Properties

Label 1728.2.z.a.1583.9
Level $1728$
Weight $2$
Character 1728.1583
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(143,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1583.9
Character \(\chi\) \(=\) 1728.1583
Dual form 1728.2.z.a.143.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05401 + 0.282421i) q^{5} +(1.93586 + 3.35301i) q^{7} +(3.53182 + 0.946349i) q^{11} +(3.87946 - 1.03950i) q^{13} +1.55026i q^{17} +(-4.06175 + 4.06175i) q^{19} +(-3.86595 - 2.23201i) q^{23} +(-3.29895 + 1.90465i) q^{25} +(4.28493 + 1.14814i) q^{29} +(-1.85935 - 1.07349i) q^{31} +(-2.98738 - 2.98738i) q^{35} +(6.04318 - 6.04318i) q^{37} +(-1.59725 + 2.76652i) q^{41} +(1.47814 - 5.51650i) q^{43} +(0.0494357 + 0.0856252i) q^{47} +(-3.99512 + 6.91976i) q^{49} +(1.72094 + 1.72094i) q^{53} -3.98985 q^{55} +(3.58531 + 13.3806i) q^{59} +(-2.33005 + 8.69586i) q^{61} +(-3.79542 + 2.19129i) q^{65} +(-0.251689 - 0.939315i) q^{67} -7.11471i q^{71} +10.4116i q^{73} +(3.66400 + 13.6742i) q^{77} +(-14.2402 + 8.22160i) q^{79} +(-4.02380 + 15.0170i) q^{83} +(-0.437828 - 1.63399i) q^{85} +11.2398 q^{89} +(10.9956 + 10.9956i) q^{91} +(3.13400 - 5.42825i) q^{95} +(0.0532804 + 0.0922843i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.05401 + 0.282421i −0.471368 + 0.126303i −0.486681 0.873580i \(-0.661792\pi\)
0.0153123 + 0.999883i \(0.495126\pi\)
\(6\) 0 0
\(7\) 1.93586 + 3.35301i 0.731687 + 1.26732i 0.956162 + 0.292839i \(0.0946001\pi\)
−0.224475 + 0.974480i \(0.572067\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.53182 + 0.946349i 1.06488 + 0.285335i 0.748390 0.663259i \(-0.230827\pi\)
0.316495 + 0.948594i \(0.397494\pi\)
\(12\) 0 0
\(13\) 3.87946 1.03950i 1.07597 0.288305i 0.323025 0.946390i \(-0.395300\pi\)
0.752943 + 0.658085i \(0.228633\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.55026i 0.375994i 0.982170 + 0.187997i \(0.0601995\pi\)
−0.982170 + 0.187997i \(0.939800\pi\)
\(18\) 0 0
\(19\) −4.06175 + 4.06175i −0.931829 + 0.931829i −0.997820 0.0659916i \(-0.978979\pi\)
0.0659916 + 0.997820i \(0.478979\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.86595 2.23201i −0.806106 0.465405i 0.0394958 0.999220i \(-0.487425\pi\)
−0.845602 + 0.533814i \(0.820758\pi\)
\(24\) 0 0
\(25\) −3.29895 + 1.90465i −0.659790 + 0.380930i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.28493 + 1.14814i 0.795691 + 0.213205i 0.633691 0.773586i \(-0.281539\pi\)
0.162000 + 0.986791i \(0.448206\pi\)
\(30\) 0 0
\(31\) −1.85935 1.07349i −0.333948 0.192805i 0.323644 0.946179i \(-0.395092\pi\)
−0.657593 + 0.753374i \(0.728425\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.98738 2.98738i −0.504960 0.504960i
\(36\) 0 0
\(37\) 6.04318 6.04318i 0.993493 0.993493i −0.00648560 0.999979i \(-0.502064\pi\)
0.999979 + 0.00648560i \(0.00206445\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.59725 + 2.76652i −0.249449 + 0.432058i −0.963373 0.268165i \(-0.913583\pi\)
0.713924 + 0.700223i \(0.246916\pi\)
\(42\) 0 0
\(43\) 1.47814 5.51650i 0.225415 0.841259i −0.756823 0.653619i \(-0.773250\pi\)
0.982238 0.187639i \(-0.0600836\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.0494357 + 0.0856252i 0.00721094 + 0.0124897i 0.869608 0.493742i \(-0.164371\pi\)
−0.862397 + 0.506232i \(0.831038\pi\)
\(48\) 0 0
\(49\) −3.99512 + 6.91976i −0.570732 + 0.988537i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.72094 + 1.72094i 0.236389 + 0.236389i 0.815353 0.578964i \(-0.196543\pi\)
−0.578964 + 0.815353i \(0.696543\pi\)
\(54\) 0 0
\(55\) −3.98985 −0.537991
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.58531 + 13.3806i 0.466768 + 1.74200i 0.650960 + 0.759112i \(0.274367\pi\)
−0.184192 + 0.982890i \(0.558967\pi\)
\(60\) 0 0
\(61\) −2.33005 + 8.69586i −0.298332 + 1.11339i 0.640203 + 0.768206i \(0.278850\pi\)
−0.938535 + 0.345184i \(0.887816\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.79542 + 2.19129i −0.470764 + 0.271796i
\(66\) 0 0
\(67\) −0.251689 0.939315i −0.0307487 0.114756i 0.948846 0.315740i \(-0.102253\pi\)
−0.979594 + 0.200984i \(0.935586\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.11471i 0.844361i −0.906512 0.422180i \(-0.861265\pi\)
0.906512 0.422180i \(-0.138735\pi\)
\(72\) 0 0
\(73\) 10.4116i 1.21859i 0.792945 + 0.609293i \(0.208547\pi\)
−0.792945 + 0.609293i \(0.791453\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.66400 + 13.6742i 0.417552 + 1.55832i
\(78\) 0 0
\(79\) −14.2402 + 8.22160i −1.60215 + 0.925003i −0.611095 + 0.791557i \(0.709271\pi\)
−0.991056 + 0.133446i \(0.957396\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.02380 + 15.0170i −0.441669 + 1.64833i 0.282915 + 0.959145i \(0.408698\pi\)
−0.724584 + 0.689186i \(0.757968\pi\)
\(84\) 0 0
\(85\) −0.437828 1.63399i −0.0474891 0.177232i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.2398 1.19142 0.595710 0.803200i \(-0.296871\pi\)
