Properties

Label 1728.4.a.cd.1.2
Level $1728$
Weight $4$
Character 1728.1
Self dual yes
Analytic conductor $101.955$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(1,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,6,0,9,0,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 864)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 1728.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.83638 q^{5} -17.1016 q^{7} +48.7123 q^{11} -64.6502 q^{13} +118.791 q^{17} -99.4428 q^{19} +57.9337 q^{23} -116.955 q^{25} +27.3455 q^{29} +58.0366 q^{31} -48.5066 q^{35} +133.378 q^{37} -195.255 q^{41} +351.459 q^{43} -568.504 q^{47} -50.5363 q^{49} +208.201 q^{53} +138.167 q^{55} +810.077 q^{59} -583.852 q^{61} -183.373 q^{65} -22.5520 q^{67} -218.914 q^{71} +273.373 q^{73} -833.057 q^{77} +830.315 q^{79} +650.502 q^{83} +336.937 q^{85} -633.902 q^{89} +1105.62 q^{91} -282.058 q^{95} -290.255 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{5} + 9 q^{7} + 18 q^{11} - 3 q^{13} - 18 q^{17} - 27 q^{19} - 90 q^{23} + 21 q^{25} + 72 q^{29} + 144 q^{31} + 450 q^{35} + 159 q^{37} + 168 q^{41} + 180 q^{43} - 522 q^{47} + 150 q^{49} - 84 q^{53}+ \cdots - 117 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.83638 0.253694 0.126847 0.991922i \(-0.459514\pi\)
0.126847 + 0.991922i \(0.459514\pi\)
\(6\) 0 0
\(7\) −17.1016 −0.923398 −0.461699 0.887037i \(-0.652760\pi\)
−0.461699 + 0.887037i \(0.652760\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 48.7123 1.33521 0.667605 0.744516i \(-0.267320\pi\)
0.667605 + 0.744516i \(0.267320\pi\)
\(12\) 0 0
\(13\) −64.6502 −1.37929 −0.689644 0.724148i \(-0.742233\pi\)
−0.689644 + 0.724148i \(0.742233\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 118.791 1.69477 0.847386 0.530977i \(-0.178175\pi\)
0.847386 + 0.530977i \(0.178175\pi\)
\(18\) 0 0
\(19\) −99.4428 −1.20072 −0.600362 0.799728i \(-0.704977\pi\)
−0.600362 + 0.799728i \(0.704977\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 57.9337 0.525218 0.262609 0.964902i \(-0.415417\pi\)
0.262609 + 0.964902i \(0.415417\pi\)
\(24\) 0 0
\(25\) −116.955 −0.935640
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 27.3455 0.175101 0.0875506 0.996160i \(-0.472096\pi\)
0.0875506 + 0.996160i \(0.472096\pi\)
\(30\) 0 0
\(31\) 58.0366 0.336248 0.168124 0.985766i \(-0.446229\pi\)
0.168124 + 0.985766i \(0.446229\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −48.5066 −0.234260
\(36\) 0 0
\(37\) 133.378 0.592627 0.296313 0.955091i \(-0.404243\pi\)
0.296313 + 0.955091i \(0.404243\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −195.255 −0.743751 −0.371875 0.928283i \(-0.621285\pi\)
−0.371875 + 0.928283i \(0.621285\pi\)
\(42\) 0 0
\(43\) 351.459 1.24644 0.623220 0.782047i \(-0.285824\pi\)
0.623220 + 0.782047i \(0.285824\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −568.504 −1.76436 −0.882179 0.470914i \(-0.843924\pi\)
−0.882179 + 0.470914i \(0.843924\pi\)
\(48\) 0 0
\(49\) −50.5363 −0.147336
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 208.201 0.539595 0.269798 0.962917i \(-0.413043\pi\)
0.269798 + 0.962917i \(0.413043\pi\)
\(54\) 0 0
\(55\) 138.167 0.338734
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 810.077 1.78751 0.893755 0.448555i \(-0.148061\pi\)
0.893755 + 0.448555i \(0.148061\pi\)
\(60\) 0 0
\(61\) −583.852 −1.22549 −0.612743 0.790283i \(-0.709934\pi\)
−0.612743 + 0.790283i \(0.709934\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −183.373 −0.349917
\(66\) 0 0
\(67\) −22.5520 −0.0411219 −0.0205609 0.999789i \(-0.506545\pi\)
−0.0205609 + 0.999789i \(0.506545\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −218.914 −0.365919 −0.182960 0.983120i \(-0.558568\pi\)
−0.182960 + 0.983120i \(0.558568\pi\)
\(72\) 0 0
\(73\) 273.373 0.438300 0.219150 0.975691i \(-0.429672\pi\)
0.219150 + 0.975691i \(0.429672\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −833.057 −1.23293
\(78\) 0 0
\(79\) 830.315 1.18250 0.591252 0.806487i \(-0.298634\pi\)
