Properties

Label 1728.4.a.bz.1.3
Level $1728$
Weight $4$
Character 1728.1
Self dual yes
Analytic conductor $101.955$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,4,Mod(1,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1728.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,3,0,0,0,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.955300490\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 864)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.11491\) of defining polynomial
Character \(\chi\) \(=\) 1728.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.83700 q^{5} -13.5419 q^{7} -40.0529 q^{11} -46.4627 q^{13} -42.4627 q^{17} +39.9691 q^{19} +38.8236 q^{23} -28.2334 q^{25} -155.062 q^{29} +132.806 q^{31} -133.212 q^{35} -116.929 q^{37} +7.90737 q^{41} +455.172 q^{43} +270.670 q^{47} -159.617 q^{49} -71.3743 q^{53} -394.000 q^{55} +779.199 q^{59} +790.952 q^{61} -457.053 q^{65} +835.630 q^{67} -249.458 q^{71} +619.260 q^{73} +542.392 q^{77} -262.480 q^{79} +465.347 q^{83} -417.705 q^{85} +891.182 q^{89} +629.192 q^{91} +393.176 q^{95} -248.259 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 3 q^{7} + 21 q^{11} + 24 q^{13} + 36 q^{17} + 66 q^{19} + 42 q^{23} + 12 q^{25} + 90 q^{29} - 351 q^{31} + 165 q^{35} + 6 q^{37} - 138 q^{41} + 498 q^{43} + 114 q^{47} + 78 q^{49} - 345 q^{53}+ \cdots + 549 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 9.83700 0.879848 0.439924 0.898035i \(-0.355005\pi\)
0.439924 + 0.898035i \(0.355005\pi\)
\(6\) 0 0
\(7\) −13.5419 −0.731193 −0.365597 0.930773i \(-0.619135\pi\)
−0.365597 + 0.930773i \(0.619135\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −40.0529 −1.09785 −0.548927 0.835870i \(-0.684964\pi\)
−0.548927 + 0.835870i \(0.684964\pi\)
\(12\) 0 0
\(13\) −46.4627 −0.991263 −0.495632 0.868533i \(-0.665063\pi\)
−0.495632 + 0.868533i \(0.665063\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −42.4627 −0.605806 −0.302903 0.953021i \(-0.597956\pi\)
−0.302903 + 0.953021i \(0.597956\pi\)
\(18\) 0 0
\(19\) 39.9691 0.482608 0.241304 0.970450i \(-0.422425\pi\)
0.241304 + 0.970450i \(0.422425\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 38.8236 0.351969 0.175984 0.984393i \(-0.443689\pi\)
0.175984 + 0.984393i \(0.443689\pi\)
\(24\) 0 0
\(25\) −28.2334 −0.225867
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −155.062 −0.992907 −0.496453 0.868063i \(-0.665365\pi\)
−0.496453 + 0.868063i \(0.665365\pi\)
\(30\) 0 0
\(31\) 132.806 0.769443 0.384721 0.923033i \(-0.374298\pi\)
0.384721 + 0.923033i \(0.374298\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −133.212 −0.643339
\(36\) 0 0
\(37\) −116.929 −0.519543 −0.259771 0.965670i \(-0.583647\pi\)
−0.259771 + 0.965670i \(0.583647\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.90737 0.0301201 0.0150600 0.999887i \(-0.495206\pi\)
0.0150600 + 0.999887i \(0.495206\pi\)
\(42\) 0 0
\(43\) 455.172 1.61426 0.807129 0.590376i \(-0.201020\pi\)
0.807129 + 0.590376i \(0.201020\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 270.670 0.840028 0.420014 0.907518i \(-0.362025\pi\)
0.420014 + 0.907518i \(0.362025\pi\)
\(48\) 0 0
\(49\) −159.617 −0.465357
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −71.3743 −0.184981 −0.0924907 0.995714i \(-0.529483\pi\)
−0.0924907 + 0.995714i \(0.529483\pi\)
\(54\) 0 0
\(55\) −394.000 −0.965946
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 779.199 1.71937 0.859687 0.510821i \(-0.170658\pi\)
0.859687 + 0.510821i \(0.170658\pi\)
\(60\) 0 0
\(61\) 790.952 1.66018 0.830091 0.557629i \(-0.188289\pi\)
0.830091 + 0.557629i \(0.188289\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −457.053 −0.872161
\(66\) 0 0
\(67\) 835.630 1.52371 0.761855 0.647748i \(-0.224289\pi\)
0.761855 + 0.647748i \(0.224289\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −249.458 −0.416976 −0.208488 0.978025i \(-0.566854\pi\)
−0.208488 + 0.978025i \(0.566854\pi\)
\(72\) 0 0
\(73\) 619.260 0.992862 0.496431 0.868076i \(-0.334644\pi\)