0.595710 + 0.803200i \(0.296871\pi\)
\(90\) 0 0
\(91\) 10.9956 + 10.9956i 1.15265 + 1.15265i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.13400 5.42825i 0.321542 0.556927i
\(96\) 0 0
\(97\) 0.0532804 + 0.0922843i 0.00540980 + 0.00937005i 0.868718 0.495308i \(-0.164945\pi\)
−0.863308 + 0.504678i \(0.831611\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.12101 4.18366i 0.111545 0.416290i −0.887461 0.460883i \(-0.847533\pi\)
0.999005 + 0.0445936i \(0.0141993\pi\)
\(102\) 0 0
\(103\) 1.25063 2.16615i 0.123228 0.213437i −0.797811 0.602908i \(-0.794009\pi\)
0.921039 + 0.389470i \(0.127342\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.01074 6.01074i 0.581080 0.581080i −0.354120 0.935200i \(-0.615220\pi\)
0.935200 + 0.354120i \(0.115220\pi\)
\(108\) 0 0
\(109\) 0.880973 + 0.880973i 0.0843819 + 0.0843819i 0.748038 0.663656i \(-0.230996\pi\)
−0.663656 + 0.748038i \(0.730996\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.13357 1.23182i −0.200709 0.115880i 0.396277 0.918131i \(-0.370302\pi\)
−0.596986 + 0.802251i \(0.703635\pi\)
\(114\) 0 0
\(115\) 4.70512 + 1.26073i 0.438755 + 0.117564i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.19805 + 3.00110i −0.476504 + 0.275110i
\(120\) 0 0
\(121\) 2.05191 + 1.18467i 0.186538 + 0.107698i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.79716 6.79716i 0.607957 0.607957i
\(126\) 0 0
\(127\) 3.76697i 0.334264i −0.985934 0.167132i \(-0.946549\pi\)
0.985934 0.167132i \(-0.0534507\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.28665 0.344757i 0.112415 0.0301216i −0.202173 0.979350i \(-0.564800\pi\)
0.314588 + 0.949228i \(0.398134\pi\)
\(132\) 0 0
\(133\) −21.4821 5.75610i −1.86273 0.499117i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.59673 + 9.69382i 0.478161 + 0.828199i 0.999687 0.0250365i \(-0.00797020\pi\)
−0.521526 + 0.853236i \(0.674637\pi\)
\(138\) 0 0
\(139\) 3.01559 0.808026i 0.255779 0.0685359i −0.128651 0.991690i \(-0.541065\pi\)
0.384430 + 0.923154i \(0.374398\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14.6853 1.22805
\(144\) 0 0
\(145\) −4.84062 −0.401992
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.4685 3.87683i 1.18531 0.317602i 0.388277 0.921543i \(-0.373070\pi\)
0.797029 + 0.603941i \(0.206404\pi\)
\(150\) 0 0
\(151\) 0.301388 + 0.522019i 0.0245266 + 0.0424813i 0.878028 0.478609i \(-0.158859\pi\)
−0.853502 + 0.521090i \(0.825525\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.26295 + 0.606355i 0.181764 + 0.0487036i
\(156\) 0 0
\(157\) 6.72554 1.80210i 0.536756 0.143823i 0.0197500 0.999805i \(-0.493713\pi\)
0.517006 + 0.855981i \(0.327046\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 17.2834i 1.36212i
\(162\) 0 0
\(163\) −7.73897 + 7.73897i −0.606163 + 0.606163i −0.941941 0.335778i \(-0.891001\pi\)
0.335778 + 0.941941i \(0.391001\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.3533 + 9.44158i 1.26546 + 0.730611i 0.974125 0.226011i \(-0.0725684\pi\)
0.291331 + 0.956622i \(0.405902\pi\)
\(168\) 0 0
\(169\) 2.71133 1.56539i 0.208564 0.120414i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.3589 4.38336i −1.24375 0.333261i −0.423829 0.905742i \(-0.639314\pi\)
−0.819918 + 0.572481i \(0.805981\pi\)
\(174\) 0 0
\(175\) −12.7726 7.37428i −0.965519 0.557443i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.85114 + 4.85114i 0.362591 + 0.362591i 0.864766 0.502175i \(-0.167467\pi\)
−0.502175 + 0.864766i \(0.667467\pi\)
\(180\) 0 0
\(181\) −1.98842 + 1.98842i −0.147798 + 0.147798i −0.777134 0.629336i \(-0.783327\pi\)
0.629336 + 0.777134i \(0.283327\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.66286 + 8.07631i −0.342820 + 0.593782i
\(186\) 0 0
\(187\) −1.46709 + 5.47525i −0.107284 + 0.400390i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.1997 17.6664i −0.738025 1.27830i −0.953383 0.301762i \(-0.902425\pi\)
0.215358 0.976535i \(-0.430908\pi\)
\(192\) 0 0
\(193\) −8.30403 + 14.3830i −0.597737 + 1.03531i 0.395417 + 0.918502i \(0.370600\pi\)
−0.993154 + 0.116809i \(0.962733\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.03806 2.03806i −0.145206 0.145206i 0.630767 0.775972i \(-0.282740\pi\)
−0.775972 + 0.630767i \(0.782740\pi\)
\(198\) 0 0
\(199\) 9.19698 0.651956 0.325978 0.945377i \(-0.394306\pi\)
0.325978 + 0.945377i \(0.394306\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.44529 + 16.5901i 0.311999 + 1.16439i
\(204\) 0 0
\(205\) 0.902196 3.36704i 0.0630121 0.235164i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −18.1892 + 10.5015i −1.25817 + 0.726407i
\(210\) 0 0
\(211\) −3.99524 14.9104i −0.275043 1.02648i −0.955812 0.293978i \(-0.905021\pi\)
0.680769 0.732498i \(-0.261646\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.23192i 0.425013i