0.591252 + 0.806487i \(0.298634\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 650.502 0.860264 0.430132 0.902766i \(-0.358467\pi\)
0.430132 + 0.902766i \(0.358467\pi\)
\(84\) 0 0
\(85\) 336.937 0.429953
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −633.902 −0.754983 −0.377492 0.926013i \(-0.623213\pi\)
−0.377492 + 0.926013i \(0.623213\pi\)
\(90\) 0 0
\(91\) 1105.62 1.27363
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −282.058 −0.304616
\(96\) 0 0
\(97\) −290.255 −0.303824 −0.151912 0.988394i \(-0.548543\pi\)
−0.151912 + 0.988394i \(0.548543\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 507.001 0.499490 0.249745 0.968312i \(-0.419653\pi\)
0.249745 + 0.968312i \(0.419653\pi\)
\(102\) 0 0
\(103\) −752.431 −0.719798 −0.359899 0.932991i \(-0.617189\pi\)
−0.359899 + 0.932991i \(0.617189\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1460.58 1.31962 0.659811 0.751432i \(-0.270636\pi\)
0.659811 + 0.751432i \(0.270636\pi\)
\(108\) 0 0
\(109\) 1017.99 0.894552 0.447276 0.894396i \(-0.352394\pi\)
0.447276 + 0.894396i \(0.352394\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2071.65 1.72464 0.862320 0.506363i \(-0.169010\pi\)
0.862320 + 0.506363i \(0.169010\pi\)
\(114\) 0 0
\(115\) 164.322 0.133244
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2031.52 −1.56495
\(120\) 0 0
\(121\) 1041.89 0.782785
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −686.276 −0.491059
\(126\) 0 0
\(127\) 899.943 0.628796 0.314398 0.949291i \(-0.398197\pi\)
0.314398 + 0.949291i \(0.398197\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1147.63 0.765414 0.382707 0.923870i \(-0.374992\pi\)
0.382707 + 0.923870i \(0.374992\pi\)
\(132\) 0 0
\(133\) 1700.63 1.10875
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 154.596 0.0964090 0.0482045 0.998837i \(-0.484650\pi\)
0.0482045 + 0.998837i \(0.484650\pi\)
\(138\) 0 0
\(139\) −715.023 −0.436313 −0.218156 0.975914i \(-0.570004\pi\)
−0.218156 + 0.975914i \(0.570004\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3149.26 −1.84164
\(144\) 0 0
\(145\) 77.5623 0.0444221
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1166.14 0.641165 0.320583 0.947221i \(-0.396121\pi\)
0.320583 + 0.947221i \(0.396121\pi\)
\(150\) 0 0
\(151\) 2559.09 1.37918 0.689588 0.724202i \(-0.257792\pi\)
0.689588 + 0.724202i \(0.257792\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 164.614 0.0853039
\(156\) 0 0
\(157\) −2233.25 −1.13524 −0.567620 0.823290i \(-0.692136\pi\)
−0.567620 + 0.823290i \(0.692136\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −990.757 −0.484985
\(162\) 0 0
\(163\) 1886.95 0.906734 0.453367 0.891324i \(-0.350223\pi\)
0.453367 + 0.891324i \(0.350223\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3645.85 −1.68937 −0.844683 0.535267i \(-0.820211\pi\)
−0.844683 + 0.535267i \(0.820211\pi\)
\(168\) 0 0
\(169\) 1982.65 0.902436
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3741.77 1.64440 0.822201 0.569197i \(-0.192746\pi\)
0.822201 + 0.569197i \(0.192746\pi\)
\(174\) 0 0
\(175\) 2000.11 0.863968
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1620.08 0.676485 0.338242 0.941059i \(-0.390168\pi\)
0.338242 + 0.941059i \(0.390168\pi\)
\(180\) 0 0
\(181\) −2497.77 −1.02573 −0.512867 0.858468i \(-0.671417\pi\)
−0.512867 + 0.858468i \(0.671417\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 378.310 0.150346
\(186\) 0 0
\(187\) 5786.60 2.26288
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4667.12 1.76807 0.884035 0.467421i \(-0.154817\pi\)
0.884035 + 0.467421i \(0.154817\pi\)
\(192\) 0 0
\(193\) −5225.17 −1.94879 −0.974394 0.224848i \(-0.927811\pi\)
−0.974394 + 0.224848i \(0.927811\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1773.26 −0.641319 −0.320659 0.947195i \(-0.603905\pi\)
−0.320659 + 0.947195i \(0.603905\pi\)
\(198\) 0 0
\(199\) 4645.00 1.65465 0.827325 0.561724i \(-0.189862\pi\)
0.827325 + 0.561724i \(0.189862\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −467.651 −0.161688
