Properties

Label 1728.2.z.a.1007.21
Level $1728$
Weight $2$
Character 1728.1007
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(143,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1007.21
Character \(\chi\) \(=\) 1728.1007
Dual form 1728.2.z.a.719.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.961558 - 3.58858i) q^{5} +(1.29216 - 2.23809i) q^{7} +(-0.541286 - 2.02011i) q^{11} +(0.267433 - 0.998074i) q^{13} -4.13788i q^{17} +(-2.49279 + 2.49279i) q^{19} +(7.01915 - 4.05251i) q^{23} +(-7.62322 - 4.40127i) q^{25} +(1.88218 + 7.02439i) q^{29} +(-2.03331 + 1.17393i) q^{31} +(-6.78909 - 6.78909i) q^{35} +(-4.75590 + 4.75590i) q^{37} +(0.636217 + 1.10196i) q^{41} +(1.45505 - 0.389880i) q^{43} +(3.60814 - 6.24948i) q^{47} +(0.160635 + 0.278228i) q^{49} +(0.546616 + 0.546616i) q^{53} -7.76980 q^{55} +(-8.00411 - 2.14469i) q^{59} +(-6.77407 + 1.81511i) q^{61} +(-3.32452 - 1.91941i) q^{65} +(2.80643 + 0.751980i) q^{67} +6.59449i q^{71} +8.78699i q^{73} +(-5.22061 - 1.39886i) q^{77} +(5.64940 + 3.26168i) q^{79} +(7.71754 - 2.06791i) q^{83} +(-14.8491 - 3.97882i) q^{85} -14.1938 q^{89} +(-1.88821 - 1.88821i) q^{91} +(6.54863 + 11.3426i) q^{95} +(6.54551 - 11.3372i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.961558 3.58858i 0.430022 1.60486i −0.322684 0.946507i \(-0.604585\pi\)
0.752706 0.658357i \(-0.228748\pi\)
\(6\) 0 0
\(7\) 1.29216 2.23809i 0.488391 0.845919i −0.511520 0.859272i \(-0.670917\pi\)
0.999911 + 0.0133531i \(0.00425055\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.541286 2.02011i −0.163204 0.609085i −0.998262 0.0589240i \(-0.981233\pi\)
0.835059 0.550161i \(-0.185434\pi\)
\(12\) 0 0
\(13\) 0.267433 0.998074i 0.0741726 0.276816i −0.918872 0.394556i \(-0.870898\pi\)
0.993044 + 0.117740i \(0.0375650\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.13788i 1.00358i −0.864988 0.501792i \(-0.832674\pi\)
0.864988 0.501792i \(-0.167326\pi\)
\(18\) 0 0
\(19\) −2.49279 + 2.49279i −0.571886 + 0.571886i −0.932655 0.360769i \(-0.882514\pi\)
0.360769 + 0.932655i \(0.382514\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.01915 4.05251i 1.46359 0.845006i 0.464418 0.885616i \(-0.346264\pi\)
0.999175 + 0.0406102i \(0.0129302\pi\)
\(24\) 0 0
\(25\) −7.62322 4.40127i −1.52464 0.880253i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.88218 + 7.02439i 0.349512 + 1.30440i 0.887252 + 0.461286i \(0.152612\pi\)
−0.537740 + 0.843111i \(0.680722\pi\)
\(30\) 0 0
\(31\) −2.03331 + 1.17393i −0.365194 + 0.210845i −0.671357 0.741134i \(-0.734288\pi\)
0.306163 + 0.951979i \(0.400955\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.78909 6.78909i −1.14757 1.14757i
\(36\) 0 0
\(37\) −4.75590 + 4.75590i −0.781865 + 0.781865i −0.980145 0.198280i \(-0.936464\pi\)
0.198280 + 0.980145i \(0.436464\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.636217 + 1.10196i 0.0993604 + 0.172097i 0.911420 0.411477i \(-0.134987\pi\)
−0.812060 + 0.583574i \(0.801654\pi\)
\(42\) 0 0
\(43\) 1.45505 0.389880i 0.221894 0.0594562i −0.146159 0.989261i \(-0.546691\pi\)
0.368053 + 0.929805i \(0.380025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.60814 6.24948i 0.526301 0.911580i −0.473230 0.880939i \(-0.656912\pi\)
0.999530 0.0306407i \(-0.00975476\pi\)
