i − 1.68133i −0.541555 0.840665i \(-0.682164\pi\)
0.541555 0.840665i \(-0.317836\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23051.0 −1.40066 −0.700332 0.713817i \(-0.746965\pi\)
−0.700332 + 0.713817i \(0.746965\pi\)
\(648\) 0 0
\(649\) 23005.2 1.39142
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27762.7i 1.66376i 0.554953 + 0.831882i \(0.312736\pi\)
−0.554953 + 0.831882i \(0.687264\pi\)
\(654\) 0 0
\(655\) 30410.3i 1.81409i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9857.22 −0.582675 −0.291338 0.956620i \(-0.594100\pi\)
−0.291338 + 0.956620i \(0.594100\pi\)
\(660\) 0 0
\(661\) −3542.53 −0.208454 −0.104227 0.994554i \(-0.533237\pi\)
−0.104227 + 0.994554i \(0.533237\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 318.301i 0.0185612i
\(666\) 0 0
\(667\) 8308.65i 0.482327i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17276.7 0.993979
\(672\) 0 0
\(673\) 19216.6 1.10066 0.550330 0.834947i \(-0.314502\pi\)
0.550330 + 0.834947i \(0.314502\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15731.9i 0.893093i 0.894760 + 0.446547i \(0.147346\pi\)
−0.894760 + 0.446547i \(0.852654\pi\)
\(678\) 0 0
\(679\) 18767.1i 1.06070i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16870.5 0.945142 0.472571 0.881293i \(-0.343326\pi\)
0.472571 + 0.881293i \(0.343326\pi\)
\(684\) 0 0
\(685\) −12011.1 −0.669955
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2130.82i 0.117819i
\(690\) 0 0
\(691\) − 29234.5i − 1.60945i −0.593645 0.804727i \(-0.702312\pi\)
0.593645 0.804727i \(-0.297688\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6175.33 0.337041
\(696\) 0 0
\(697\) −1503.21 −0.0816905
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 14904.4i − 0.803041i −0.915850 0.401520i \(-0.868482\pi\)
0.915850 0.401520i \(-0.131518\pi\)
\(702\) 0 0
\(703\) − 176.459i − 0.00946696i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 52805.7 2.80900
\(708\) 0 0
\(709\) 17930.1 0.949758 0.474879 0.880051i \(-0.342492\pi\)
0.474879 + 0.880051i \(0.342492\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 2172.55i − 0.114113i
\(714\) 0 0
\(715\) 47967.7i 2.50894i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19033.4 0.987238 0.493619 0.869678i \(-0.335674\pi\)
0.493619 + 0.869678i \(0.335674\pi\)
\(720\) 0 0
\(721\) −117.258 −0.00605677
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16897.9i 0.865618i
\(726\) 0 0
\(727\) 19643.0i 1.00209i 0.865422 + 0.501043i \(0.167050\pi\)
−0.865422 + 0.501043i \(0.832950\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −584.684 −0.0295832
\(732\) 0 0
\(733\) −8335.12 −0.420006 −0.210003 0.977701i \(-0.567347\pi\)
−0.210003 + 0.977701i \(0.567347\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 6355.44i − 0.317647i
\(738\) 0 0
\(739\) 12308.0i 0.612661i 0.951925 + 0.306331i \(0.0991013\pi\)
−0.951925 + 0.306331i \(0.900899\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26227.7 1.29502 0.647511 0.762056i \(-0.275810\pi\)
0.647511 + 0.762056i \(0.275810\pi\)
\(744\) 0 0
\(745\) 21773.9 1.07078
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 2324.61i − 0.113404i
\(750\) 0 0
\(751\) 2741.63i 0.133214i 0.997779 + 0.0666068i \(0.0212173\pi\)
−0.997779 + 0.0666068i \(0.978783\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −24897.2 −1.20014
\(756\) 0 0
\(757\) 17816.8 0.855434 0.427717 0.903913i \(-0.359318\pi\)
0.427717 + 0.903913i \(0.359318\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 32228.2i 1.53518i 0.640940 + 0.767591i \(0.278545\pi\)
−0.640940 + 0.767591i \(0.721455\pi\)
\(762\) 0 0
\(763\) 49910.1i 2.36811i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23632.2 −1.11253
\(768\) 0 0