\(204\) 0 0
\(205\) −553.819 −0.188685
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4844.09 −1.60322
\(210\) 0 0
\(211\) 4957.52 1.61749 0.808744 0.588160i \(-0.200148\pi\)
0.808744 + 0.588160i \(0.200148\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 996.870 0.316214
\(216\) 0 0
\(217\) −992.516 −0.310490
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7679.89 −2.33758
\(222\) 0 0
\(223\) −1009.14 −0.303037 −0.151519 0.988454i \(-0.548416\pi\)
−0.151519 + 0.988454i \(0.548416\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3780.29 1.10532 0.552658 0.833408i \(-0.313614\pi\)
0.552658 + 0.833408i \(0.313614\pi\)
\(228\) 0 0
\(229\) 1947.59 0.562012 0.281006 0.959706i \(-0.409332\pi\)
0.281006 + 0.959706i \(0.409332\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1144.46 0.321786 0.160893 0.986972i \(-0.448563\pi\)
0.160893 + 0.986972i \(0.448563\pi\)
\(234\) 0 0
\(235\) −1612.49 −0.447606
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1682.61 −0.455394 −0.227697 0.973732i \(-0.573120\pi\)
−0.227697 + 0.973732i \(0.573120\pi\)
\(240\) 0 0
\(241\) −834.555 −0.223064 −0.111532 0.993761i \(-0.535576\pi\)
−0.111532 + 0.993761i \(0.535576\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −143.340 −0.0373782
\(246\) 0 0
\(247\) 6429.00 1.65614
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 736.754 0.185273 0.0926364 0.995700i \(-0.470471\pi\)
0.0926364 + 0.995700i \(0.470471\pi\)
\(252\) 0 0
\(253\) 2822.08 0.701276
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5048.80 1.22543 0.612715 0.790304i \(-0.290077\pi\)
0.612715 + 0.790304i \(0.290077\pi\)
\(258\) 0 0
\(259\) −2280.97 −0.547230
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2988.83 −0.700757 −0.350379 0.936608i \(-0.613947\pi\)
−0.350379 + 0.936608i \(0.613947\pi\)
\(264\) 0 0
\(265\) 590.536 0.136892
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8325.70 1.88709 0.943545 0.331246i \(-0.107469\pi\)
0.943545 + 0.331246i \(0.107469\pi\)
\(270\) 0 0
\(271\) −3810.55 −0.854149 −0.427075 0.904216i \(-0.640456\pi\)
−0.427075 + 0.904216i \(0.640456\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5697.14 −1.24927
\(276\) 0 0
\(277\) −2789.54 −0.605081 −0.302540 0.953137i \(-0.597835\pi\)
−0.302540 + 0.953137i \(0.597835\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1509.74 −0.320510 −0.160255 0.987076i \(-0.551232\pi\)
−0.160255 + 0.987076i \(0.551232\pi\)
\(282\) 0 0
\(283\) 5958.51 1.25158 0.625789 0.779992i \(-0.284777\pi\)
0.625789 + 0.779992i \(0.284777\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3339.17 0.686778
\(288\) 0 0
\(289\) 9198.38 1.87225
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9255.97 −1.84553 −0.922764 0.385365i \(-0.874075\pi\)
−0.922764 + 0.385365i \(0.874075\pi\)
\(294\) 0 0
\(295\) 2297.69 0.453480
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3745.43 −0.724427
\(300\) 0 0
\(301\) −6010.49 −1.15096
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1656.03 −0.310898
\(306\) 0 0
\(307\) 6520.16 1.21213 0.606067 0.795414i \(-0.292746\pi\)
0.606067 + 0.795414i \(0.292746\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10271.9 1.87288 0.936439 0.350831i \(-0.114101\pi\)
0.936439 + 0.350831i \(0.114101\pi\)
\(312\) 0 0
\(313\) −6053.49 −1.09317 −0.546587 0.837403i \(-0.684073\pi\)
−0.546587 + 0.837403i \(0.684073\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7954.44 1.40936 0.704678 0.709527i \(-0.251091\pi\)
0.704678 + 0.709527i \(0.251091\pi\)
\(318\) 0 0
\(319\) 1332.06 0.233797
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −11812.9 −2.03495
\(324\) 0 0
\(325\) 7561.16 1.29052
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9722.31 1.62920
\(330\) 0 0
\(331\) 604.526 0.100386 0.0501930 0.998740i \(-0.484016\pi\)
0.0501930 + 0.998740i \(0.484016\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −63.9660 −0.0104324
\(336\) 0 0