\(216\) 0 0
\(217\) 8.31254i 0.564292i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.61150 + 6.01418i 0.108401 + 0.404558i
\(222\) 0 0
\(223\) 15.1760 8.76186i 1.01626 0.586738i 0.103241 0.994656i \(-0.467079\pi\)
0.913018 + 0.407918i \(0.133745\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.24944 19.5912i 0.348418 1.30031i −0.540150 0.841569i \(-0.681633\pi\)
0.888568 0.458745i \(-0.151701\pi\)
\(228\) 0 0
\(229\) −4.02901 15.0365i −0.266244 0.993638i −0.961484 0.274860i \(-0.911369\pi\)
0.695240 0.718778i \(-0.255298\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −27.1681 −1.77984 −0.889920 0.456116i \(-0.849240\pi\)
−0.889920 + 0.456116i \(0.849240\pi\)
\(234\) 0 0
\(235\) −0.0762882 0.0762882i −0.00497649 0.00497649i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.48037 + 4.29612i −0.160442 + 0.277893i −0.935027 0.354576i \(-0.884625\pi\)
0.774586 + 0.632469i \(0.217959\pi\)
\(240\) 0 0
\(241\) −4.93768 8.55231i −0.318064 0.550903i 0.662020 0.749486i \(-0.269699\pi\)
−0.980084 + 0.198583i \(0.936366\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.25662 8.42181i 0.144170 0.538050i
\(246\) 0 0
\(247\) −11.5352 + 19.9796i −0.733968 + 1.27127i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.77292 + 1.77292i −0.111906 + 0.111906i −0.760842 0.648937i \(-0.775214\pi\)
0.648937 + 0.760842i \(0.275214\pi\)
\(252\) 0 0
\(253\) −11.5416 11.5416i −0.725613 0.725613i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.6473 8.45663i −0.913674 0.527510i −0.0320628 0.999486i \(-0.510208\pi\)
−0.881612 + 0.471976i \(0.843541\pi\)
\(258\) 0 0
\(259\) 31.9616 + 8.56410i 1.98600 + 0.532147i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.9408 + 10.3581i −1.10627 + 0.638708i −0.937862 0.347009i \(-0.887197\pi\)
−0.168413 + 0.985717i \(0.553864\pi\)
\(264\) 0 0
\(265\) −2.29992 1.32786i −0.141283 0.0815696i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.1523 15.1523i 0.923853 0.923853i −0.0734463 0.997299i \(-0.523400\pi\)
0.997299 + 0.0734463i \(0.0233998\pi\)
\(270\) 0 0
\(271\) 20.0322i 1.21687i −0.793603 0.608436i \(-0.791797\pi\)
0.793603 0.608436i \(-0.208203\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.4538 + 3.60493i −0.811293 + 0.217385i
\(276\) 0 0
\(277\) 26.8731 + 7.20063i 1.61465 + 0.432644i 0.949424 0.313998i \(-0.101669\pi\)
0.665226 + 0.746642i \(0.268335\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.83494 15.3026i −0.527048 0.912874i −0.999503 0.0315195i \(-0.989965\pi\)
0.472455 0.881355i \(-0.343368\pi\)
\(282\) 0 0
\(283\) 23.5142 6.30060i 1.39777 0.374532i 0.520228 0.854028i \(-0.325847\pi\)
0.877544 + 0.479496i \(0.159180\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.3682 −0.730074
\(288\) 0 0
\(289\) 14.5967 0.858629
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.03527 1.34920i 0.294164 0.0788209i −0.108719 0.994073i \(-0.534675\pi\)
0.402883 + 0.915252i \(0.368008\pi\)
\(294\) 0 0
\(295\) −7.55792 13.0907i −0.440039 0.762170i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.3180 4.64033i −1.00152 0.268357i
\(300\) 0 0
\(301\) 21.3584 5.72296i 1.23108 0.329866i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.82358i 0.562497i
\(306\) 0 0
\(307\) −2.82663 + 2.82663i −0.161324 + 0.161324i −0.783153 0.621829i \(-0.786390\pi\)
0.621829 + 0.783153i \(0.286390\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.51789 1.45371i −0.142777 0.0824322i 0.426910 0.904294i \(-0.359602\pi\)
−0.569687 + 0.821862i \(0.692935\pi\)
\(312\) 0 0
\(313\) 18.0136 10.4002i 1.01819 0.587852i 0.104611 0.994513i \(-0.466640\pi\)
0.913579 + 0.406661i \(0.133307\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.1525 + 2.72034i 0.570219 + 0.152790i 0.532397 0.846495i \(-0.321291\pi\)
0.0378219 + 0.999284i \(0.487958\pi\)
\(318\) 0 0
\(319\) 14.0471 + 8.11008i 0.786485 + 0.454077i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.29678 6.29678i −0.350362 0.350362i
\(324\) 0 0
\(325\) −10.8183 + 10.8183i −0.600089 + 0.600089i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.191401 + 0.331517i −0.0105523 + 0.0182771i
\(330\) 0 0
\(331\) 1.99815 7.45721i 0.109828 0.409885i −0.889020 0.457869i \(-0.848613\pi\)
0.998848 + 0.0479837i \(0.0152795\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.530565 + 0.918966i 0.0289879 + 0.0502085i
\(336\) 0 0
\(337\) −15.1525 + 26.2448i −0.825407 + 1.42965i 0.0762015 + 0.997092i \(0.475721\pi\)
−0.901608 + 0.432554i \(0.857613\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.55098 5.55098i −0.300602 0.300602i
\(342\) 0 0
\(343\) −3.83397 −0.207015
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.40762 27.6456i −0.397662 1.48409i −0.817199 0.576356i \(-0.804474\pi\)
0.419537 0.907738i \(-0.362192\pi\)
\(348\) 0 0
