Properties

Label 1728.3.b.j.1567.8
Level $1728$
Weight $3$
Character 1728.1567
Analytic conductor $47.085$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,3,Mod(1567,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.1567"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,0,0,0,0,0,0,0,-72,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(49)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.0845896815\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.116304318664704.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + x^{10} + 6x^{9} - 9x^{8} - 2x^{7} + 18x^{6} - 4x^{5} - 36x^{4} + 48x^{3} + 16x^{2} - 64x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1567.8
Root \(0.578188 - 1.29062i\) of defining polynomial
Character \(\chi\) \(=\) 1728.1567
Dual form 1728.3.b.j.1567.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64040i q^{5} +8.30833i q^{7} +18.7629 q^{11} -22.3117i q^{13} -23.4983 q^{17} +9.93333 q^{19} -32.3517i q^{23} +18.0283 q^{25} -8.45525i q^{29} -46.9532i q^{31} -21.9373 q^{35} +28.3219i q^{37} +77.7915 q^{41} -58.4797 q^{43} -54.2933i q^{47} -20.0283 q^{49} -5.81484i q^{53} +49.5416i q^{55} +47.5795 q^{59} +27.7128i q^{61} +58.9118 q^{65} -50.6336 q^{67} +7.34824i q^{71} -29.4383 q^{73} +155.888i q^{77} -43.2050i q^{79} +10.7858 q^{83} -62.0450i q^{85} +136.703 q^{89} +185.372 q^{91} +26.2280i q^{95} -54.6465 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 48 q^{17} - 72 q^{25} + 336 q^{41} + 48 q^{49} + 912 q^{65} + 60 q^{73} + 1248 q^{89} - 204 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64040i 0.528081i 0.964512 + 0.264040i \(0.0850552\pi\)
−0.964512 + 0.264040i \(0.914945\pi\)
\(6\) 0 0
\(7\) 8.30833i 1.18690i 0.804870 + 0.593452i \(0.202235\pi\)
−0.804870 + 0.593452i \(0.797765\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 18.7629 1.70572 0.852859 0.522141i \(-0.174867\pi\)
0.852859 + 0.522141i \(0.174867\pi\)
\(12\) 0 0
\(13\) − 22.3117i − 1.71628i −0.513415 0.858141i \(-0.671620\pi\)
0.513415 0.858141i \(-0.328380\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −23.4983 −1.38225 −0.691126 0.722734i \(-0.742885\pi\)
−0.691126 + 0.722734i \(0.742885\pi\)
\(18\) 0 0
\(19\) 9.93333 0.522807 0.261403 0.965230i \(-0.415815\pi\)
0.261403 + 0.965230i \(0.415815\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 32.3517i − 1.40659i −0.710896 0.703297i \(-0.751710\pi\)
0.710896 0.703297i \(-0.248290\pi\)
\(24\) 0 0
\(25\) 18.0283 0.721131
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 8.45525i − 0.291560i −0.989317 0.145780i \(-0.953431\pi\)
0.989317 0.145780i \(-0.0465692\pi\)
\(30\) 0 0
\(31\) − 46.9532i − 1.51462i −0.653055 0.757310i \(-0.726513\pi\)
0.653055 0.757310i \(-0.273487\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −21.9373 −0.626781
\(36\) 0 0
\(37\) 28.3219i 0.765457i 0.923861 + 0.382728i \(0.125016\pi\)
−0.923861 + 0.382728i \(0.874984\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 77.7915 1.89735 0.948677 0.316246i \(-0.102422\pi\)
0.948677 + 0.316246i \(0.102422\pi\)
\(42\) 0 0
\(43\) −58.4797 −1.35999 −0.679997 0.733215i \(-0.738019\pi\)
−0.679997 + 0.733215i \(0.738019\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 54.2933i − 1.15518i −0.816329 0.577588i \(-0.803994\pi\)
0.816329 0.577588i \(-0.196006\pi\)
\(48\) 0 0
\(49\) −20.0283 −0.408740
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 5.81484i − 0.109714i −0.998494 0.0548570i \(-0.982530\pi\)
0.998494 0.0548570i \(-0.0174703\pi\)
\(54\) 0 0
\(55\) 49.5416i 0.900757i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 47.5795 0.806432 0.403216 0.915105i \(-0.367892\pi\)
0.403216 + 0.915105i \(0.367892\pi\)
\(60\) 0 0
\(61\) 27.7128i 0.454308i 0.973859 + 0.227154i \(0.0729421\pi\)
−0.973859 + 0.227154i \(0.927058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 58.9118 0.906335
\(66\) 0 0
\(67\) −50.6336 −0.755725 −0.377862 0.925862i \(-0.623341\pi\)
−0.377862 + 0.925862i \(0.623341\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.34824i 0.103496i 0.998660 + 0.0517482i \(0.0164793\pi\)
−0.998660 + 0.0517482i \(0.983521\pi\)