\(337\) 2682.87 0.433666 0.216833 0.976209i \(-0.430427\pi\)
0.216833 + 0.976209i \(0.430427\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2827.09 0.448961
\(342\) 0 0
\(343\) 6730.09 1.05945
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2586.72 0.400180 0.200090 0.979777i \(-0.435876\pi\)
0.200090 + 0.979777i \(0.435876\pi\)
\(348\) 0 0
\(349\) 1518.59 0.232918 0.116459 0.993196i \(-0.462846\pi\)
0.116459 + 0.993196i \(0.462846\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7663.44 −1.15548 −0.577739 0.816221i \(-0.696065\pi\)
−0.577739 + 0.816221i \(0.696065\pi\)
\(354\) 0 0
\(355\) −620.923 −0.0928314
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9532.18 1.40136 0.700681 0.713474i \(-0.252879\pi\)
0.700681 + 0.713474i \(0.252879\pi\)
\(360\) 0 0
\(361\) 3029.88 0.441738
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 775.390 0.111194
\(366\) 0 0
\(367\) 10773.2 1.53231 0.766153 0.642658i \(-0.222168\pi\)
0.766153 + 0.642658i \(0.222168\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3560.56 −0.498261
\(372\) 0 0
\(373\) −735.143 −0.102049 −0.0510245 0.998697i \(-0.516249\pi\)
−0.0510245 + 0.998697i \(0.516249\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1767.89 −0.241515
\(378\) 0 0
\(379\) 8788.41 1.19111 0.595554 0.803315i \(-0.296933\pi\)
0.595554 + 0.803315i \(0.296933\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5259.76 0.701726 0.350863 0.936427i \(-0.385888\pi\)
0.350863 + 0.936427i \(0.385888\pi\)
\(384\) 0 0
\(385\) −2362.87 −0.312786
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10853.8 1.41467 0.707337 0.706876i \(-0.249896\pi\)
0.707337 + 0.706876i \(0.249896\pi\)
\(390\) 0 0
\(391\) 6882.02 0.890125
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2355.09 0.299994
\(396\) 0 0
\(397\) 12182.8 1.54014 0.770071 0.637959i \(-0.220221\pi\)
0.770071 + 0.637959i \(0.220221\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3537.82 0.440574 0.220287 0.975435i \(-0.429301\pi\)
0.220287 + 0.975435i \(0.429301\pi\)
\(402\) 0 0
\(403\) −3752.08 −0.463782
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6497.14 0.791281
\(408\) 0 0
\(409\) −11611.9 −1.40384 −0.701920 0.712255i \(-0.747674\pi\)
−0.701920 + 0.712255i \(0.747674\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −13853.6 −1.65058
\(414\) 0 0
\(415\) 1845.07 0.218243
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 710.256 0.0828122 0.0414061 0.999142i \(-0.486816\pi\)
0.0414061 + 0.999142i \(0.486816\pi\)
\(420\) 0 0
\(421\) −8869.78 −1.02681 −0.513405 0.858147i \(-0.671616\pi\)
−0.513405 + 0.858147i \(0.671616\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13893.2 −1.58570
\(426\) 0 0
\(427\) 9984.79 1.13161
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1105.67 0.123569 0.0617847 0.998090i \(-0.480321\pi\)
0.0617847 + 0.998090i \(0.480321\pi\)
\(432\) 0 0
\(433\) 11029.1 1.22407 0.612037 0.790829i \(-0.290350\pi\)
0.612037 + 0.790829i \(0.290350\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5761.09 −0.630642
\(438\) 0 0
\(439\) −16036.8 −1.74349 −0.871746 0.489958i \(-0.837012\pi\)
−0.871746 + 0.489958i \(0.837012\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −15576.2 −1.67054 −0.835268 0.549842i \(-0.814688\pi\)
−0.835268 + 0.549842i \(0.814688\pi\)
\(444\) 0 0
\(445\) −1797.99 −0.191534
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1293.39 0.135944 0.0679722 0.997687i \(-0.478347\pi\)
0.0679722 + 0.997687i \(0.478347\pi\)
\(450\) 0 0
\(451\) −9511.34 −0.993063
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3135.96 0.323112
\(456\) 0 0
\(457\) 12202.4 1.24902 0.624510 0.781016i \(-0.285299\pi\)
0.624510 + 0.781016i \(0.285299\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6755.98 −0.682554 −0.341277 0.939963i \(-0.610859\pi\)
−0.341277 + 0.939963i \(0.610859\pi\)
\(462\) 0 0
\(463\) −6938.69 −0.696475 −0.348238 0.937406i \(-0.613220\pi\)