\(48\) 0 0
\(49\) 0.160635 + 0.278228i 0.0229479 + 0.0397469i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.546616 + 0.546616i 0.0750835 + 0.0750835i 0.743651 0.668568i \(-0.233092\pi\)
−0.668568 + 0.743651i \(0.733092\pi\)
\(54\) 0 0
\(55\) −7.76980 −1.04768
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.00411 2.14469i −1.04205 0.279215i −0.303085 0.952963i \(-0.598017\pi\)
−0.738961 + 0.673748i \(0.764683\pi\)
\(60\) 0 0
\(61\) −6.77407 + 1.81511i −0.867331 + 0.232401i −0.664933 0.746903i \(-0.731540\pi\)
−0.202398 + 0.979303i \(0.564873\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.32452 1.91941i −0.412356 0.238074i
\(66\) 0 0
\(67\) 2.80643 + 0.751980i 0.342860 + 0.0918690i 0.426140 0.904657i \(-0.359873\pi\)
−0.0832804 + 0.996526i \(0.526540\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.59449i 0.782622i 0.920258 + 0.391311i \(0.127978\pi\)
−0.920258 + 0.391311i \(0.872022\pi\)
\(72\) 0 0
\(73\) 8.78699i 1.02844i 0.857658 + 0.514220i \(0.171918\pi\)
−0.857658 + 0.514220i \(0.828082\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.22061 1.39886i −0.594944 0.159415i
\(78\) 0 0
\(79\) 5.64940 + 3.26168i 0.635607 + 0.366968i 0.782920 0.622122i \(-0.213729\pi\)
−0.147313 + 0.989090i \(0.547063\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.71754 2.06791i 0.847110 0.226982i 0.190946 0.981601i \(-0.438845\pi\)
0.656164 + 0.754618i \(0.272178\pi\)
\(84\) 0 0
\(85\) −14.8491 3.97882i −1.61062 0.431563i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.1938 −1.50454 −0.752272 0.658852i \(-0.771042\pi\)
−0.752272 + 0.658852i \(0.771042\pi\)
\(90\) 0 0
\(91\) −1.88821 1.88821i −0.197939 0.197939i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.54863 + 11.3426i 0.671875 + 1.16372i
\(96\) 0 0
\(97\) 6.54551 11.3372i 0.664596 1.15111i −0.314799 0.949158i \(-0.601937\pi\)
0.979395 0.201955i \(-0.0647295\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.94498 1.05705i 0.392540 0.105181i −0.0571499 0.998366i \(-0.518201\pi\)
0.449690 + 0.893185i \(0.351535\pi\)
\(102\) 0 0
\(103\) −2.22868 3.86019i −0.219599 0.380356i 0.735087 0.677973i \(-0.237141\pi\)
−0.954685 + 0.297617i \(0.903808\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.01417 + 4.01417i −0.388064 + 0.388064i −0.873996 0.485932i \(-0.838480\pi\)
0.485932 + 0.873996i \(0.338480\pi\)
\(108\) 0 0
\(109\) −6.84996 6.84996i −0.656107 0.656107i 0.298349 0.954457i \(-0.403564\pi\)
−0.954457 + 0.298349i \(0.903564\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.97546 4.60464i 0.750268 0.433168i −0.0755225 0.997144i \(-0.524062\pi\)
0.825791 + 0.563976i \(0.190729\pi\)
\(114\) 0 0
\(115\) −7.79344 29.0855i −0.726742 2.71224i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.26095 5.34681i −0.848950 0.490142i
\(120\) 0 0
\(121\) 5.73844 3.31309i 0.521676 0.301190i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.98936 + 9.98936i −0.893475 + 0.893475i
\(126\) 0 0
\(127\) 4.75792i 0.422197i 0.977465 + 0.211099i \(0.0677041\pi\)
−0.977465 + 0.211099i \(0.932296\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.24125 8.36446i 0.195819 0.730806i −0.796234 0.604988i \(-0.793178\pi\)
0.992053 0.125818i \(-0.0401555\pi\)
\(132\) 0 0