0.496431 + 0.868076i \(0.334644\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 542.392 0.802744
\(78\) 0 0
\(79\) −262.480 −0.373814 −0.186907 0.982378i \(-0.559846\pi\)
−0.186907 + 0.982378i \(0.559846\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 465.347 0.615404 0.307702 0.951483i \(-0.400440\pi\)
0.307702 + 0.951483i \(0.400440\pi\)
\(84\) 0 0
\(85\) −417.705 −0.533018
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 891.182 1.06141 0.530703 0.847558i \(-0.321928\pi\)
0.530703 + 0.847558i \(0.321928\pi\)
\(90\) 0 0
\(91\) 629.192 0.724805
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 393.176 0.424622
\(96\) 0 0
\(97\) −248.259 −0.259865 −0.129932 0.991523i \(-0.541476\pi\)
−0.129932 + 0.991523i \(0.541476\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 164.416 0.161980 0.0809901 0.996715i \(-0.474192\pi\)
0.0809901 + 0.996715i \(0.474192\pi\)
\(102\) 0 0
\(103\) −1514.44 −1.44875 −0.724377 0.689404i \(-0.757873\pi\)
−0.724377 + 0.689404i \(0.757873\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 406.118 0.366925 0.183462 0.983027i \(-0.441269\pi\)
0.183462 + 0.983027i \(0.441269\pi\)
\(108\) 0 0
\(109\) −761.097 −0.668807 −0.334403 0.942430i \(-0.608535\pi\)
−0.334403 + 0.942430i \(0.608535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 558.569 0.465007 0.232503 0.972596i \(-0.425308\pi\)
0.232503 + 0.972596i \(0.425308\pi\)
\(114\) 0 0
\(115\) 381.908 0.309679
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 575.025 0.442962
\(120\) 0 0
\(121\) 273.235 0.205285
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1507.36 −1.07858
\(126\) 0 0
\(127\) −2309.02 −1.61332 −0.806661 0.591014i \(-0.798728\pi\)
−0.806661 + 0.591014i \(0.798728\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −421.046 −0.280816 −0.140408 0.990094i \(-0.544841\pi\)
−0.140408 + 0.990094i \(0.544841\pi\)
\(132\) 0 0
\(133\) −541.257 −0.352879
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −302.781 −0.188820 −0.0944100 0.995533i \(-0.530096\pi\)
−0.0944100 + 0.995533i \(0.530096\pi\)
\(138\) 0 0
\(139\) 2593.40 1.58251 0.791255 0.611486i \(-0.209428\pi\)
0.791255 + 0.611486i \(0.209428\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1860.96 1.08826
\(144\) 0 0
\(145\) −1525.35 −0.873607
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3351.49 1.84272 0.921358 0.388714i \(-0.127081\pi\)
0.921358 + 0.388714i \(0.127081\pi\)
\(150\) 0 0
\(151\) −2886.95 −1.55587 −0.777937 0.628342i \(-0.783734\pi\)
−0.777937 + 0.628342i \(0.783734\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1306.42 0.676993
\(156\) 0 0
\(157\) 784.328 0.398702 0.199351 0.979928i \(-0.436117\pi\)
0.199351 + 0.979928i \(0.436117\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −525.745 −0.257357
\(162\) 0 0
\(163\) −448.525 −0.215529 −0.107764 0.994176i \(-0.534369\pi\)
−0.107764 + 0.994176i \(0.534369\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3665.74 1.69858 0.849292 0.527924i \(-0.177029\pi\)
0.849292 + 0.527924i \(0.177029\pi\)
\(168\) 0 0
\(169\) −38.2208 −0.0173968
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1476.41 −0.648841 −0.324421 0.945913i \(-0.605169\pi\)
−0.324421 + 0.945913i \(0.605169\pi\)
\(174\) 0 0
\(175\) 382.333 0.165152
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2940.99 1.22804 0.614021 0.789290i \(-0.289551\pi\)
0.614021 + 0.789290i \(0.289551\pi\)
\(180\) 0 0
\(181\) 684.504 0.281098 0.140549 0.990074i \(-0.455113\pi\)
0.140549 + 0.990074i \(0.455113\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1150.23 −0.457119
\(186\) 0 0
\(187\) 1700.75 0.665087
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1475.64 0.559022 0.279511 0.960142i \(-0.409828\pi\)
0.279511 + 0.960142i \(0.409828\pi\)
\(192\) 0 0
\(193\) 589.569 0.219887 0.109943 0.993938i \(-0.464933\pi\)
0.109943 + 0.993938i \(0.464933\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2832.25 −1.02431 −0.512156 0.858892i \(-0.671153\pi\)
−0.512156 + 0.858892i \(0.671153\pi\)
