Properties

Label 1728.3.b
Level $1728$
Weight $3$
Character orbit 1728.b
Rep. character $\chi_{1728}(1567,\cdot)$
Character field $\Q$
Dimension $64$
Newform subspaces $10$
Sturm bound $864$
Trace bound $49$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1728.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(864\)
Trace bound: \(49\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1728, [\chi])\).

Total New Old
Modular forms 612 64 548
Cusp forms 540 64 476
Eisenstein series 72 0 72

Trace form

\( 64 q - 320 q^{25} - 480 q^{49} + 160 q^{73} + 320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1728.3.b.a 1728.b 8.d $4$ $47.085$ \(\Q(\zeta_{12})\) None 1728.3.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+6\beta_1 q^{5}-5\beta_1 q^{7}-6 q^{11}-\beta_{2} q^{13}+\cdots\)
1728.3.b.b 1728.b 8.d $4$ $47.085$ \(\Q(\zeta_{12})\) None 1728.3.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta_{2} q^{5}+\beta_1 q^{7}-10\beta_{3} q^{11}+\cdots\)
1728.3.b.c 1728.b 8.d $4$ $47.085$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 1728.3.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+13\beta_1 q^{7}-5\beta_{2} q^{13}-7\beta_{3} q^{19}+\cdots\)
1728.3.b.d 1728.b 8.d $4$ $47.085$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 1728.3.b.d \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+11\beta_1 q^{7}-7\beta_{2} q^{13}+5\beta_{3} q^{19}+\cdots\)
1728.3.b.e 1728.b 8.d $4$ $47.085$ \(\Q(\zeta_{12})\) None 1728.3.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta_{2} q^{5}-\beta_1 q^{7}+10\beta_{3} q^{11}+\cdots\)
1728.3.b.f 1728.b 8.d $4$ $47.085$ \(\Q(\zeta_{12})\) None 1728.3.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+6\beta_1 q^{5}+5\beta_1 q^{7}+6 q^{11}+\beta_{2} q^{13}+\cdots\)
1728.3.b.g 1728.b 8.d $8$ $47.085$ \(\Q(\zeta_{24})\) None 1728.3.b.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{5}-7\beta_1 q^{7}-\beta_{6} q^{11}+11\beta_{2} q^{13}+\cdots\)
1728.3.b.h 1728.b 8.d $8$ $47.085$ \(\Q(\zeta_{24})\) \(\Q(\sqrt{-6}) \) 1728.3.b.h \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta_{3} q^{5}+(-\beta_{4}+2\beta_1)q^{7}+(-\beta_{6}+2\beta_{2})q^{11}+\cdots\)
1728.3.b.i 1728.b 8.d $12$ $47.085$ 12.0.\(\cdots\).2 None 1728.3.b.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{5}+\beta _{2}q^{7}+(-2\beta _{1}+\beta _{9})q^{11}+\cdots\)
1728.3.b.j 1728.b 8.d $12$ $47.085$ 12.0.\(\cdots\).2 None 1728.3.b.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{5}-\beta _{2}q^{7}+(2\beta _{1}-\beta _{9})q^{11}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1728, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1728, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(864, [\chi])\)\(^{\oplus 2}\)