\(769\) −4236.60 −0.198668 −0.0993340 0.995054i \(-0.531671\pi\)
−0.0993340 + 0.995054i \(0.531671\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1754.64i 0.0816431i 0.999166 + 0.0408215i \(0.0129975\pi\)
−0.999166 + 0.0408215i \(0.987002\pi\)
\(774\) 0 0
\(775\) − 4418.48i − 0.204795i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 36.4324 0.00167565
\(780\) 0 0
\(781\) 63465.1 2.90776
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 26470.6i − 1.20354i
\(786\) 0 0
\(787\) 11896.9i 0.538857i 0.963020 + 0.269428i \(0.0868347\pi\)
−0.963020 + 0.269428i \(0.913165\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7615.07 −0.342302
\(792\) 0 0
\(793\) −17747.6 −0.794749
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 16762.4i − 0.744986i −0.928035 0.372493i \(-0.878503\pi\)
0.928035 0.372493i \(-0.121497\pi\)
\(798\) 0 0
\(799\) − 316.896i − 0.0140313i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 40754.2 1.79101
\(804\) 0 0
\(805\) −21543.4 −0.943236
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28039.3i 1.21855i 0.792957 + 0.609277i \(0.208540\pi\)
−0.792957 + 0.609277i \(0.791460\pi\)
\(810\) 0 0
\(811\) 14131.8i 0.611882i 0.952051 + 0.305941i \(0.0989710\pi\)
−0.952051 + 0.305941i \(0.901029\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −52963.7 −2.27636
\(816\) 0 0
\(817\) 14.1706 0.000606814 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8233.70i 0.350010i 0.984568 + 0.175005i \(0.0559942\pi\)
−0.984568 + 0.175005i \(0.944006\pi\)
\(822\) 0 0
\(823\) 5824.72i 0.246704i 0.992363 + 0.123352i \(0.0393644\pi\)
−0.992363 + 0.123352i \(0.960636\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20581.6 0.865406 0.432703 0.901536i \(-0.357560\pi\)
0.432703 + 0.901536i \(0.357560\pi\)
\(828\) 0 0
\(829\) −2844.67 −0.119179 −0.0595896 0.998223i \(-0.518979\pi\)
−0.0595896 + 0.998223i \(0.518979\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 16404.0i 0.682309i
\(834\) 0 0
\(835\) 28184.6i 1.16810i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12881.0 −0.530037 −0.265019 0.964243i \(-0.585378\pi\)
−0.265019 + 0.964243i \(0.585378\pi\)
\(840\) 0 0
\(841\) −5527.65 −0.226645
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 16489.3i − 0.671300i
\(846\) 0 0
\(847\) 54036.6i 2.19211i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11943.2 0.481089
\(852\) 0 0
\(853\) −43159.3 −1.73241 −0.866205 0.499689i \(-0.833448\pi\)
−0.866205 + 0.499689i \(0.833448\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 236.518i − 0.00942741i −0.999989 0.00471371i \(-0.998500\pi\)
0.999989 0.00471371i \(-0.00150042\pi\)
\(858\) 0 0
\(859\) − 1103.24i − 0.0438210i −0.999760 0.0219105i \(-0.993025\pi\)
0.999760 0.0219105i \(-0.00697488\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22297.9 0.879522 0.439761 0.898115i \(-0.355063\pi\)
0.439761 + 0.898115i \(0.355063\pi\)
\(864\) 0 0
\(865\) −31399.5 −1.23424
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 27243.2i 1.06348i
\(870\) 0 0
\(871\) 6528.67i 0.253979i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12245.2 0.473101
\(876\) 0 0
\(877\) −29308.0 −1.12846 −0.564231 0.825617i \(-0.690827\pi\)
−0.564231 + 0.825617i \(0.690827\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 25857.5i − 0.988831i −0.869226 0.494415i \(-0.835382\pi\)
0.869226 0.494415i \(-0.164618\pi\)
\(882\) 0 0
\(883\) − 15147.3i − 0.577290i −0.957436 0.288645i \(-0.906795\pi\)
0.957436 0.288645i \(-0.0932047\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −18719.8 −0.708624 −0.354312 0.935127i \(-0.615285\pi\)
−0.354312 + 0.935127i \(0.615285\pi\)
\(888\) 0 0
\(889\) 42970.0 1.62111