\(198\) 0 0
\(199\) −2174.53 −0.774614 −0.387307 0.921951i \(-0.626595\pi\)
−0.387307 + 0.921951i \(0.626595\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2099.83 0.726007
\(204\) 0 0
\(205\) 77.7848 0.0265011
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1600.88 −0.529833
\(210\) 0 0
\(211\) −3971.58 −1.29580 −0.647902 0.761724i \(-0.724353\pi\)
−0.647902 + 0.761724i \(0.724353\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4477.53 1.42030
\(216\) 0 0
\(217\) −1798.45 −0.562611
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1972.93 0.600514
\(222\) 0 0
\(223\) 40.1758 0.0120644 0.00603222 0.999982i \(-0.498080\pi\)
0.00603222 + 0.999982i \(0.498080\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4563.84 1.33442 0.667209 0.744870i \(-0.267489\pi\)
0.667209 + 0.744870i \(0.267489\pi\)
\(228\) 0 0
\(229\) 2417.80 0.697698 0.348849 0.937179i \(-0.386573\pi\)
0.348849 + 0.937179i \(0.386573\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6625.61 1.86291 0.931455 0.363857i \(-0.118540\pi\)
0.931455 + 0.363857i \(0.118540\pi\)
\(234\) 0 0
\(235\) 2662.58 0.739097
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3075.46 −0.832365 −0.416183 0.909281i \(-0.636632\pi\)
−0.416183 + 0.909281i \(0.636632\pi\)
\(240\) 0 0
\(241\) 7340.97 1.96213 0.981066 0.193675i \(-0.0620406\pi\)
0.981066 + 0.193675i \(0.0620406\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1570.16 −0.409443
\(246\) 0 0
\(247\) −1857.07 −0.478391
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5874.10 1.47717 0.738586 0.674159i \(-0.235494\pi\)
0.738586 + 0.674159i \(0.235494\pi\)
\(252\) 0 0
\(253\) −1555.00 −0.386410
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5242.60 −1.27247 −0.636234 0.771496i \(-0.719509\pi\)
−0.636234 + 0.771496i \(0.719509\pi\)
\(258\) 0 0
\(259\) 1583.44 0.379886
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1619.63 0.379735 0.189868 0.981810i \(-0.439194\pi\)
0.189868 + 0.981810i \(0.439194\pi\)
\(264\) 0 0
\(265\) −702.110 −0.162756
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5686.54 −1.28890 −0.644451 0.764646i \(-0.722914\pi\)
−0.644451 + 0.764646i \(0.722914\pi\)
\(270\) 0 0
\(271\) 7136.07 1.59958 0.799789 0.600282i \(-0.204945\pi\)
0.799789 + 0.600282i \(0.204945\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1130.83 0.247969
\(276\) 0 0
\(277\) −786.585 −0.170618 −0.0853092 0.996355i \(-0.527188\pi\)
−0.0853092 + 0.996355i \(0.527188\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6586.96 −1.39838 −0.699191 0.714935i \(-0.746456\pi\)
−0.699191 + 0.714935i \(0.746456\pi\)
\(282\) 0 0
\(283\) 1411.45 0.296474 0.148237 0.988952i \(-0.452640\pi\)
0.148237 + 0.988952i \(0.452640\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −107.081 −0.0220236
\(288\) 0 0
\(289\) −3109.92 −0.632999
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5326.36 1.06201 0.531006 0.847368i \(-0.321814\pi\)
0.531006 + 0.847368i \(0.321814\pi\)
\(294\) 0 0
\(295\) 7664.98 1.51279
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1803.85 −0.348894
\(300\) 0 0
\(301\) −6163.89 −1.18033
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7780.60 1.46071
\(306\) 0 0
\(307\) −1692.71 −0.314684 −0.157342 0.987544i \(-0.550293\pi\)
−0.157342 + 0.987544i \(0.550293\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6054.86 1.10399 0.551993 0.833849i \(-0.313868\pi\)
0.551993 + 0.833849i \(0.313868\pi\)
\(312\) 0 0
\(313\) 145.232 0.0262269 0.0131134 0.999914i \(-0.495826\pi\)
0.0131134 + 0.999914i \(0.495826\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9070.78 1.60715 0.803574 0.595205i \(-0.202929\pi\)
0.803574 + 0.595205i \(0.202929\pi\)
\(318\) 0 0
\(319\) 6210.68 1.09007
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1697.20 −0.292367
\(324\) 0 0
\(325\) 1311.80 0.223894
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3665.39 −0.614223
\(330\) 0 0
\(331\) −9668.25 −1.60548 −0.802742 0.596326i \(-0.796626\pi\)