−0.348238 + 0.937406i \(0.613220\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8682.20 −0.860309 −0.430155 0.902755i \(-0.641541\pi\)
−0.430155 + 0.902755i \(0.641541\pi\)
\(468\) 0 0
\(469\) 385.674 0.0379718
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17120.3 1.66426
\(474\) 0 0
\(475\) 11630.3 1.12344
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2803.30 0.267403 0.133702 0.991022i \(-0.457314\pi\)
0.133702 + 0.991022i \(0.457314\pi\)
\(480\) 0 0
\(481\) −8622.91 −0.817403
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −823.275 −0.0770783
\(486\) 0 0
\(487\) 6475.32 0.602515 0.301257 0.953543i \(-0.402594\pi\)
0.301257 + 0.953543i \(0.402594\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12485.7 −1.14760 −0.573802 0.818994i \(-0.694532\pi\)
−0.573802 + 0.818994i \(0.694532\pi\)
\(492\) 0 0
\(493\) 3248.41 0.296757
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3743.77 0.337889
\(498\) 0 0
\(499\) −16093.5 −1.44378 −0.721889 0.692009i \(-0.756726\pi\)
−0.721889 + 0.692009i \(0.756726\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10158.6 −0.900498 −0.450249 0.892903i \(-0.648665\pi\)
−0.450249 + 0.892903i \(0.648665\pi\)
\(504\) 0 0
\(505\) 1438.05 0.126717
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12230.7 −1.06506 −0.532529 0.846412i \(-0.678758\pi\)
−0.532529 + 0.846412i \(0.678758\pi\)
\(510\) 0 0
\(511\) −4675.11 −0.404725
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2134.18 −0.182608
\(516\) 0 0
\(517\) −27693.1 −2.35579
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14621.3 −1.22950 −0.614752 0.788721i \(-0.710744\pi\)
−0.614752 + 0.788721i \(0.710744\pi\)
\(522\) 0 0
\(523\) −7672.76 −0.641504 −0.320752 0.947163i \(-0.603936\pi\)
−0.320752 + 0.947163i \(0.603936\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6894.24 0.569863
\(528\) 0 0
\(529\) −8810.69 −0.724146
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12623.3 1.02585
\(534\) 0 0
\(535\) 4142.76 0.334780
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2461.74 −0.196725
\(540\) 0 0
\(541\) 4538.20 0.360651 0.180326 0.983607i \(-0.442285\pi\)
0.180326 + 0.983607i \(0.442285\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2887.42 0.226942
\(546\) 0 0
\(547\) −9075.58 −0.709404 −0.354702 0.934979i \(-0.615418\pi\)
−0.354702 + 0.934979i \(0.615418\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2719.32 −0.210248
\(552\) 0 0
\(553\) −14199.7 −1.09192
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24020.8 1.82728 0.913640 0.406524i \(-0.133259\pi\)
0.913640 + 0.406524i \(0.133259\pi\)
\(558\) 0 0
\(559\) −22721.9 −1.71920
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11321.7 0.847516 0.423758 0.905775i \(-0.360711\pi\)
0.423758 + 0.905775i \(0.360711\pi\)
\(564\) 0 0
\(565\) 5875.99 0.437530
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15713.0 −1.15769 −0.578844 0.815438i \(-0.696496\pi\)
−0.578844 + 0.815438i \(0.696496\pi\)
\(570\) 0 0
\(571\) 1895.19 0.138899 0.0694495 0.997585i \(-0.477876\pi\)
0.0694495 + 0.997585i \(0.477876\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6775.63 −0.491415
\(576\) 0 0
\(577\) −9282.29 −0.669717 −0.334858 0.942268i \(-0.608688\pi\)
−0.334858 + 0.942268i \(0.608688\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11124.6 −0.794366
\(582\) 0 0
\(583\) 10141.9 0.720473
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12013.6 0.844723 0.422362 0.906427i \(-0.361201\pi\)
0.422362 + 0.906427i \(0.361201\pi\)
\(588\) 0 0
\(589\) −5771.32 −0.403741
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15698.8 1.08714 0.543569 0.839365i \(-0.317073\pi\)
0.543569 + 0.839365i \(0.317073\pi\)
\(594\) 0 0
\(595\) −5762.16 −0.397018
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −15896.0 −1.08429 −0.542147 0.840284i \(-0.682388\pi\)
−0.542147 + 0.840284i \(0.682388\pi\)
\(600\) 0 0
\(601\) −15127.0 −1.02670 −0.513348 0.858180i \(-0.671595\pi\)
−0.513348 + 0.858180i \(0.671595\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2955.19 0.198587