\(349\) −1.32426 + 4.94221i −0.0708861 + 0.264551i −0.992269 0.124105i \(-0.960394\pi\)
0.921383 + 0.388656i \(0.127061\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.6375 + 6.14156i −0.566176 + 0.326882i −0.755621 0.655009i \(-0.772665\pi\)
0.189444 + 0.981891i \(0.439331\pi\)
\(354\) 0 0
\(355\) 2.00935 + 7.49899i 0.106645 + 0.398005i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.35783i 0.441109i −0.975375 0.220555i \(-0.929213\pi\)
0.975375 0.220555i \(-0.0707867\pi\)
\(360\) 0 0
\(361\) 13.9956i 0.736609i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.94046 10.9739i −0.153911 0.574403i
\(366\) 0 0
\(367\) −5.59831 + 3.23218i −0.292229 + 0.168719i −0.638947 0.769251i \(-0.720630\pi\)
0.346718 + 0.937970i \(0.387296\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.43882 + 9.10182i −0.126617 + 0.472543i
\(372\) 0 0
\(373\) −3.08351 11.5078i −0.159658 0.595853i −0.998661 0.0517262i \(-0.983528\pi\)
0.839003 0.544127i \(-0.183139\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 17.8167 0.917607
\(378\) 0 0
\(379\) −7.76444 7.76444i −0.398833 0.398833i 0.478988 0.877821i \(-0.341004\pi\)
−0.877821 + 0.478988i \(0.841004\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.86264 4.95824i 0.146274 0.253354i −0.783573 0.621299i \(-0.786605\pi\)
0.929848 + 0.367945i \(0.119939\pi\)
\(384\) 0 0
\(385\) −7.72380 13.3780i −0.393641 0.681807i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.82769 + 6.82104i −0.0926677 + 0.345841i −0.996656 0.0817177i \(-0.973959\pi\)
0.903988 + 0.427558i \(0.140626\pi\)
\(390\) 0 0
\(391\) 3.46020 5.99324i 0.174990 0.303091i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.6874 12.6874i 0.638373 0.638373i
\(396\) 0 0
\(397\) −1.86429 1.86429i −0.0935661 0.0935661i 0.658774 0.752340i \(-0.271075\pi\)
−0.752340 + 0.658774i \(0.771075\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 34.3098 + 19.8088i 1.71335 + 0.989204i 0.929949 + 0.367688i \(0.119851\pi\)
0.783402 + 0.621516i \(0.213483\pi\)
\(402\) 0 0
\(403\) −8.32915 2.23179i −0.414905 0.111173i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 27.0624 15.6245i 1.34143 0.774477i
\(408\) 0 0
\(409\) 19.5426 + 11.2829i 0.966317 + 0.557903i 0.898111 0.439768i \(-0.144939\pi\)
0.0682056 + 0.997671i \(0.478273\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −37.9245 + 37.9245i −1.86614 + 1.86614i
\(414\) 0 0
\(415\) 16.9645i 0.832755i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.541167 + 0.145005i −0.0264377 + 0.00708397i −0.272014 0.962293i \(-0.587690\pi\)
0.245576 + 0.969377i \(0.421023\pi\)
\(420\) 0 0
\(421\) 21.1102 + 5.65647i 1.02885 + 0.275679i 0.733485 0.679706i \(-0.237892\pi\)
0.295364 + 0.955385i \(0.404559\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.95271 5.11424i −0.143227 0.248077i
\(426\) 0 0
\(427\) −33.6680 + 9.02130i −1.62931 + 0.436571i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.09784 −0.390059 −0.195030 0.980797i \(-0.562480\pi\)
−0.195030 + 0.980797i \(0.562480\pi\)
\(432\) 0 0
\(433\) 28.0379 1.34742 0.673708 0.738997i \(-0.264700\pi\)
0.673708 + 0.738997i \(0.264700\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.7683 6.63666i 1.18483 0.317474i
\(438\) 0 0
\(439\) −14.3003 24.7689i −0.682518 1.18216i −0.974210 0.225644i \(-0.927551\pi\)
0.291692 0.956512i \(-0.405782\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.49785 1.74109i −0.308722 0.0827218i 0.101132 0.994873i \(-0.467754\pi\)
−0.409854 + 0.912151i \(0.634420\pi\)
\(444\) 0 0
\(445\) −11.8469 + 3.17437i −0.561597 + 0.150479i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.1293i 1.61066i 0.592827 + 0.805330i \(0.298012\pi\)
−0.592827 + 0.805330i \(0.701988\pi\)
\(450\) 0 0
\(451\) −8.25930 + 8.25930i −0.388915 + 0.388915i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.6948 8.48405i −0.688903 0.397739i
\(456\) 0 0
\(457\) 0.228748 0.132067i 0.0107004 0.00617786i −0.494640 0.869098i \(-0.664700\pi\)
0.505341 + 0.862920i \(0.331367\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −22.1554 5.93653i −1.03188 0.276492i −0.297136 0.954835i \(-0.596032\pi\)
−0.734745 + 0.678343i \(0.762698\pi\)
\(462\) 0 0
\(463\) 25.1678 + 14.5306i 1.16964 + 0.675295i 0.953596 0.301088i \(-0.0973498\pi\)
0.216048 + 0.976383i \(0.430683\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.46976 + 1.46976i 0.0680123 + 0.0680123i 0.740295 0.672282i \(-0.234686\pi\)
−0.672282 + 0.740295i \(0.734686\pi\)
\(468\) 0 0
\(469\) 2.66230 2.66230i 0.122934 0.122934i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.4411 18.0845i 0.480081 0.831525i
\(474\) 0 0
\(475\) 5.66329 21.1357i 0.259850 0.969772i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11.8147 20.4636i −0.539826 0.935006i −0.998913 0.0466149i \(-0.985157\pi\)
0.459087 0.888391i \(-0.348177\pi\)