−0.802742 + 0.596326i \(0.796626\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8220.10 1.34063
\(336\) 0 0
\(337\) −5730.77 −0.926335 −0.463168 0.886271i \(-0.653287\pi\)
−0.463168 + 0.886271i \(0.653287\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5319.28 −0.844737
\(342\) 0 0
\(343\) 6806.39 1.07146
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11934.3 1.84631 0.923155 0.384429i \(-0.125602\pi\)
0.923155 + 0.384429i \(0.125602\pi\)
\(348\) 0 0
\(349\) 10225.6 1.56839 0.784193 0.620518i \(-0.213077\pi\)
0.784193 + 0.620518i \(0.213077\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9972.04 1.50356 0.751782 0.659411i \(-0.229194\pi\)
0.751782 + 0.659411i \(0.229194\pi\)
\(354\) 0 0
\(355\) −2453.92 −0.366875
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6309.46 0.927578 0.463789 0.885946i \(-0.346490\pi\)
0.463789 + 0.885946i \(0.346490\pi\)
\(360\) 0 0
\(361\) −5261.47 −0.767090
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6091.66 0.873568
\(366\) 0 0
\(367\) 1061.15 0.150931 0.0754654 0.997148i \(-0.475956\pi\)
0.0754654 + 0.997148i \(0.475956\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 966.543 0.135257
\(372\) 0 0
\(373\) −4296.88 −0.596472 −0.298236 0.954492i \(-0.596398\pi\)
−0.298236 + 0.954492i \(0.596398\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7204.59 0.984232
\(378\) 0 0
\(379\) −3965.26 −0.537418 −0.268709 0.963221i \(-0.586597\pi\)
−0.268709 + 0.963221i \(0.586597\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1981.21 0.264321 0.132161 0.991228i \(-0.457809\pi\)
0.132161 + 0.991228i \(0.457809\pi\)
\(384\) 0 0
\(385\) 5335.51 0.706293
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3621.21 −0.471986 −0.235993 0.971755i \(-0.575834\pi\)
−0.235993 + 0.971755i \(0.575834\pi\)
\(390\) 0 0
\(391\) −1648.55 −0.213225
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2582.02 −0.328899
\(396\) 0 0
\(397\) −14052.2 −1.77648 −0.888239 0.459382i \(-0.848071\pi\)
−0.888239 + 0.459382i \(0.848071\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10743.2 −1.33788 −0.668942 0.743315i \(-0.733252\pi\)
−0.668942 + 0.743315i \(0.733252\pi\)
\(402\) 0 0
\(403\) −6170.54 −0.762721
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4683.36 0.570382
\(408\) 0 0
\(409\) −423.339 −0.0511804 −0.0255902 0.999673i \(-0.508147\pi\)
−0.0255902 + 0.999673i \(0.508147\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10551.8 −1.25719
\(414\) 0 0
\(415\) 4577.62 0.541462
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5959.04 −0.694792 −0.347396 0.937718i \(-0.612934\pi\)
−0.347396 + 0.937718i \(0.612934\pi\)
\(420\) 0 0
\(421\) 15199.7 1.75959 0.879795 0.475352i \(-0.157679\pi\)
0.879795 + 0.475352i \(0.157679\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1198.86 0.136832
\(426\) 0 0
\(427\) −10711.0 −1.21391
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4428.98 −0.494980 −0.247490 0.968890i \(-0.579606\pi\)
−0.247490 + 0.968890i \(0.579606\pi\)
\(432\) 0 0
\(433\) 2497.20 0.277154 0.138577 0.990352i \(-0.455747\pi\)
0.138577 + 0.990352i \(0.455747\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1551.75 0.169863
\(438\) 0 0
\(439\) 4332.64 0.471038 0.235519 0.971870i \(-0.424321\pi\)
0.235519 + 0.971870i \(0.424321\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11865.4 1.27256 0.636279 0.771459i \(-0.280473\pi\)
0.636279 + 0.771459i \(0.280473\pi\)
\(444\) 0 0
\(445\) 8766.56 0.933876
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1724.93 0.181302 0.0906511 0.995883i \(-0.471105\pi\)
0.0906511 + 0.995883i \(0.471105\pi\)
\(450\) 0 0
\(451\) −316.713 −0.0330675
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6189.37 0.637719
\(456\) 0 0
\(457\) 10714.6 1.09673 0.548365 0.836239i \(-0.315250\pi\)
0.548365 + 0.836239i \(0.315250\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12258.8 1.23850 0.619249 0.785195i \(-0.287437\pi\)
0.619249 + 0.785195i \(0.287437\pi\)
\(462\) 0 0