\(72\) 0 0
\(73\) −29.4383 −0.403265 −0.201632 0.979461i \(-0.564625\pi\)
−0.201632 + 0.979461i \(0.564625\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 155.888i 2.02452i
\(78\) 0 0
\(79\) − 43.2050i − 0.546899i −0.961886 0.273450i \(-0.911835\pi\)
0.961886 0.273450i \(-0.0881647\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.7858 0.129950 0.0649748 0.997887i \(-0.479303\pi\)
0.0649748 + 0.997887i \(0.479303\pi\)
\(84\) 0 0
\(85\) − 62.0450i − 0.729941i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 136.703 1.53599 0.767996 0.640454i \(-0.221254\pi\)
0.767996 + 0.640454i \(0.221254\pi\)
\(90\) 0 0
\(91\) 185.372 2.03706
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 26.2280i 0.276084i
\(96\) 0 0
\(97\) −54.6465 −0.563366 −0.281683 0.959508i \(-0.590893\pi\)
−0.281683 + 0.959508i \(0.590893\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 123.165i 1.21946i 0.792611 + 0.609728i \(0.208721\pi\)
−0.792611 + 0.609728i \(0.791279\pi\)
\(102\) 0 0
\(103\) 82.0848i 0.796940i 0.917181 + 0.398470i \(0.130459\pi\)
−0.917181 + 0.398470i \(0.869541\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 180.466 1.68660 0.843299 0.537445i \(-0.180610\pi\)
0.843299 + 0.537445i \(0.180610\pi\)
\(108\) 0 0
\(109\) − 22.2137i − 0.203796i −0.994795 0.101898i \(-0.967509\pi\)
0.994795 0.101898i \(-0.0324915\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 139.381 1.23346 0.616732 0.787173i \(-0.288456\pi\)
0.616732 + 0.787173i \(0.288456\pi\)
\(114\) 0 0
\(115\) 85.4215 0.742795
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 195.231i − 1.64060i
\(120\) 0 0
\(121\) 231.046 1.90947
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 113.612i 0.908896i
\(126\) 0 0
\(127\) 80.3083i 0.632349i 0.948701 + 0.316175i \(0.102399\pi\)
−0.948701 + 0.316175i \(0.897601\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −55.7583 −0.425636 −0.212818 0.977092i \(-0.568264\pi\)
−0.212818 + 0.977092i \(0.568264\pi\)
\(132\) 0 0
\(133\) 82.5293i 0.620521i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.28641 −0.0312877 −0.0156438 0.999878i \(-0.504980\pi\)
−0.0156438 + 0.999878i \(0.504980\pi\)
\(138\) 0 0
\(139\) 7.84615 0.0564471 0.0282236 0.999602i \(-0.491015\pi\)
0.0282236 + 0.999602i \(0.491015\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 418.631i − 2.92749i
\(144\) 0 0
\(145\) 22.3253 0.153967
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 269.056i − 1.80574i −0.429912 0.902871i \(-0.641455\pi\)
0.429912 0.902871i \(-0.358545\pi\)
\(150\) 0 0
\(151\) − 179.626i − 1.18958i −0.803881 0.594789i \(-0.797235\pi\)
0.803881 0.594789i \(-0.202765\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 123.976 0.799842
\(156\) 0 0
\(157\) 145.890i 0.929238i 0.885511 + 0.464619i \(0.153809\pi\)
−0.885511 + 0.464619i \(0.846191\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 268.788 1.66949
\(162\) 0 0
\(163\) −100.496 −0.616540 −0.308270 0.951299i \(-0.599750\pi\)
−0.308270 + 0.951299i \(0.599750\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 154.410i − 0.924611i −0.886721 0.462306i \(-0.847022\pi\)
0.886721 0.462306i \(-0.152978\pi\)
\(168\) 0 0
\(169\) −328.810 −1.94562
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 57.6442i − 0.333203i −0.986024 0.166602i \(-0.946721\pi\)
0.986024 0.166602i \(-0.0532794\pi\)
\(174\) 0 0
\(175\) 149.785i 0.855913i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 83.2753 0.465225 0.232613 0.972569i \(-0.425273\pi\)
0.232613 + 0.972569i \(0.425273\pi\)
\(180\) 0 0
\(181\) − 227.811i − 1.25862i −0.777153 0.629311i \(-0.783337\pi\)
0.777153 0.629311i \(-0.216663\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −74.7813 −0.404223
\(186\) 0 0
\(187\) −440.896 −2.35773
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 28.0652i − 0.146938i −0.997297 0.0734692i \(-0.976593\pi\)
0.997297 0.0734692i \(-0.0234071\pi\)
\(192\) 0 0
\(193\) −310.951 −1.61115 −0.805573 0.592496i \(-0.798142\pi\)
−0.805573 + 0.592496i \(0.798142\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 177.071i 0.898838i 0.893321 + 0.449419i \(0.148369\pi\)