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.68040i 0 0.000287811i
\(894\) 0 0
\(895\) 27310.5i 1.01999i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7822.62 0.290210
\(900\) 0 0
\(901\) −1085.90 −0.0401516
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 49746.4i 1.82721i
\(906\) 0 0
\(907\) − 10374.7i − 0.379807i −0.981803 0.189904i \(-0.939182\pi\)
0.981803 0.189904i \(-0.0608175\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 10860.1 0.394962 0.197481 0.980307i \(-0.436724\pi\)
0.197481 + 0.980307i \(0.436724\pi\)
\(912\) 0 0
\(913\) −65207.4 −2.36369
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 61242.0i − 2.20544i
\(918\) 0 0
\(919\) 5743.96i 0.206176i 0.994672 + 0.103088i \(0.0328723\pi\)
−0.994672 + 0.103088i \(0.967128\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −65195.0 −2.32494
\(924\) 0 0
\(925\) 24289.7 0.863396
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 28379.7i − 1.00227i −0.865369 0.501135i \(-0.832916\pi\)
0.865369 0.501135i \(-0.167084\pi\)
\(930\) 0 0
\(931\) − 397.572i − 0.0139956i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −24445.2 −0.855020
\(936\) 0 0
\(937\) 24896.7 0.868025 0.434013 0.900907i \(-0.357097\pi\)
0.434013 + 0.900907i \(0.357097\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 601.120i − 0.0208246i −0.999946 0.0104123i \(-0.996686\pi\)
0.999946 0.0104123i \(-0.00331440\pi\)
\(942\) 0 0
\(943\) 2465.84i 0.0851524i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −25774.5 −0.884432 −0.442216 0.896908i \(-0.645808\pi\)
−0.442216 + 0.896908i \(0.645808\pi\)
\(948\) 0 0
\(949\) −41865.0 −1.43203
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 40615.9i − 1.38056i −0.723541 0.690282i \(-0.757487\pi\)
0.723541 0.690282i \(-0.242513\pi\)
\(954\) 0 0
\(955\) 54054.6i 1.83159i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24188.5 0.814482
\(960\) 0 0
\(961\) 27745.5 0.931340
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 38630.9i 1.28868i
\(966\) 0 0
\(967\) − 52148.0i − 1.73420i −0.498138 0.867098i \(-0.665983\pi\)
0.498138 0.867098i \(-0.334017\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29877.8 0.987461 0.493731 0.869615i \(-0.335633\pi\)
0.493731 + 0.869615i \(0.335633\pi\)
\(972\) 0 0
\(973\) −12436.2 −0.409750
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10385.8i 0.340094i 0.985436 + 0.170047i \(0.0543920\pi\)
−0.985436 + 0.170047i \(0.945608\pi\)
\(978\) 0 0
\(979\) − 67051.6i − 2.18895i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −14316.7 −0.464530 −0.232265 0.972652i \(-0.574614\pi\)
−0.232265 + 0.972652i \(0.574614\pi\)
\(984\) 0 0
\(985\) −26148.7 −0.845856
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 959.102i 0.0308369i
\(990\) 0 0
\(991\) 30199.0i 0.968013i 0.875064 + 0.484007i \(0.160819\pi\)
−0.875064 + 0.484007i \(0.839181\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −49493.3 −1.57693
\(996\) 0 0
\(997\) −17508.8 −0.556178 −0.278089 0.960555i \(-0.589701\pi\)
−0.278089 + 0.960555i \(0.589701\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.c.i.1727.2 12
3.2 odd 2 inner 1728.4.c.i.1727.12 12
4.3 odd 2 inner 1728.4.c.i.1727.1 12
8.3 odd 2 108.4.b.a.107.5 12
8.5 even 2 108.4.b.a.107.7 yes 12
12.11 even 2 inner 1728.4.c.i.1727.11 12
24.5 odd 2 108.4.b.a.107.6 yes 12
24.11 even 2 108.4.b.a.107.8 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.4.b.a.107.5 12 8.3 odd 2
108.4.b.a.107.6 yes 12 24.5 odd 2
108.4.b.a.107.7 yes 12 8.5 even 2
108.4.b.a.107.8 yes 12 24.11 even 2
1728.4.c.i.1727.1 12 4.3 odd 2 inner
1728.4.c.i.1727.2 12 1.1 even 1 trivial
1728.4.c.i.1727.11 12 12.11 even 2 inner
1728.4.c.i.1727.12 12 3.2 odd 2 inner