\(463\) 5968.59 0.599101 0.299551 0.954080i \(-0.403163\pi\)
0.299551 + 0.954080i \(0.403163\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2367.56 −0.234598 −0.117299 0.993097i \(-0.537424\pi\)
−0.117299 + 0.993097i \(0.537424\pi\)
\(468\) 0 0
\(469\) −11316.0 −1.11413
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18231.0 −1.77222
\(474\) 0 0
\(475\) −1128.46 −0.109005
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13579.2 −1.29530 −0.647649 0.761939i \(-0.724248\pi\)
−0.647649 + 0.761939i \(0.724248\pi\)
\(480\) 0 0
\(481\) 5432.85 0.515004
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2442.12 −0.228642
\(486\) 0 0
\(487\) 3108.88 0.289274 0.144637 0.989485i \(-0.453799\pi\)
0.144637 + 0.989485i \(0.453799\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7443.00 0.684110 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(492\) 0 0
\(493\) 6584.35 0.601509
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3378.14 0.304890
\(498\) 0 0
\(499\) −16436.9 −1.47458 −0.737289 0.675577i \(-0.763894\pi\)
−0.737289 + 0.675577i \(0.763894\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14606.3 −1.29476 −0.647379 0.762168i \(-0.724135\pi\)
−0.647379 + 0.762168i \(0.724135\pi\)
\(504\) 0 0
\(505\) 1617.36 0.142518
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2530.62 −0.220369 −0.110184 0.993911i \(-0.535144\pi\)
−0.110184 + 0.993911i \(0.535144\pi\)
\(510\) 0 0
\(511\) −8385.95 −0.725974
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14897.5 −1.27468
\(516\) 0 0
\(517\) −10841.1 −0.922229
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12477.8 1.04925 0.524627 0.851332i \(-0.324205\pi\)
0.524627 + 0.851332i \(0.324205\pi\)
\(522\) 0 0
\(523\) −13147.6 −1.09924 −0.549621 0.835414i \(-0.685228\pi\)
−0.549621 + 0.835414i \(0.685228\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5639.31 −0.466133
\(528\) 0 0
\(529\) −10659.7 −0.876118
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −367.397 −0.0298569
\(534\) 0 0
\(535\) 3994.99 0.322838
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6393.14 0.510894
\(540\) 0 0
\(541\) −418.706 −0.0332746 −0.0166373 0.999862i \(-0.505296\pi\)
−0.0166373 + 0.999862i \(0.505296\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7486.92 −0.588448
\(546\) 0 0
\(547\) 9793.86 0.765549 0.382774 0.923842i \(-0.374969\pi\)
0.382774 + 0.923842i \(0.374969\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6197.69 −0.479184
\(552\) 0 0
\(553\) 3554.47 0.273330
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −15790.7 −1.20121 −0.600604 0.799546i \(-0.705073\pi\)
−0.600604 + 0.799546i \(0.705073\pi\)
\(558\) 0 0
\(559\) −21148.5 −1.60015
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16327.4 −1.22223 −0.611117 0.791540i \(-0.709279\pi\)
−0.611117 + 0.791540i \(0.709279\pi\)
\(564\) 0 0
\(565\) 5494.64 0.409135
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13708.7 −1.01002 −0.505009 0.863114i \(-0.668511\pi\)
−0.505009 + 0.863114i \(0.668511\pi\)
\(570\) 0 0
\(571\) 17060.9 1.25039 0.625197 0.780467i \(-0.285019\pi\)
0.625197 + 0.780467i \(0.285019\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1096.12 −0.0794981
\(576\) 0 0
\(577\) −24581.0 −1.77352 −0.886761 0.462229i \(-0.847050\pi\)
−0.886761 + 0.462229i \(0.847050\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6301.68 −0.449979
\(582\) 0 0
\(583\) 2858.75 0.203083
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8728.10 0.613709 0.306854 0.951756i \(-0.400724\pi\)
0.306854 + 0.951756i \(0.400724\pi\)
\(588\) 0 0
\(589\) 5308.15 0.371339
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18309.9 1.26796 0.633979 0.773350i \(-0.281421\pi\)
0.633979 + 0.773350i \(0.281421\pi\)
\(594\) 0 0
\(595\) 5656.52 0.389739
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2905.85 0.198213 0.0991067 0.995077i \(-0.468401\pi\)
0.0991067 + 0.995077i \(0.468401\pi\)
\(600\) 0 0
\(601\) 15925.0 1.08085 0.540427 0.841391i \(-0.318263\pi\)