−0.893321 + 0.449419i \(0.851631\pi\)
\(198\) 0 0
\(199\) − 183.708i − 0.923156i −0.887100 0.461578i \(-0.847283\pi\)
0.887100 0.461578i \(-0.152717\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 70.2489 0.346054
\(204\) 0 0
\(205\) 205.401i 1.00196i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 186.378 0.891761
\(210\) 0 0
\(211\) 198.513 0.940821 0.470411 0.882448i \(-0.344106\pi\)
0.470411 + 0.882448i \(0.344106\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 154.410i − 0.718186i
\(216\) 0 0
\(217\) 390.103 1.79771
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 524.286i 2.37233i
\(222\) 0 0
\(223\) − 2.68500i − 0.0120403i −0.999982 0.00602017i \(-0.998084\pi\)
0.999982 0.00602017i \(-0.00191629\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 337.120 1.48511 0.742555 0.669786i \(-0.233614\pi\)
0.742555 + 0.669786i \(0.233614\pi\)
\(228\) 0 0
\(229\) 46.9618i 0.205073i 0.994729 + 0.102537i \(0.0326959\pi\)
−0.994729 + 0.102537i \(0.967304\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −86.6965 −0.372088 −0.186044 0.982541i \(-0.559567\pi\)
−0.186044 + 0.982541i \(0.559567\pi\)
\(234\) 0 0
\(235\) 143.356 0.610026
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 149.408i − 0.625138i −0.949895 0.312569i \(-0.898811\pi\)
0.949895 0.312569i \(-0.101189\pi\)
\(240\) 0 0
\(241\) 338.559 1.40481 0.702405 0.711778i \(-0.252110\pi\)
0.702405 + 0.711778i \(0.252110\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 52.8827i − 0.215848i
\(246\) 0 0
\(247\) − 221.629i − 0.897284i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −117.462 −0.467976 −0.233988 0.972239i \(-0.575178\pi\)
−0.233988 + 0.972239i \(0.575178\pi\)
\(252\) 0 0
\(253\) − 607.011i − 2.39925i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 79.7319 0.310241 0.155120 0.987896i \(-0.450423\pi\)
0.155120 + 0.987896i \(0.450423\pi\)
\(258\) 0 0
\(259\) −235.308 −0.908524
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 70.1112i 0.266582i 0.991077 + 0.133291i \(0.0425546\pi\)
−0.991077 + 0.133291i \(0.957445\pi\)
\(264\) 0 0
\(265\) 15.3535 0.0579379
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 128.891i 0.479147i 0.970878 + 0.239574i \(0.0770077\pi\)
−0.970878 + 0.239574i \(0.922992\pi\)
\(270\) 0 0
\(271\) 334.953i 1.23599i 0.786182 + 0.617995i \(0.212055\pi\)
−0.786182 + 0.617995i \(0.787945\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 338.262 1.23005
\(276\) 0 0
\(277\) 490.465i 1.77063i 0.464991 + 0.885315i \(0.346058\pi\)
−0.464991 + 0.885315i \(0.653942\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 496.474 1.76681 0.883406 0.468608i \(-0.155244\pi\)
0.883406 + 0.468608i \(0.155244\pi\)
\(282\) 0 0
\(283\) 323.319 1.14247 0.571235 0.820787i \(-0.306465\pi\)
0.571235 + 0.820787i \(0.306465\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 646.317i 2.25198i
\(288\) 0 0
\(289\) 263.170 0.910621
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 238.720i − 0.814742i −0.913263 0.407371i \(-0.866446\pi\)
0.913263 0.407371i \(-0.133554\pi\)
\(294\) 0 0
\(295\) 125.629i 0.425861i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −721.819 −2.41411
\(300\) 0 0
\(301\) − 485.868i − 1.61418i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −73.1730 −0.239912
\(306\) 0 0
\(307\) 196.695 0.640699 0.320349 0.947299i \(-0.396200\pi\)
0.320349 + 0.947299i \(0.396200\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 20.0012i − 0.0643126i −0.999483 0.0321563i \(-0.989763\pi\)
0.999483 0.0321563i \(-0.0102374\pi\)
\(312\) 0 0
\(313\) −341.608 −1.09140 −0.545700 0.837981i \(-0.683736\pi\)
−0.545700 + 0.837981i \(0.683736\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 481.401i 1.51861i 0.650732 + 0.759307i \(0.274462\pi\)
−0.650732 + 0.759307i \(0.725538\pi\)
\(318\) 0 0
\(319\) − 158.645i − 0.497319i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −233.416 −0.722651
\(324\) 0 0
\(325\) − 402.240i − 1.23766i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 451.086 1.37108
\(330\) 0 0
\(331\) −91.4065 −0.276152 −0.138076 0.990422i \(-0.544092\pi\)