\(606\) 0 0
\(607\) −25776.1 −1.72359 −0.861796 0.507255i \(-0.830660\pi\)
−0.861796 + 0.507255i \(0.830660\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36753.9 2.43356
\(612\) 0 0
\(613\) 16964.7 1.11778 0.558889 0.829243i \(-0.311228\pi\)
0.558889 + 0.829243i \(0.311228\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5966.47 0.389305 0.194652 0.980872i \(-0.437642\pi\)
0.194652 + 0.980872i \(0.437642\pi\)
\(618\) 0 0
\(619\) 11911.5 0.773448 0.386724 0.922195i \(-0.373607\pi\)
0.386724 + 0.922195i \(0.373607\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10840.7 0.697150
\(624\) 0 0
\(625\) 12672.8 0.811061
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15844.1 1.00437
\(630\) 0 0
\(631\) 2161.74 0.136383 0.0681915 0.997672i \(-0.478277\pi\)
0.0681915 + 0.997672i \(0.478277\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2552.58 0.159521
\(636\) 0 0
\(637\) 3267.18 0.203219
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5300.77 0.326627 0.163313 0.986574i \(-0.447782\pi\)
0.163313 + 0.986574i \(0.447782\pi\)
\(642\) 0 0
\(643\) −19007.1 −1.16574 −0.582868 0.812567i \(-0.698069\pi\)
−0.582868 + 0.812567i \(0.698069\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7966.88 0.484096 0.242048 0.970264i \(-0.422181\pi\)
0.242048 + 0.970264i \(0.422181\pi\)
\(648\) 0 0
\(649\) 39460.7 2.38670
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −721.559 −0.0432416 −0.0216208 0.999766i \(-0.506883\pi\)
−0.0216208 + 0.999766i \(0.506883\pi\)
\(654\) 0 0
\(655\) 3255.13 0.194181
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3550.81 0.209894 0.104947 0.994478i \(-0.466533\pi\)
0.104947 + 0.994478i \(0.466533\pi\)
\(660\) 0 0
\(661\) 4651.72 0.273723 0.136861 0.990590i \(-0.456298\pi\)
0.136861 + 0.990590i \(0.456298\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4823.63 0.281282
\(666\) 0 0
\(667\) 1584.23 0.0919663
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −28440.8 −1.63628
\(672\) 0 0
\(673\) 24984.3 1.43101 0.715507 0.698605i \(-0.246196\pi\)
0.715507 + 0.698605i \(0.246196\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9777.60 0.555072 0.277536 0.960715i \(-0.410482\pi\)
0.277536 + 0.960715i \(0.410482\pi\)
\(678\) 0 0
\(679\) 4963.82 0.280551
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13516.6 −0.757248 −0.378624 0.925551i \(-0.623603\pi\)
−0.378624 + 0.925551i \(0.623603\pi\)
\(684\) 0 0
\(685\) 438.493 0.0244583
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13460.2 −0.744257
\(690\) 0 0
\(691\) −26368.1 −1.45165 −0.725826 0.687879i \(-0.758542\pi\)
−0.725826 + 0.687879i \(0.758542\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2028.08 −0.110690
\(696\) 0 0
\(697\) −23194.6 −1.26049
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17932.3 −0.966183 −0.483091 0.875570i \(-0.660486\pi\)
−0.483091 + 0.875570i \(0.660486\pi\)
\(702\) 0 0
\(703\) −13263.5 −0.711581
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8670.51 −0.461228
\(708\) 0 0
\(709\) −10294.4 −0.545295 −0.272648 0.962114i \(-0.587899\pi\)
−0.272648 + 0.962114i \(0.587899\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3362.27 0.176603
\(714\) 0 0
\(715\) −8932.50 −0.467212
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3732.23 0.193587 0.0967934 0.995304i \(-0.469141\pi\)
0.0967934 + 0.995304i \(0.469141\pi\)
\(720\) 0 0
\(721\) 12867.8 0.664660
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3198.19 −0.163832
\(726\) 0 0
\(727\) 17161.7 0.875507 0.437753 0.899095i \(-0.355774\pi\)
0.437753 + 0.899095i \(0.355774\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 41750.2 2.11243
\(732\) 0 0
\(733\) −11006.9 −0.554638 −0.277319 0.960778i \(-0.589446\pi\)
−0.277319 + 0.960778i \(0.589446\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1098.56 −0.0549063
\(738\) 0 0
\(739\) −3124.07 −0.155509 −0.0777543 0.996973i \(-0.524775\pi\)