0.540427 + 0.841391i \(0.318263\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2687.81 0.180620
\(606\) 0 0
\(607\) −7953.05 −0.531803 −0.265901 0.964000i \(-0.585670\pi\)
−0.265901 + 0.964000i \(0.585670\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12576.1 −0.832689
\(612\) 0 0
\(613\) −18452.8 −1.21582 −0.607912 0.794005i \(-0.707993\pi\)
−0.607912 + 0.794005i \(0.707993\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1253.46 0.0817868 0.0408934 0.999164i \(-0.486980\pi\)
0.0408934 + 0.999164i \(0.486980\pi\)
\(618\) 0 0
\(619\) −1697.15 −0.110200 −0.0551002 0.998481i \(-0.517548\pi\)
−0.0551002 + 0.998481i \(0.517548\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12068.3 −0.776093
\(624\) 0 0
\(625\) −11298.7 −0.723117
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4965.13 0.314742
\(630\) 0 0
\(631\) −6132.61 −0.386902 −0.193451 0.981110i \(-0.561968\pi\)
−0.193451 + 0.981110i \(0.561968\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −22713.8 −1.41948
\(636\) 0 0
\(637\) 7416.24 0.461291
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2298.20 0.141612 0.0708062 0.997490i \(-0.477443\pi\)
0.0708062 + 0.997490i \(0.477443\pi\)
\(642\) 0 0
\(643\) 28441.5 1.74436 0.872179 0.489186i \(-0.162706\pi\)
0.872179 + 0.489186i \(0.162706\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30736.3 1.86765 0.933823 0.357734i \(-0.116451\pi\)
0.933823 + 0.357734i \(0.116451\pi\)
\(648\) 0 0
\(649\) −31209.2 −1.88762
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21858.1 1.30991 0.654957 0.755666i \(-0.272687\pi\)
0.654957 + 0.755666i \(0.272687\pi\)
\(654\) 0 0
\(655\) −4141.83 −0.247076
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16535.4 −0.977435 −0.488717 0.872442i \(-0.662535\pi\)
−0.488717 + 0.872442i \(0.662535\pi\)
\(660\) 0 0
\(661\) 5431.14 0.319587 0.159793 0.987150i \(-0.448917\pi\)
0.159793 + 0.987150i \(0.448917\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5324.35 −0.310480
\(666\) 0 0
\(667\) −6020.06 −0.349472
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −31679.9 −1.82264
\(672\) 0 0
\(673\) 30532.5 1.74880 0.874398 0.485209i \(-0.161256\pi\)
0.874398 + 0.485209i \(0.161256\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −135.741 −0.00770598 −0.00385299 0.999993i \(-0.501226\pi\)
−0.00385299 + 0.999993i \(0.501226\pi\)
\(678\) 0 0
\(679\) 3361.89 0.190011
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9086.82 0.509074 0.254537 0.967063i \(-0.418077\pi\)
0.254537 + 0.967063i \(0.418077\pi\)
\(684\) 0 0
\(685\) −2978.46 −0.166133
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3316.24 0.183365
\(690\) 0 0
\(691\) 10738.1 0.591166 0.295583 0.955317i \(-0.404486\pi\)
0.295583 + 0.955317i \(0.404486\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 25511.2 1.39237
\(696\) 0 0
\(697\) −335.768 −0.0182469
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2349.68 −0.126599 −0.0632996 0.997995i \(-0.520162\pi\)
−0.0632996 + 0.997995i \(0.520162\pi\)
\(702\) 0 0
\(703\) −4673.57 −0.250735
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2226.50 −0.118439
\(708\) 0 0
\(709\) 9778.28 0.517956 0.258978 0.965883i \(-0.416614\pi\)
0.258978 + 0.965883i \(0.416614\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5156.02 0.270820
\(714\) 0 0
\(715\) 18306.3 0.957507
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −30812.8 −1.59822 −0.799112 0.601182i \(-0.794697\pi\)
−0.799112 + 0.601182i \(0.794697\pi\)
\(720\) 0 0
\(721\) 20508.3 1.05932
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4377.92 0.224265
\(726\) 0 0
\(727\) 3541.20 0.180654 0.0903271 0.995912i \(-0.471209\pi\)
0.0903271 + 0.995912i \(0.471209\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −19327.8 −0.977927
\(732\) 0 0
\(733\) −13935.0 −0.702182 −0.351091 0.936341i \(-0.614189\pi\)
−0.351091 + 0.936341i \(0.614189\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −33469.4 −1.67281
\(738\) 0 0
\(739\) 34285.5 1.70665 0.853323 0.521382i \(-0.174583\pi\)