\(480\) 0 0
\(481\) 17.1624 29.7262i 0.782539 1.35540i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.0822212 0.0822212i −0.00373347 0.00373347i
\(486\) 0 0
\(487\) 8.44298 0.382588 0.191294 0.981533i \(-0.438732\pi\)
0.191294 + 0.981533i \(0.438732\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.32013 + 4.92678i 0.0595765 + 0.222342i 0.989295 0.145928i \(-0.0466167\pi\)
−0.929719 + 0.368270i \(0.879950\pi\)
\(492\) 0 0
\(493\) −1.77992 + 6.64277i −0.0801638 + 0.299175i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.8557 13.7731i 1.07007 0.617808i
\(498\) 0 0
\(499\) −5.34256 19.9387i −0.239166 0.892579i −0.976227 0.216753i \(-0.930454\pi\)
0.737061 0.675827i \(-0.236213\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.8852i 1.15417i −0.816686 0.577083i \(-0.804191\pi\)
0.816686 0.577083i \(-0.195809\pi\)
\(504\) 0 0
\(505\) 4.72622i 0.210314i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.39138 12.6568i −0.150320 0.561003i −0.999461 0.0328359i \(-0.989546\pi\)
0.849140 0.528167i \(-0.177121\pi\)
\(510\) 0 0
\(511\) −34.9102 + 20.1554i −1.54434 + 0.891623i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.706409 + 2.63635i −0.0311281 + 0.116172i
\(516\) 0 0
\(517\) 0.0935669 + 0.349196i 0.00411507 + 0.0153576i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.9529 0.698909 0.349454 0.936953i \(-0.386367\pi\)
0.349454 + 0.936953i \(0.386367\pi\)
\(522\) 0 0
\(523\) −8.00417 8.00417i −0.349998 0.349998i 0.510111 0.860109i \(-0.329604\pi\)
−0.860109 + 0.510111i \(0.829604\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.66420 2.88247i 0.0724936 0.125563i
\(528\) 0 0
\(529\) −1.53630 2.66094i −0.0667955 0.115693i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.32068 + 12.3929i −0.143835 + 0.536798i
\(534\) 0 0
\(535\) −4.63782 + 8.03294i −0.200511 + 0.347294i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −20.6586 + 20.6586i −0.889828 + 0.889828i
\(540\) 0 0
\(541\) −16.5746 16.5746i −0.712599 0.712599i 0.254479 0.967078i \(-0.418096\pi\)
−0.967078 + 0.254479i \(0.918096\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.17736 0.679750i −0.0504326 0.0291173i
\(546\) 0 0
\(547\) −3.72043 0.996886i −0.159074 0.0426238i 0.178403 0.983957i \(-0.442907\pi\)
−0.337477 + 0.941334i \(0.609574\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −22.0678 + 12.7408i −0.940118 + 0.542778i
\(552\) 0 0
\(553\) −55.1343 31.8318i −2.34455 1.35362i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.2615 14.2615i 0.604278 0.604278i −0.337167 0.941445i \(-0.609469\pi\)
0.941445 + 0.337167i \(0.109469\pi\)
\(558\) 0 0
\(559\) 22.9376i 0.970156i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 35.1298 9.41300i 1.48054 0.396711i 0.574012 0.818847i \(-0.305386\pi\)
0.906532 + 0.422136i \(0.138720\pi\)
\(564\) 0 0
\(565\) 2.59670 + 0.695783i 0.109244 + 0.0292718i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.2488 21.2155i −0.513496 0.889402i −0.999877 0.0156550i \(-0.995017\pi\)
0.486381 0.873747i \(-0.338317\pi\)
\(570\) 0 0
\(571\) −7.91280 + 2.12023i −0.331140 + 0.0887288i −0.420559 0.907265i \(-0.638166\pi\)
0.0894183 + 0.995994i \(0.471499\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17.0048 0.709147
\(576\) 0 0
\(577\) −19.0192 −0.791779 −0.395889 0.918298i \(-0.629564\pi\)
−0.395889 + 0.918298i \(0.629564\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −58.1417 + 15.5790i −2.41213 + 0.646327i
\(582\) 0 0
\(583\) 4.44944 + 7.70665i 0.184277 + 0.319177i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.79477 2.62450i −0.404274 0.108325i 0.0509516 0.998701i \(-0.483775\pi\)
−0.455225 + 0.890376i \(0.650441\pi\)
\(588\) 0 0
\(589\) 11.9124 3.19193i 0.490844 0.131521i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 16.0166i 0.657724i −0.944378 0.328862i \(-0.893335\pi\)
0.944378 0.328862i \(-0.106665\pi\)
\(594\) 0 0
\(595\) 4.63123 4.63123i 0.189862 0.189862i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.72485 + 1.57319i 0.111334 + 0.0642790i 0.554633 0.832095i \(-0.312859\pi\)
−0.443299 + 0.896374i \(0.646192\pi\)
\(600\) 0 0
\(601\) 6.88132 3.97293i 0.280695 0.162059i −0.353043 0.935607i \(-0.614853\pi\)
0.633738 + 0.773548i \(0.281520\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.49732 0.669154i −0.101530 0.0272050i
\(606\) 0 0
\(607\) 28.2159 + 16.2905i 1.14525 + 0.661209i 0.947725 0.319089i \(-0.103377\pi\)
0.197523 + 0.980298i \(0.436710\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.280791 + 0.280791i 0.0113596 + 0.0113596i
\(612\) 0 0
\(613\) 1.74081 1.74081i 0.0703105 0.0703105i −0.671077 0.741388i \(-0.734168\pi\)
0.741388 + 0.671077i \(0.234168\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.76552 + 15.1823i −0.352887 + 0.611218i −0.986754 0.162224i \(-0.948133\pi\)