−0.138076 + 0.990422i \(0.544092\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 133.693i − 0.399084i
\(336\) 0 0
\(337\) −194.220 −0.576320 −0.288160 0.957582i \(-0.593044\pi\)
−0.288160 + 0.957582i \(0.593044\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 880.979i − 2.58352i
\(342\) 0 0
\(343\) 240.707i 0.701768i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −68.5829 −0.197645 −0.0988226 0.995105i \(-0.531508\pi\)
−0.0988226 + 0.995105i \(0.531508\pi\)
\(348\) 0 0
\(349\) 536.933i 1.53849i 0.638955 + 0.769244i \(0.279367\pi\)
−0.638955 + 0.769244i \(0.720633\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −486.832 −1.37913 −0.689563 0.724226i \(-0.742197\pi\)
−0.689563 + 0.724226i \(0.742197\pi\)
\(354\) 0 0
\(355\) −19.4023 −0.0546544
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.1271i 0.0867049i 0.999060 + 0.0433525i \(0.0138038\pi\)
−0.999060 + 0.0433525i \(0.986196\pi\)
\(360\) 0 0
\(361\) −262.329 −0.726673
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 77.7291i − 0.212956i
\(366\) 0 0
\(367\) − 656.463i − 1.78873i −0.447340 0.894364i \(-0.647629\pi\)
0.447340 0.894364i \(-0.352371\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 48.3116 0.130220
\(372\) 0 0
\(373\) 285.162i 0.764508i 0.924057 + 0.382254i \(0.124852\pi\)
−0.924057 + 0.382254i \(0.875148\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −188.651 −0.500399
\(378\) 0 0
\(379\) 96.1985 0.253822 0.126911 0.991914i \(-0.459494\pi\)
0.126911 + 0.991914i \(0.459494\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 542.017i − 1.41519i −0.706619 0.707594i \(-0.749780\pi\)
0.706619 0.707594i \(-0.250220\pi\)
\(384\) 0 0
\(385\) −411.608 −1.06911
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 251.966i − 0.647729i −0.946104 0.323864i \(-0.895018\pi\)
0.946104 0.323864i \(-0.104982\pi\)
\(390\) 0 0
\(391\) 760.209i 1.94427i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 114.079 0.288807
\(396\) 0 0
\(397\) 534.951i 1.34748i 0.738966 + 0.673742i \(0.235314\pi\)
−0.738966 + 0.673742i \(0.764686\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −586.919 −1.46364 −0.731819 0.681499i \(-0.761328\pi\)
−0.731819 + 0.681499i \(0.761328\pi\)
\(402\) 0 0
\(403\) −1047.60 −2.59951
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 531.401i 1.30565i
\(408\) 0 0
\(409\) 364.507 0.891214 0.445607 0.895229i \(-0.352988\pi\)
0.445607 + 0.895229i \(0.352988\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 395.306i 0.957157i
\(414\) 0 0
\(415\) 28.4789i 0.0686239i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −181.773 −0.433827 −0.216913 0.976191i \(-0.569599\pi\)
−0.216913 + 0.976191i \(0.569599\pi\)
\(420\) 0 0
\(421\) 168.535i 0.400320i 0.979763 + 0.200160i \(0.0641462\pi\)
−0.979763 + 0.200160i \(0.935854\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −423.633 −0.996785
\(426\) 0 0
\(427\) −230.247 −0.539220
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 373.929i 0.867585i 0.901013 + 0.433792i \(0.142825\pi\)
−0.901013 + 0.433792i \(0.857175\pi\)
\(432\) 0 0
\(433\) 483.636 1.11694 0.558471 0.829524i \(-0.311388\pi\)
0.558471 + 0.829524i \(0.311388\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 321.360i − 0.735377i
\(438\) 0 0
\(439\) − 449.117i − 1.02305i −0.859270 0.511523i \(-0.829081\pi\)
0.859270 0.511523i \(-0.170919\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 361.663 0.816396 0.408198 0.912893i \(-0.366157\pi\)
0.408198 + 0.912893i \(0.366157\pi\)
\(444\) 0 0
\(445\) 360.952i 0.811128i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −589.191 −1.31223 −0.656115 0.754661i \(-0.727801\pi\)
−0.656115 + 0.754661i \(0.727801\pi\)
\(450\) 0 0
\(451\) 1459.59 3.23635
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 489.458i 1.07573i
\(456\) 0 0
\(457\) −452.703 −0.990597 −0.495299 0.868723i \(-0.664941\pi\)
−0.495299 + 0.868723i \(0.664941\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 290.060i 0.629197i 0.949225 + 0.314598i \(0.101870\pi\)
−0.949225 + 0.314598i \(0.898130\pi\)
\(462\) 0 0