0.853323 + 0.521382i \(0.174583\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −18362.9 −0.906690 −0.453345 0.891335i \(-0.649769\pi\)
−0.453345 + 0.891335i \(0.649769\pi\)
\(744\) 0 0
\(745\) 32968.6 1.62131
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5499.61 −0.268293
\(750\) 0 0
\(751\) −27069.3 −1.31528 −0.657638 0.753334i \(-0.728444\pi\)
−0.657638 + 0.753334i \(0.728444\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −28399.0 −1.36893
\(756\) 0 0
\(757\) 2165.38 0.103966 0.0519830 0.998648i \(-0.483446\pi\)
0.0519830 + 0.998648i \(0.483446\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 28055.8 1.33643 0.668214 0.743969i \(-0.267059\pi\)
0.668214 + 0.743969i \(0.267059\pi\)
\(762\) 0 0
\(763\) 10306.7 0.489027
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −36203.7 −1.70435
\(768\) 0 0
\(769\) −8848.59 −0.414939 −0.207470 0.978241i \(-0.566523\pi\)
−0.207470 + 0.978241i \(0.566523\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27932.1 1.29968 0.649838 0.760073i \(-0.274837\pi\)
0.649838 + 0.760073i \(0.274837\pi\)
\(774\) 0 0
\(775\) −3749.57 −0.173792
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 316.051 0.0145362
\(780\) 0 0
\(781\) 9991.53 0.457779
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7715.44 0.350797
\(786\) 0 0
\(787\) 10334.4 0.468083 0.234042 0.972227i \(-0.424805\pi\)
0.234042 + 0.972227i \(0.424805\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7564.08 −0.340010
\(792\) 0 0
\(793\) −36749.7 −1.64568
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13243.4 −0.588590 −0.294295 0.955715i \(-0.595085\pi\)
−0.294295 + 0.955715i \(0.595085\pi\)
\(798\) 0 0
\(799\) −11493.4 −0.508894
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −24803.2 −1.09002
\(804\) 0 0
\(805\) −5171.75 −0.226435
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 29201.0 1.26904 0.634518 0.772908i \(-0.281198\pi\)
0.634518 + 0.772908i \(0.281198\pi\)
\(810\) 0 0
\(811\) 31462.8 1.36228 0.681140 0.732153i \(-0.261484\pi\)
0.681140 + 0.732153i \(0.261484\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4412.14 −0.189633
\(816\) 0 0
\(817\) 18192.8 0.779053
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30830.8 −1.31060 −0.655299 0.755370i \(-0.727457\pi\)
−0.655299 + 0.755370i \(0.727457\pi\)
\(822\) 0 0
\(823\) −4109.58 −0.174059 −0.0870297 0.996206i \(-0.527737\pi\)
−0.0870297 + 0.996206i \(0.527737\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2476.04 0.104112 0.0520559 0.998644i \(-0.483423\pi\)
0.0520559 + 0.998644i \(0.483423\pi\)
\(828\) 0 0
\(829\) −22798.8 −0.955169 −0.477584 0.878586i \(-0.658487\pi\)
−0.477584 + 0.878586i \(0.658487\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6777.78 0.281916
\(834\) 0 0
\(835\) 36059.9 1.49450
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7937.63 −0.326624 −0.163312 0.986574i \(-0.552218\pi\)
−0.163312 + 0.986574i \(0.552218\pi\)
\(840\) 0 0
\(841\) −344.776 −0.0141365
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −375.978 −0.0153066
\(846\) 0 0
\(847\) −3700.11 −0.150103
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4539.62 −0.182863
\(852\) 0 0
\(853\) 40012.6 1.60610 0.803051 0.595911i \(-0.203209\pi\)
0.803051 + 0.595911i \(0.203209\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9326.30 −0.371739 −0.185870 0.982574i \(-0.559510\pi\)
−0.185870 + 0.982574i \(0.559510\pi\)
\(858\) 0 0
\(859\) −14787.1 −0.587344 −0.293672 0.955906i \(-0.594877\pi\)
−0.293672 + 0.955906i \(0.594877\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −40306.3 −1.58985 −0.794927 0.606706i \(-0.792491\pi\)
−0.794927 + 0.606706i \(0.792491\pi\)
\(864\) 0 0
\(865\) −14523.5 −0.570882
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10513.1 0.410393
\(870\) 0 0
\(871\) −38825.6 −1.51040
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 20412.5 0.788648
\(876\) 0 0
\(877\) 4433.72 0.170714 0.0853569 0.996350i \(-0.472797\pi\)