0.633867 + 0.773442i \(0.281467\pi\)
\(618\) 0 0
\(619\) −3.30420 + 12.3314i −0.132807 + 0.495643i −0.999997 0.00233438i \(-0.999257\pi\)
0.867190 + 0.497977i \(0.165924\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 21.7588 + 37.6873i 0.871746 + 1.50991i
\(624\) 0 0
\(625\) 4.27862 7.41079i 0.171145 0.296432i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.36852 + 9.36852i 0.373548 + 0.373548i
\(630\) 0 0
\(631\) 24.1690 0.962153 0.481076 0.876679i \(-0.340246\pi\)
0.481076 + 0.876679i \(0.340246\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.06387 + 3.97043i 0.0422185 + 0.157562i
\(636\) 0 0
\(637\) −8.30585 + 30.9979i −0.329090 + 1.22818i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.3938 11.1970i 0.766010 0.442256i −0.0654392 0.997857i \(-0.520845\pi\)
0.831450 + 0.555600i \(0.187511\pi\)
\(642\) 0 0
\(643\) −1.00422 3.74778i −0.0396024 0.147798i 0.943294 0.331960i \(-0.107710\pi\)
−0.982896 + 0.184161i \(0.941043\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 36.0008i 1.41534i 0.706544 + 0.707669i \(0.250253\pi\)
−0.706544 + 0.707669i \(0.749747\pi\)
\(648\) 0 0
\(649\) 50.6508i 1.98822i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.19679 4.46647i −0.0468339 0.174786i 0.938547 0.345151i \(-0.112172\pi\)
−0.985381 + 0.170364i \(0.945506\pi\)
\(654\) 0 0
\(655\) −1.25878 + 0.726755i −0.0491845 + 0.0283967i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.49427 35.4331i 0.369844 1.38028i −0.490889 0.871222i \(-0.663328\pi\)
0.860734 0.509056i \(-0.170005\pi\)
\(660\) 0 0
\(661\) 6.83035 + 25.4912i 0.265670 + 0.991493i 0.961839 + 0.273616i \(0.0882196\pi\)
−0.696169 + 0.717878i \(0.745114\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 24.2680 0.941072
\(666\) 0 0
\(667\) −14.0027 14.0027i −0.542185 0.542185i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −16.4586 + 28.5072i −0.635378 + 1.10051i
\(672\) 0 0
\(673\) −11.8530 20.5299i −0.456898 0.791371i 0.541897 0.840445i \(-0.317706\pi\)
−0.998795 + 0.0490741i \(0.984373\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.158680 0.592200i 0.00609855 0.0227601i −0.962810 0.270181i \(-0.912916\pi\)
0.968908 + 0.247421i \(0.0795831\pi\)
\(678\) 0 0
\(679\) −0.206287 + 0.357299i −0.00791656 + 0.0137119i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.92296 7.92296i 0.303164 0.303164i −0.539087 0.842250i \(-0.681230\pi\)
0.842250 + 0.539087i \(0.181230\pi\)
\(684\) 0 0
\(685\) −8.63676 8.63676i −0.329994 0.329994i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.46522 + 4.88739i 0.322499 + 0.186195i
\(690\) 0 0
\(691\) −10.1756 2.72654i −0.387097 0.103722i 0.0600214 0.998197i \(-0.480883\pi\)
−0.447118 + 0.894475i \(0.647550\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.95027 + 1.70334i −0.111910 + 0.0646112i
\(696\) 0 0
\(697\) −4.28883 2.47616i −0.162451 0.0937912i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.1029 17.1029i 0.645968 0.645968i −0.306048 0.952016i \(-0.599007\pi\)
0.952016 + 0.306048i \(0.0990068\pi\)
\(702\) 0 0
\(703\) 49.0918i 1.85153i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.1980 4.34024i 0.609188 0.163231i
\(708\) 0 0
\(709\) 1.33738 + 0.358349i 0.0502263 + 0.0134581i 0.283845 0.958870i \(-0.408390\pi\)
−0.233618 + 0.972328i \(0.575057\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.79209 + 8.30014i 0.179465 + 0.310843i
\(714\) 0 0
\(715\) −15.4785 + 4.14744i −0.578862 + 0.155106i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.58660 0.133758 0.0668789 0.997761i \(-0.478696\pi\)
0.0668789 + 0.997761i \(0.478696\pi\)
\(720\) 0 0
\(721\) 9.68418 0.360658
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −16.3226 + 4.37362i −0.606205 + 0.162432i
\(726\) 0 0
\(727\) 19.8338 + 34.3531i 0.735594 + 1.27409i 0.954462 + 0.298331i \(0.0964301\pi\)
−0.218869 + 0.975754i \(0.570237\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.55203 + 2.29151i 0.316308 + 0.0847545i
\(732\) 0 0
\(733\) 7.45317 1.99707i 0.275289 0.0737635i −0.118533 0.992950i \(-0.537819\pi\)
0.393822 + 0.919187i \(0.371153\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.55568i 0.130975i
\(738\) 0 0
\(739\) 3.67791 3.67791i 0.135294 0.135294i −0.636216 0.771511i \(-0.719501\pi\)
0.771511 + 0.636216i \(0.219501\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.0142 + 16.7513i 1.06443 + 0.614547i 0.926654 0.375917i \(-0.122672\pi\)
0.137773 + 0.990464i \(0.456005\pi\)
\(744\) 0 0
\(745\) −14.1551 + 8.17244i −0.518602 + 0.299415i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 31.7900 + 8.51811i 1.16158 + 0.311245i
\(750\) 0 0
\(751\) 28.3480 + 16.3667i 1.03443 + 0.597231i 0.918252 0.395997i \(-0.129601\pi\)
0.116182 + 0.993228i \(0.462934\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.465095 0.465095i −0.0169265 0.0169265i