\(463\) − 389.267i − 0.840749i −0.907351 0.420374i \(-0.861899\pi\)
0.907351 0.420374i \(-0.138101\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 175.827 0.376504 0.188252 0.982121i \(-0.439718\pi\)
0.188252 + 0.982121i \(0.439718\pi\)
\(468\) 0 0
\(469\) − 420.680i − 0.896972i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1097.25 −2.31976
\(474\) 0 0
\(475\) 179.081 0.377012
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 321.473i 0.671134i 0.942016 + 0.335567i \(0.108928\pi\)
−0.942016 + 0.335567i \(0.891072\pi\)
\(480\) 0 0
\(481\) 631.909 1.31374
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 144.289i − 0.297503i
\(486\) 0 0
\(487\) 244.014i 0.501055i 0.968109 + 0.250528i \(0.0806041\pi\)
−0.968109 + 0.250528i \(0.919396\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −239.563 −0.487909 −0.243955 0.969787i \(-0.578445\pi\)
−0.243955 + 0.969787i \(0.578445\pi\)
\(492\) 0 0
\(493\) 198.684i 0.403010i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −61.0516 −0.122840
\(498\) 0 0
\(499\) −134.164 −0.268865 −0.134433 0.990923i \(-0.542921\pi\)
−0.134433 + 0.990923i \(0.542921\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 214.317i − 0.426078i −0.977044 0.213039i \(-0.931664\pi\)
0.977044 0.213039i \(-0.0683362\pi\)
\(504\) 0 0
\(505\) −325.206 −0.643971
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 453.973i − 0.891892i −0.895060 0.445946i \(-0.852867\pi\)
0.895060 0.445946i \(-0.147133\pi\)
\(510\) 0 0
\(511\) − 244.583i − 0.478637i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −216.737 −0.420849
\(516\) 0 0
\(517\) − 1018.70i − 1.97040i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 97.5418 0.187220 0.0936102 0.995609i \(-0.470159\pi\)
0.0936102 + 0.995609i \(0.470159\pi\)
\(522\) 0 0
\(523\) 476.762 0.911590 0.455795 0.890085i \(-0.349355\pi\)
0.455795 + 0.890085i \(0.349355\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1103.32i 2.09359i
\(528\) 0 0
\(529\) −517.630 −0.978507
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 1735.66i − 3.25639i
\(534\) 0 0
\(535\) 476.503i 0.890660i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −375.788 −0.697195
\(540\) 0 0
\(541\) − 987.446i − 1.82522i −0.408826 0.912612i \(-0.634062\pi\)
0.408826 0.912612i \(-0.365938\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 58.6532 0.107621
\(546\) 0 0
\(547\) −396.486 −0.724837 −0.362418 0.932016i \(-0.618049\pi\)
−0.362418 + 0.932016i \(0.618049\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 83.9888i − 0.152430i
\(552\) 0 0
\(553\) 358.961 0.649117
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 488.922i 0.877778i 0.898541 + 0.438889i \(0.144628\pi\)
−0.898541 + 0.438889i \(0.855372\pi\)
\(558\) 0 0
\(559\) 1304.78i 2.33413i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −417.788 −0.742075 −0.371037 0.928618i \(-0.620998\pi\)
−0.371037 + 0.928618i \(0.620998\pi\)
\(564\) 0 0
\(565\) 368.023i 0.651369i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −493.590 −0.867469 −0.433735 0.901041i \(-0.642804\pi\)
−0.433735 + 0.901041i \(0.642804\pi\)
\(570\) 0 0
\(571\) −687.730 −1.20443 −0.602215 0.798334i \(-0.705715\pi\)
−0.602215 + 0.798334i \(0.705715\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 583.244i − 1.01434i
\(576\) 0 0
\(577\) 206.939 0.358647 0.179324 0.983790i \(-0.442609\pi\)
0.179324 + 0.983790i \(0.442609\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 89.6120i 0.154238i
\(582\) 0 0
\(583\) − 109.103i − 0.187141i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −879.623 −1.49851 −0.749253 0.662284i \(-0.769587\pi\)
−0.749253 + 0.662284i \(0.769587\pi\)
\(588\) 0 0
\(589\) − 466.402i − 0.791854i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 444.195 0.749064 0.374532 0.927214i \(-0.377803\pi\)
0.374532 + 0.927214i \(0.377803\pi\)
\(594\) 0 0
\(595\) 515.490 0.866369
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1025.55i 1.71211i 0.516888 + 0.856053i \(0.327090\pi\)
−0.516888 + 0.856053i \(0.672910\pi\)
\(600\) 0 0
\(601\) −18.5617 −0.0308846 −0.0154423 0.999881i \(-0.504916\pi\)