−0.0777543 + 0.996973i \(0.524775\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13015.8 −0.642670 −0.321335 0.946966i \(-0.604132\pi\)
−0.321335 + 0.946966i \(0.604132\pi\)
\(744\) 0 0
\(745\) 3307.61 0.162660
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −24978.2 −1.21854
\(750\) 0 0
\(751\) −33593.7 −1.63229 −0.816147 0.577844i \(-0.803894\pi\)
−0.816147 + 0.577844i \(0.803894\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7258.55 0.349888
\(756\) 0 0
\(757\) 39640.0 1.90322 0.951612 0.307303i \(-0.0994265\pi\)
0.951612 + 0.307303i \(0.0994265\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14778.4 −0.703965 −0.351983 0.936007i \(-0.614492\pi\)
−0.351983 + 0.936007i \(0.614492\pi\)
\(762\) 0 0
\(763\) −17409.3 −0.826027
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −52371.7 −2.46549
\(768\) 0 0
\(769\) −34311.7 −1.60899 −0.804494 0.593960i \(-0.797564\pi\)
−0.804494 + 0.593960i \(0.797564\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −29124.5 −1.35516 −0.677578 0.735451i \(-0.736971\pi\)
−0.677578 + 0.735451i \(0.736971\pi\)
\(774\) 0 0
\(775\) −6787.66 −0.314607
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 19416.8 0.893039
\(780\) 0 0
\(781\) −10663.8 −0.488579
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6334.35 −0.288003
\(786\) 0 0
\(787\) −12726.1 −0.576414 −0.288207 0.957568i \(-0.593059\pi\)
−0.288207 + 0.957568i \(0.593059\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −35428.5 −1.59253
\(792\) 0 0
\(793\) 37746.2 1.69030
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19129.5 0.850189 0.425095 0.905149i \(-0.360241\pi\)
0.425095 + 0.905149i \(0.360241\pi\)
\(798\) 0 0
\(799\) −67533.3 −2.99019
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13316.6 0.585222
\(804\) 0 0
\(805\) −2810.16 −0.123038
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 13785.9 0.599120 0.299560 0.954077i \(-0.403160\pi\)
0.299560 + 0.954077i \(0.403160\pi\)
\(810\) 0 0
\(811\) −1552.80 −0.0672335 −0.0336167 0.999435i \(-0.510703\pi\)
−0.0336167 + 0.999435i \(0.510703\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5352.12 0.230033
\(816\) 0 0
\(817\) −34950.0 −1.49663
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −29137.6 −1.23862 −0.619311 0.785146i \(-0.712588\pi\)
−0.619311 + 0.785146i \(0.712588\pi\)
\(822\) 0 0
\(823\) −20421.3 −0.864936 −0.432468 0.901649i \(-0.642357\pi\)
−0.432468 + 0.901649i \(0.642357\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7589.68 0.319128 0.159564 0.987188i \(-0.448991\pi\)
0.159564 + 0.987188i \(0.448991\pi\)
\(828\) 0 0
\(829\) 16739.2 0.701297 0.350649 0.936507i \(-0.385961\pi\)
0.350649 + 0.936507i \(0.385961\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6003.27 −0.249701
\(834\) 0 0
\(835\) −10341.0 −0.428581
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8775.89 0.361117 0.180559 0.983564i \(-0.442209\pi\)
0.180559 + 0.983564i \(0.442209\pi\)
\(840\) 0 0
\(841\) −23641.2 −0.969340
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5623.56 0.228942
\(846\) 0 0
\(847\) −17817.9 −0.722822
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7727.07 0.311258
\(852\) 0 0
\(853\) −6097.89 −0.244769 −0.122384 0.992483i \(-0.539054\pi\)
−0.122384 + 0.992483i \(0.539054\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 33948.7 1.35317 0.676584 0.736366i \(-0.263460\pi\)
0.676584 + 0.736366i \(0.263460\pi\)
\(858\) 0 0
\(859\) −41205.9 −1.63670 −0.818351 0.574719i \(-0.805111\pi\)
−0.818351 + 0.574719i \(0.805111\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7042.40 0.277782 0.138891 0.990308i \(-0.455646\pi\)
0.138891 + 0.990308i \(0.455646\pi\)
\(864\) 0 0
\(865\) 10613.1 0.417174
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 40446.6 1.57889
\(870\) 0 0
\(871\) 1457.99 0.0567189
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11736.4 0.453443
\(876\) 0 0
\(877\) −43330.1 −1.66836 −0.834182 0.551490i \(-0.814060\pi\)