\(756\) 0 0
\(757\) −32.1096 + 32.1096i −1.16704 + 1.16704i −0.184143 + 0.982900i \(0.558951\pi\)
−0.982900 + 0.184143i \(0.941049\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.3534 19.6647i 0.411562 0.712847i −0.583499 0.812114i \(-0.698317\pi\)
0.995061 + 0.0992676i \(0.0316500\pi\)
\(762\) 0 0
\(763\) −1.24847 + 4.65936i −0.0451977 + 0.168680i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.8182 + 48.1825i 1.00446 + 1.73977i
\(768\) 0 0
\(769\) 23.6477 40.9590i 0.852757 1.47702i −0.0259531 0.999663i \(-0.508262\pi\)
0.878710 0.477356i \(-0.158405\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13.5761 13.5761i −0.488297 0.488297i 0.419472 0.907768i \(-0.362215\pi\)
−0.907768 + 0.419472i \(0.862215\pi\)
\(774\) 0 0
\(775\) 8.17852 0.293781
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.74927 17.7245i −0.170160 0.635047i
\(780\) 0 0
\(781\) 6.73300 25.1279i 0.240926 0.899147i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.57984 + 3.79887i −0.234845 + 0.135588i
\(786\) 0 0
\(787\) 2.13054 + 7.95128i 0.0759455 + 0.283432i 0.993446 0.114302i \(-0.0364632\pi\)
−0.917501 + 0.397735i \(0.869797\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.53851i 0.339150i
\(792\) 0 0
\(793\) 36.1573i 1.28398i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.57723 + 35.7427i 0.339243 + 1.26607i 0.899195 + 0.437547i \(0.144153\pi\)
−0.559953 + 0.828525i \(0.689181\pi\)
\(798\) 0 0
\(799\) −0.132742 + 0.0766384i −0.00469606 + 0.00271127i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.85301 + 36.7719i −0.347705 + 1.29765i
\(804\) 0 0
\(805\) 4.88121 + 18.2169i 0.172040 + 0.642062i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −42.6915 −1.50095 −0.750477 0.660897i \(-0.770176\pi\)
−0.750477 + 0.660897i \(0.770176\pi\)
\(810\) 0 0
\(811\) 21.6324 + 21.6324i 0.759616 + 0.759616i 0.976252 0.216637i \(-0.0695087\pi\)
−0.216637 + 0.976252i \(0.569509\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.97131 10.3426i 0.209166 0.362286i
\(816\) 0 0
\(817\) 16.4028 + 28.4105i 0.573861 + 0.993957i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.1896 + 41.7600i −0.390519 + 1.45744i 0.438762 + 0.898603i \(0.355417\pi\)
−0.829281 + 0.558832i \(0.811250\pi\)
\(822\) 0 0
\(823\) 7.47369 12.9448i 0.260516 0.451227i −0.705863 0.708348i \(-0.749441\pi\)
0.966379 + 0.257121i \(0.0827739\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.17437 + 3.17437i −0.110384 + 0.110384i −0.760141 0.649758i \(-0.774870\pi\)
0.649758 + 0.760141i \(0.274870\pi\)
\(828\) 0 0
\(829\) −6.24227 6.24227i −0.216803 0.216803i 0.590347 0.807150i \(-0.298991\pi\)
−0.807150 + 0.590347i \(0.798991\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10.7274 6.19349i −0.371684 0.214592i
\(834\) 0 0
\(835\) −19.9031 5.33301i −0.688774 0.184556i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.61601 4.97446i 0.297458 0.171737i −0.343842 0.939027i \(-0.611729\pi\)
0.641300 + 0.767290i \(0.278395\pi\)
\(840\) 0 0
\(841\) −8.07235 4.66057i −0.278357 0.160709i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.41567 + 2.41567i −0.0831016 + 0.0831016i
\(846\) 0 0
\(847\) 9.17346i 0.315204i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −36.8511 + 9.87421i −1.26324 + 0.338484i
\(852\) 0 0
\(853\) 20.6477 + 5.53253i 0.706963 + 0.189430i 0.594347 0.804208i \(-0.297410\pi\)
0.112616 + 0.993639i \(0.464077\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.86646 + 11.8931i 0.234554 + 0.406259i 0.959143 0.282922i \(-0.0913038\pi\)
−0.724589 + 0.689181i \(0.757970\pi\)
\(858\) 0 0
\(859\) −13.6273 + 3.65143i −0.464958 + 0.124585i −0.483690 0.875239i \(-0.660704\pi\)
0.0187321 + 0.999825i \(0.494037\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.6861 −1.04457 −0.522284 0.852772i \(-0.674920\pi\)
−0.522284 + 0.852772i \(0.674920\pi\)
\(864\) 0 0
\(865\) 18.4805 0.628355
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −58.0745 + 15.5610i −1.97004 + 0.527871i
\(870\) 0 0
\(871\) −1.95283 3.38240i −0.0661692 0.114608i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 35.9493 + 9.63260i 1.21531 + 0.325641i
\(876\) 0 0
\(877\) −21.1730 + 5.67328i −0.714960 + 0.191573i −0.597922 0.801554i \(-0.704007\pi\)
−0.117038 + 0.993127i \(0.537340\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.7695i 0.531287i 0.964071 + 0.265644i \(0.0855845\pi\)
−0.964071 + 0.265644i \(0.914416\pi\)
\(882\) 0 0
\(883\) 32.1210 32.1210i 1.08096 1.08096i 0.0845378 0.996420i \(-0.473059\pi\)
0.996420 0.0845378i \(-0.0269414\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.68281 + 3.28097i 0.190810 + 0.110164i 0.592362 0.805672i \(-0.298196\pi\)
−0.401552 + 0.915836i \(0.631529\pi\)
\(888\) 0 0