−0.0154423 + 0.999881i \(0.504916\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 610.055i 1.00836i
\(606\) 0 0
\(607\) − 648.184i − 1.06785i −0.845533 0.533924i \(-0.820717\pi\)
0.845533 0.533924i \(-0.179283\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1211.37 −1.98261
\(612\) 0 0
\(613\) 616.049i 1.00497i 0.864585 + 0.502487i \(0.167582\pi\)
−0.864585 + 0.502487i \(0.832418\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −321.805 −0.521564 −0.260782 0.965398i \(-0.583980\pi\)
−0.260782 + 0.965398i \(0.583980\pi\)
\(618\) 0 0
\(619\) −769.275 −1.24277 −0.621386 0.783505i \(-0.713430\pi\)
−0.621386 + 0.783505i \(0.713430\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1135.78i 1.82307i
\(624\) 0 0
\(625\) 150.725 0.241160
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 665.516i − 1.05805i
\(630\) 0 0
\(631\) − 766.730i − 1.21510i −0.794280 0.607551i \(-0.792152\pi\)
0.794280 0.607551i \(-0.207848\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −212.046 −0.333931
\(636\) 0 0
\(637\) 446.864i 0.701513i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 436.825 0.681474 0.340737 0.940159i \(-0.389323\pi\)
0.340737 + 0.940159i \(0.389323\pi\)
\(642\) 0 0
\(643\) 276.284 0.429680 0.214840 0.976649i \(-0.431077\pi\)
0.214840 + 0.976649i \(0.431077\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 795.622i 1.22971i 0.788640 + 0.614855i \(0.210785\pi\)
−0.788640 + 0.614855i \(0.789215\pi\)
\(648\) 0 0
\(649\) 892.729 1.37555
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 305.664i 0.468091i 0.972226 + 0.234046i \(0.0751965\pi\)
−0.972226 + 0.234046i \(0.924804\pi\)
\(654\) 0 0
\(655\) − 147.224i − 0.224770i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −153.889 −0.233519 −0.116760 0.993160i \(-0.537251\pi\)
−0.116760 + 0.993160i \(0.537251\pi\)
\(660\) 0 0
\(661\) 38.0847i 0.0576167i 0.999585 + 0.0288084i \(0.00917126\pi\)
−0.999585 + 0.0288084i \(0.990829\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −217.911 −0.327685
\(666\) 0 0
\(667\) −273.541 −0.410107
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 519.973i 0.774922i
\(672\) 0 0
\(673\) 392.195 0.582757 0.291378 0.956608i \(-0.405886\pi\)
0.291378 + 0.956608i \(0.405886\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 917.262i − 1.35489i −0.735573 0.677446i \(-0.763087\pi\)
0.735573 0.677446i \(-0.236913\pi\)
\(678\) 0 0
\(679\) − 454.021i − 0.668661i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1280.10 1.87424 0.937119 0.349010i \(-0.113482\pi\)
0.937119 + 0.349010i \(0.113482\pi\)
\(684\) 0 0
\(685\) − 11.3179i − 0.0165224i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −129.739 −0.188300
\(690\) 0 0
\(691\) −1147.79 −1.66106 −0.830531 0.556972i \(-0.811963\pi\)
−0.830531 + 0.556972i \(0.811963\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.7170i 0.0298086i
\(696\) 0 0
\(697\) −1827.97 −2.62262
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 450.531i 0.642697i 0.946961 + 0.321349i \(0.104136\pi\)
−0.946961 + 0.321349i \(0.895864\pi\)
\(702\) 0 0
\(703\) 281.331i 0.400186i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1023.30 −1.44738
\(708\) 0 0
\(709\) 1071.57i 1.51139i 0.654926 + 0.755693i \(0.272700\pi\)
−0.654926 + 0.755693i \(0.727300\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1519.02 −2.13046
\(714\) 0 0
\(715\) 1105.36 1.54595
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 569.979i 0.792739i 0.918091 + 0.396370i \(0.129730\pi\)
−0.918091 + 0.396370i \(0.870270\pi\)
\(720\) 0 0
\(721\) −681.987 −0.945891
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 152.433i − 0.210253i
\(726\) 0 0
\(727\) − 699.311i − 0.961914i −0.876744 0.480957i \(-0.840289\pi\)
0.876744 0.480957i \(-0.159711\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1374.17 1.87985
\(732\) 0 0
\(733\) 175.235i 0.239065i 0.992830 + 0.119533i \(0.0381396\pi\)
−0.992830 + 0.119533i \(0.961860\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −950.032 −1.28905
\(738\) 0 0
\(739\) −975.643 −1.32022 −0.660110 0.751169i \(-0.729490\pi\)