−0.834182 + 0.551490i \(0.814060\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41153.3 −1.57377 −0.786884 0.617100i \(-0.788307\pi\)
−0.786884 + 0.617100i \(0.788307\pi\)
\(882\) 0 0
\(883\) −37967.0 −1.44699 −0.723494 0.690330i \(-0.757465\pi\)
−0.723494 + 0.690330i \(0.757465\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27747.3 1.05035 0.525177 0.850993i \(-0.323999\pi\)
0.525177 + 0.850993i \(0.323999\pi\)
\(888\) 0 0
\(889\) −15390.4 −0.580629
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 56533.7 2.11851
\(894\) 0 0
\(895\) 4595.18 0.171620
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1587.04 0.0588774
\(900\) 0 0
\(901\) 24732.4 0.914491
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7084.63 −0.260222
\(906\) 0 0
\(907\) 38020.0 1.39188 0.695939 0.718101i \(-0.254989\pi\)
0.695939 + 0.718101i \(0.254989\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20911.5 −0.760515 −0.380258 0.924881i \(-0.624165\pi\)
−0.380258 + 0.924881i \(0.624165\pi\)
\(912\) 0 0
\(913\) 31687.5 1.14863
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19626.3 −0.706782
\(918\) 0 0
\(919\) 47740.8 1.71363 0.856815 0.515625i \(-0.172440\pi\)
0.856815 + 0.515625i \(0.172440\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14152.8 0.504708
\(924\) 0 0
\(925\) −15599.2 −0.554485
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10533.3 0.371999 0.185999 0.982550i \(-0.440448\pi\)
0.185999 + 0.982550i \(0.440448\pi\)
\(930\) 0 0
\(931\) 5025.47 0.176910
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16413.0 0.574077
\(936\) 0 0
\(937\) 28024.6 0.977080 0.488540 0.872542i \(-0.337530\pi\)
0.488540 + 0.872542i \(0.337530\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11186.5 0.387533 0.193767 0.981048i \(-0.437930\pi\)
0.193767 + 0.981048i \(0.437930\pi\)
\(942\) 0 0
\(943\) −11311.9 −0.390631
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30894.7 −1.06013 −0.530064 0.847957i \(-0.677832\pi\)
−0.530064 + 0.847957i \(0.677832\pi\)
\(948\) 0 0
\(949\) −17673.6 −0.604542
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −14163.7 −0.481434 −0.240717 0.970595i \(-0.577383\pi\)
−0.240717 + 0.970595i \(0.577383\pi\)
\(954\) 0 0
\(955\) 13237.7 0.448548
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2643.83 −0.0890238
\(960\) 0 0
\(961\) −26422.8 −0.886938
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14820.6 −0.494395
\(966\) 0 0
\(967\) 22586.0 0.751105 0.375552 0.926801i \(-0.377453\pi\)
0.375552 + 0.926801i \(0.377453\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −362.454 −0.0119791 −0.00598955 0.999982i \(-0.501907\pi\)
−0.00598955 + 0.999982i \(0.501907\pi\)
\(972\) 0 0
\(973\) 12228.0 0.402890
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11084.6 0.362975 0.181488 0.983393i \(-0.441909\pi\)
0.181488 + 0.983393i \(0.441909\pi\)
\(978\) 0 0
\(979\) −30878.8 −1.00806
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 25263.3 0.819710 0.409855 0.912151i \(-0.365579\pi\)
0.409855 + 0.912151i \(0.365579\pi\)
\(984\) 0 0
\(985\) −5029.65 −0.162699
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20361.3 0.654653
\(990\) 0 0
\(991\) −47472.7 −1.52172 −0.760858 0.648918i \(-0.775222\pi\)
−0.760858 + 0.648918i \(0.775222\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13175.0 0.419774
\(996\) 0 0
\(997\) −7171.61 −0.227811 −0.113905 0.993492i \(-0.536336\pi\)
−0.113905 + 0.993492i \(0.536336\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.a.cd.1.2 3
3.2 odd 2 1728.4.a.bx.1.2 3
4.3 odd 2 1728.4.a.cc.1.2 3
8.3 odd 2 864.4.a.k.1.2 3
8.5 even 2 864.4.a.l.1.2 yes 3
12.11 even 2 1728.4.a.bw.1.2 3
24.5 odd 2 864.4.a.r.1.2 yes 3
24.11 even 2 864.4.a.q.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.4.a.k.1.2 3 8.3 odd 2
864.4.a.l.1.2 yes 3 8.5 even 2
864.4.a.q.1.2 yes 3 24.11 even 2
864.4.a.r.1.2 yes 3 24.5 odd 2
1728.4.a.bw.1.2 3 12.11 even 2
1728.4.a.bx.1.2 3 3.2 odd 2
1728.4.a.cc.1.2 3 4.3 odd 2
1728.4.a.cd.1.2 3 1.1 even 1 trivial