\(889\) 12.6307 7.29233i 0.423620 0.244577i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.548583 0.146992i −0.0183576 0.00491891i
\(894\) 0 0
\(895\) −6.48322 3.74309i −0.216710 0.125118i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.73464 6.73464i −0.224613 0.224613i
\(900\) 0 0
\(901\) −2.66790 + 2.66790i −0.0888808 + 0.0888808i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.53424 2.65738i 0.0509999 0.0883344i
\(906\) 0 0
\(907\) −5.88760 + 21.9728i −0.195495 + 0.729596i 0.796644 + 0.604449i \(0.206607\pi\)
−0.992138 + 0.125147i \(0.960060\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.27703 9.14009i −0.174836 0.302825i 0.765269 0.643711i \(-0.222606\pi\)
−0.940104 + 0.340887i \(0.889273\pi\)
\(912\) 0 0
\(913\) −28.4227 + 49.2295i −0.940653 + 1.62926i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.64675 + 3.64675i 0.120426 + 0.120426i
\(918\) 0 0
\(919\) 0.366138 0.0120778 0.00603890 0.999982i \(-0.498078\pi\)
0.00603890 + 0.999982i \(0.498078\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.39573 27.6012i −0.243433 0.908506i
\(924\) 0 0
\(925\) −8.42601 + 31.4463i −0.277046 + 1.03395i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 40.6720 23.4820i 1.33440 0.770419i 0.348433 0.937334i \(-0.386714\pi\)
0.985971 + 0.166915i \(0.0533806\pi\)
\(930\) 0 0
\(931\) −11.8791 44.3335i −0.389323 1.45297i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.18532i 0.202281i
\(936\) 0 0
\(937\) 52.8156i 1.72541i −0.505706 0.862706i \(-0.668768\pi\)
0.505706 0.862706i \(-0.331232\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.2433 53.1569i −0.464320 1.73286i −0.659135 0.752024i \(-0.729078\pi\)
0.194816 0.980840i \(-0.437589\pi\)
\(942\) 0 0
\(943\) 12.3498 7.13015i 0.402164 0.232190i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.03273 18.7824i 0.163542 0.610346i −0.834680 0.550735i \(-0.814347\pi\)
0.998222 0.0596105i \(-0.0189859\pi\)
\(948\) 0 0
\(949\) 10.8228 + 40.3914i 0.351324 + 1.31116i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −32.2129 −1.04348 −0.521739 0.853105i \(-0.674717\pi\)
−0.521739 + 0.853105i \(0.674717\pi\)
\(954\) 0 0
\(955\) 15.7400 + 15.7400i 0.509334 + 0.509334i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −21.6690 + 37.5318i −0.699729 + 1.21197i
\(960\) 0 0
\(961\) −13.1952 22.8548i −0.425652 0.737251i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.69047 17.5051i 0.150992 0.563508i
\(966\) 0 0
\(967\) 6.78008 11.7434i 0.218033 0.377644i −0.736174 0.676793i \(-0.763369\pi\)
0.954206 + 0.299149i \(0.0967028\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.29201 1.29201i 0.0414626 0.0414626i −0.686072 0.727534i \(-0.740666\pi\)
0.727534 + 0.686072i \(0.240666\pi\)
\(972\) 0 0
\(973\) 8.54709 + 8.54709i 0.274007 + 0.274007i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.8504 + 17.8115i 0.986993 + 0.569841i 0.904374 0.426741i \(-0.140338\pi\)
0.0826189 + 0.996581i \(0.473672\pi\)
\(978\) 0 0
\(979\) 39.6971 + 10.6368i 1.26872 + 0.339954i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 44.7746 25.8506i 1.42809 0.824507i 0.431118 0.902295i \(-0.358119\pi\)
0.996970 + 0.0777882i \(0.0247858\pi\)
\(984\) 0 0
\(985\) 2.72373 + 1.57254i 0.0867852 + 0.0501054i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −18.0273 + 18.0273i −0.573235 + 0.573235i
\(990\) 0 0
\(991\) 27.3724i 0.869513i −0.900548 0.434756i \(-0.856834\pi\)
0.900548 0.434756i \(-0.143166\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.69372 + 2.59742i −0.307311 + 0.0823439i
\(996\) 0 0
\(997\) −52.2174 13.9916i −1.65374 0.443119i −0.693085 0.720856i \(-0.743749\pi\)
−0.960657 + 0.277737i \(0.910416\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.1583.9 88
3.2 odd 2 576.2.y.a.239.21 88
4.3 odd 2 432.2.v.a.179.18 88
9.2 odd 6 inner 1728.2.z.a.1007.9 88
9.7 even 3 576.2.y.a.47.13 88
12.11 even 2 144.2.u.a.131.5 yes 88
16.5 even 4 432.2.v.a.395.19 88
16.11 odd 4 inner 1728.2.z.a.719.9 88
36.7 odd 6 144.2.u.a.83.4 yes 88
36.11 even 6 432.2.v.a.35.19 88
48.5 odd 4 144.2.u.a.59.4 yes 88
48.11 even 4 576.2.y.a.527.13 88
144.11 even 12 inner 1728.2.z.a.143.9 88
144.43 odd 12 576.2.y.a.335.21 88
144.101 odd 12 432.2.v.a.251.18 88
144.133 even 12 144.2.u.a.11.5 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.5 88 144.133 even 12
144.2.u.a.59.4 yes 88 48.5 odd 4
144.2.u.a.83.4 yes 88 36.7 odd 6
144.2.u.a.131.5 yes 88 12.11 even 2
432.2.v.a.35.19 88 36.11 even 6
432.2.v.a.179.18 88 4.3 odd 2
432.2.v.a.251.18 88 144.101 odd 12
432.2.v.a.395.19 88 16.5 even 4
576.2.y.a.47.13 88 9.7 even 3
576.2.y.a.239.21 88 3.2 odd 2
576.2.y.a.335.21 88 144.43 odd 12
576.2.y.a.527.13 88 48.11 even 4
1728.2.z.a.143.9 88 144.11 even 12 inner
1728.2.z.a.719.9 88 16.11 odd 4 inner
1728.2.z.a.1007.9 88 9.2 odd 6 inner
1728.2.z.a.1583.9 88 1.1 even 1 trivial