−0.660110 + 0.751169i \(0.729490\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 880.230i − 1.18470i −0.805682 0.592349i \(-0.798201\pi\)
0.805682 0.592349i \(-0.201799\pi\)
\(744\) 0 0
\(745\) 710.415 0.953578
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1499.37i 2.00183i
\(750\) 0 0
\(751\) − 48.7538i − 0.0649186i −0.999473 0.0324593i \(-0.989666\pi\)
0.999473 0.0324593i \(-0.0103339\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 474.286 0.628194
\(756\) 0 0
\(757\) − 1194.56i − 1.57802i −0.614382 0.789009i \(-0.710594\pi\)
0.614382 0.789009i \(-0.289406\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1032.85 1.35722 0.678612 0.734497i \(-0.262582\pi\)
0.678612 + 0.734497i \(0.262582\pi\)
\(762\) 0 0
\(763\) 184.559 0.241886
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1061.58i − 1.38406i
\(768\) 0 0
\(769\) −200.830 −0.261157 −0.130579 0.991438i \(-0.541684\pi\)
−0.130579 + 0.991438i \(0.541684\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 949.438i − 1.22825i −0.789208 0.614126i \(-0.789509\pi\)
0.789208 0.614126i \(-0.210491\pi\)
\(774\) 0 0
\(775\) − 846.486i − 1.09224i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 772.729 0.991950
\(780\) 0 0
\(781\) 137.874i 0.176536i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −385.210 −0.490713
\(786\) 0 0
\(787\) 646.331 0.821259 0.410630 0.911802i \(-0.365309\pi\)
0.410630 + 0.911802i \(0.365309\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1158.03i 1.46400i
\(792\) 0 0
\(793\) 618.319 0.779721
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 37.5148i 0.0470700i 0.999723 + 0.0235350i \(0.00749211\pi\)
−0.999723 + 0.0235350i \(0.992508\pi\)
\(798\) 0 0
\(799\) 1275.80i 1.59674i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −552.348 −0.687856
\(804\) 0 0
\(805\) 709.709i 0.881626i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −572.790 −0.708023 −0.354011 0.935241i \(-0.615183\pi\)
−0.354011 + 0.935241i \(0.615183\pi\)
\(810\) 0 0
\(811\) 486.350 0.599692 0.299846 0.953988i \(-0.403065\pi\)
0.299846 + 0.953988i \(0.403065\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 265.350i − 0.325583i
\(816\) 0 0
\(817\) −580.898 −0.711014
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 311.021i 0.378832i 0.981897 + 0.189416i \(0.0606595\pi\)
−0.981897 + 0.189416i \(0.939341\pi\)
\(822\) 0 0
\(823\) 824.124i 1.00137i 0.865631 + 0.500683i \(0.166918\pi\)
−0.865631 + 0.500683i \(0.833082\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −918.441 −1.11057 −0.555285 0.831660i \(-0.687391\pi\)
−0.555285 + 0.831660i \(0.687391\pi\)
\(828\) 0 0
\(829\) − 937.997i − 1.13148i −0.824584 0.565740i \(-0.808591\pi\)
0.824584 0.565740i \(-0.191409\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 470.630 0.564982
\(834\) 0 0
\(835\) 407.705 0.488269
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 612.844i − 0.730446i −0.930920 0.365223i \(-0.880993\pi\)
0.930920 0.365223i \(-0.119007\pi\)
\(840\) 0 0
\(841\) 769.509 0.914993
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 868.191i − 1.02744i
\(846\) 0 0
\(847\) 1919.61i 2.26636i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 916.261 1.07669
\(852\) 0 0
\(853\) − 491.372i − 0.576051i −0.957623 0.288026i \(-0.907001\pi\)
0.957623 0.288026i \(-0.0929989\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 642.820 0.750082 0.375041 0.927008i \(-0.377629\pi\)
0.375041 + 0.927008i \(0.377629\pi\)
\(858\) 0 0
\(859\) 443.260 0.516018 0.258009 0.966142i \(-0.416934\pi\)
0.258009 + 0.966142i \(0.416934\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 565.494i − 0.655265i −0.944805 0.327632i \(-0.893749\pi\)
0.944805 0.327632i \(-0.106251\pi\)
\(864\) 0 0
\(865\) 152.204 0.175958
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 810.652i − 0.932856i
\(870\) 0 0
\(871\) 1129.72i 1.29704i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −943.925 −1.07877
\(876\) 0 0
\(877\) − 330.215i − 0.376528i −0.982118 0.188264i \(-0.939714\pi\)
0.982118 0.188264i \(-0.0602861\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −358.037 −0.406398 −0.203199 0.979137i \(-0.565134\pi\)