0.0853569 + 0.996350i \(0.472797\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40297.7 −1.54105 −0.770524 0.637411i \(-0.780005\pi\)
−0.770524 + 0.637411i \(0.780005\pi\)
\(882\) 0 0
\(883\) −43495.8 −1.65770 −0.828851 0.559469i \(-0.811005\pi\)
−0.828851 + 0.559469i \(0.811005\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15548.5 −0.588575 −0.294287 0.955717i \(-0.595082\pi\)
−0.294287 + 0.955717i \(0.595082\pi\)
\(888\) 0 0
\(889\) 31268.4 1.17965
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10818.5 0.405404
\(894\) 0 0
\(895\) 28930.5 1.08049
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20593.2 −0.763985
\(900\) 0 0
\(901\) 3030.74 0.112063
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6733.47 0.247324
\(906\) 0 0
\(907\) −13144.9 −0.481222 −0.240611 0.970622i \(-0.577348\pi\)
−0.240611 + 0.970622i \(0.577348\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −28750.1 −1.04559 −0.522795 0.852459i \(-0.675111\pi\)
−0.522795 + 0.852459i \(0.675111\pi\)
\(912\) 0 0
\(913\) −18638.5 −0.675624
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5701.75 0.205331
\(918\) 0 0
\(919\) −21287.8 −0.764112 −0.382056 0.924139i \(-0.624784\pi\)
−0.382056 + 0.924139i \(0.624784\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11590.5 0.413333
\(924\) 0 0
\(925\) 3301.31 0.117347
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16505.5 −0.582914 −0.291457 0.956584i \(-0.594140\pi\)
−0.291457 + 0.956584i \(0.594140\pi\)
\(930\) 0 0
\(931\) −6379.76 −0.224585
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16730.3 0.585176
\(936\) 0 0
\(937\) −30510.3 −1.06374 −0.531872 0.846825i \(-0.678511\pi\)
−0.531872 + 0.846825i \(0.678511\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −46736.0 −1.61908 −0.809538 0.587067i \(-0.800283\pi\)
−0.809538 + 0.587067i \(0.800283\pi\)
\(942\) 0 0
\(943\) 306.993 0.0106013
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −29288.1 −1.00500 −0.502500 0.864577i \(-0.667586\pi\)
−0.502500 + 0.864577i \(0.667586\pi\)
\(948\) 0 0
\(949\) −28772.5 −0.984188
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −45705.6 −1.55357 −0.776783 0.629768i \(-0.783150\pi\)
−0.776783 + 0.629768i \(0.783150\pi\)
\(954\) 0 0
\(955\) 14515.8 0.491855
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4100.23 0.138064
\(960\) 0 0
\(961\) −12153.5 −0.407958
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5799.60 0.193467
\(966\) 0 0
\(967\) −31074.6 −1.03339 −0.516696 0.856169i \(-0.672838\pi\)
−0.516696 + 0.856169i \(0.672838\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6532.66 0.215904 0.107952 0.994156i \(-0.465571\pi\)
0.107952 + 0.994156i \(0.465571\pi\)
\(972\) 0 0
\(973\) −35119.5 −1.15712
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32822.6 1.07481 0.537404 0.843325i \(-0.319405\pi\)
0.537404 + 0.843325i \(0.319405\pi\)
\(978\) 0 0
\(979\) −35694.4 −1.16527
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 53969.2 1.75112 0.875559 0.483110i \(-0.160493\pi\)
0.875559 + 0.483110i \(0.160493\pi\)
\(984\) 0 0
\(985\) −27860.9 −0.901240
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17671.4 0.568168
\(990\) 0 0
\(991\) 1680.09 0.0538546 0.0269273 0.999637i \(-0.491428\pi\)
0.0269273 + 0.999637i \(0.491428\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −21390.8 −0.681543
\(996\) 0 0
\(997\) 21961.5 0.697619 0.348810 0.937194i \(-0.386586\pi\)
0.348810 + 0.937194i \(0.386586\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.4.a.bz.1.3 3
3.2 odd 2 1728.4.a.cb.1.1 3
4.3 odd 2 1728.4.a.by.1.3 3
8.3 odd 2 864.4.a.o.1.1 yes 3
8.5 even 2 864.4.a.p.1.1 yes 3
12.11 even 2 1728.4.a.ca.1.1 3
24.5 odd 2 864.4.a.n.1.3 yes 3
24.11 even 2 864.4.a.m.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
864.4.a.m.1.3 3 24.11 even 2
864.4.a.n.1.3 yes 3 24.5 odd 2
864.4.a.o.1.1 yes 3 8.3 odd 2
864.4.a.p.1.1 yes 3 8.5 even 2
1728.4.a.by.1.3 3 4.3 odd 2
1728.4.a.bz.1.3 3 1.1 even 1 trivial
1728.4.a.ca.1.1 3 12.11 even 2
1728.4.a.cb.1.1 3 3.2 odd 2