−0.203199 + 0.979137i \(0.565134\pi\)
\(882\) 0 0
\(883\) 266.351 0.301643 0.150822 0.988561i \(-0.451808\pi\)
0.150822 + 0.988561i \(0.451808\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1375.40i − 1.55062i −0.631581 0.775310i \(-0.717594\pi\)
0.631581 0.775310i \(-0.282406\pi\)
\(888\) 0 0
\(889\) −667.228 −0.750537
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 539.313i − 0.603934i
\(894\) 0 0
\(895\) 219.880i 0.245676i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −397.001 −0.441603
\(900\) 0 0
\(901\) 136.639i 0.151652i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 601.512 0.664654
\(906\) 0 0
\(907\) 106.524 0.117446 0.0587230 0.998274i \(-0.481297\pi\)
0.0587230 + 0.998274i \(0.481297\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 842.877i − 0.925222i −0.886561 0.462611i \(-0.846913\pi\)
0.886561 0.462611i \(-0.153087\pi\)
\(912\) 0 0
\(913\) 202.373 0.221657
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 463.258i − 0.505189i
\(918\) 0 0
\(919\) − 1388.07i − 1.51041i −0.655489 0.755205i \(-0.727537\pi\)
0.655489 0.755205i \(-0.272463\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 163.951 0.177629
\(924\) 0 0
\(925\) 510.595i 0.551995i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −557.068 −0.599643 −0.299821 0.953995i \(-0.596927\pi\)
−0.299821 + 0.953995i \(0.596927\pi\)
\(930\) 0 0
\(931\) −198.947 −0.213692
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 1164.14i − 1.24507i
\(936\) 0 0
\(937\) 876.585 0.935523 0.467761 0.883855i \(-0.345061\pi\)
0.467761 + 0.883855i \(0.345061\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1290.14i 1.37103i 0.728058 + 0.685515i \(0.240423\pi\)
−0.728058 + 0.685515i \(0.759577\pi\)
\(942\) 0 0
\(943\) − 2516.69i − 2.66881i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 850.851 0.898470 0.449235 0.893414i \(-0.351697\pi\)
0.449235 + 0.893414i \(0.351697\pi\)
\(948\) 0 0
\(949\) 656.818i 0.692116i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 297.237 0.311896 0.155948 0.987765i \(-0.450157\pi\)
0.155948 + 0.987765i \(0.450157\pi\)
\(954\) 0 0
\(955\) 74.1036 0.0775954
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 35.6129i − 0.0371355i
\(960\) 0 0
\(961\) −1243.61 −1.29408
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 821.037i − 0.850815i
\(966\) 0 0
\(967\) 943.377i 0.975570i 0.872964 + 0.487785i \(0.162195\pi\)
−0.872964 + 0.487785i \(0.837805\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −709.360 −0.730546 −0.365273 0.930900i \(-0.619024\pi\)
−0.365273 + 0.930900i \(0.619024\pi\)
\(972\) 0 0
\(973\) 65.1884i 0.0669973i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −295.503 −0.302459 −0.151230 0.988499i \(-0.548323\pi\)
−0.151230 + 0.988499i \(0.548323\pi\)
\(978\) 0 0
\(979\) 2564.95 2.61997
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 559.879i 0.569561i 0.958593 + 0.284781i \(0.0919208\pi\)
−0.958593 + 0.284781i \(0.908079\pi\)
\(984\) 0 0
\(985\) −467.539 −0.474659
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1891.92i 1.91296i
\(990\) 0 0
\(991\) − 1327.50i − 1.33955i −0.742563 0.669776i \(-0.766390\pi\)
0.742563 0.669776i \(-0.233610\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 485.064 0.487501
\(996\) 0 0
\(997\) − 878.699i − 0.881343i −0.897668 0.440672i \(-0.854740\pi\)
0.897668 0.440672i \(-0.145260\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.3.b.j.1567.8 yes 12
3.2 odd 2 1728.3.b.i.1567.6 yes 12
4.3 odd 2 inner 1728.3.b.j.1567.7 yes 12
8.3 odd 2 inner 1728.3.b.j.1567.5 yes 12
8.5 even 2 inner 1728.3.b.j.1567.6 yes 12
12.11 even 2 1728.3.b.i.1567.5 12
24.5 odd 2 1728.3.b.i.1567.8 yes 12
24.11 even 2 1728.3.b.i.1567.7 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1728.3.b.i.1567.5 12 12.11 even 2
1728.3.b.i.1567.6 yes 12 3.2 odd 2
1728.3.b.i.1567.7 yes 12 24.11 even 2
1728.3.b.i.1567.8 yes 12 24.5 odd 2
1728.3.b.j.1567.5 yes 12 8.3 odd 2 inner
1728.3.b.j.1567.6 yes 12 8.5 even 2 inner
1728.3.b.j.1567.7 yes 12 4.3 odd 2 inner
1728.3.b.j.1567.8 yes 12 1.1 even 1 trivial