\(133\) 2.35800 + 8.80019i 0.204465 + 0.763073i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.29570 14.3686i 0.708750 1.22759i −0.256571 0.966525i \(-0.582593\pi\)
0.965321 0.261065i \(-0.0840738\pi\)
\(138\) 0 0
\(139\) −1.84191 + 6.87408i −0.156228 + 0.583052i 0.842769 + 0.538276i \(0.180924\pi\)
−0.998997 + 0.0447763i \(0.985743\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.16097 −0.180710
\(144\) 0 0
\(145\) 27.0175 2.24368
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.969882 + 3.61965i −0.0794558 + 0.296533i −0.994207 0.107485i \(-0.965720\pi\)
0.914751 + 0.404018i \(0.132387\pi\)
\(150\) 0 0
\(151\) −1.35324 + 2.34389i −0.110125 + 0.190743i −0.915821 0.401588i \(-0.868459\pi\)
0.805695 + 0.592330i \(0.201792\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.25761 + 8.42553i 0.181336 + 0.676755i
\(156\) 0 0
\(157\) −1.28460 + 4.79418i −0.102522 + 0.382617i −0.998052 0.0623832i \(-0.980130\pi\)
0.895530 + 0.445001i \(0.146797\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 20.9460i 1.65077i
\(162\) 0 0
\(163\) 8.40242 8.40242i 0.658129 0.658129i −0.296808 0.954937i \(-0.595922\pi\)
0.954937 + 0.296808i \(0.0959223\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.11596 + 4.10840i −0.550650 + 0.317918i −0.749384 0.662136i \(-0.769650\pi\)
0.198734 + 0.980053i \(0.436317\pi\)
\(168\) 0 0
\(169\) 10.3337 + 5.96616i 0.794900 + 0.458936i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.66438 24.8718i −0.506683 1.89097i −0.451012 0.892518i \(-0.648937\pi\)
−0.0556715 0.998449i \(-0.517730\pi\)
\(174\) 0 0
\(175\) −19.7009 + 11.3743i −1.48925 + 0.859816i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.5908 14.5908i −1.09057 1.09057i −0.995467 0.0951034i \(-0.969682\pi\)
−0.0951034 0.995467i \(-0.530318\pi\)
\(180\) 0 0
\(181\) 8.19403 8.19403i 0.609057 0.609057i −0.333642 0.942700i \(-0.608278\pi\)
0.942700 + 0.333642i \(0.108278\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.4939 + 21.6400i 0.918568 + 1.59101i
\(186\) 0 0
\(187\) −8.35896 + 2.23978i −0.611268 + 0.163789i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.80582 4.85981i 0.203022 0.351644i −0.746479 0.665409i \(-0.768257\pi\)
0.949501 + 0.313765i \(0.101590\pi\)
\(192\) 0 0
\(193\) −12.5728 21.7767i −0.905008 1.56752i −0.820906 0.571063i \(-0.806531\pi\)
−0.0841024 0.996457i \(-0.526802\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.31684 + 4.31684i 0.307562 + 0.307562i 0.843963 0.536401i \(-0.180216\pi\)
−0.536401 + 0.843963i \(0.680216\pi\)
\(198\) 0 0
\(199\) 14.6645 1.03954 0.519769 0.854307i \(-0.326018\pi\)
0.519769 + 0.854307i \(0.326018\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.1533 + 4.86416i 1.27411 + 0.341397i
\(204\) 0 0
\(205\) 4.56624 1.22352i 0.318920 0.0854543i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.38502 + 3.68639i 0.441661 + 0.254993i
\(210\) 0 0
\(211\) 2.25661 + 0.604656i 0.155351 + 0.0416263i 0.335656 0.941984i \(-0.391042\pi\)
−0.180305 + 0.983611i \(0.557709\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.59648i 0.381677i
\(216\) 0 0
\(217\) 6.06766i 0.411899i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.12991 1.10661i −0.277808 0.0744385i
\(222\) 0 0
\(223\) 24.9105 + 14.3821i 1.66813 + 0.963094i 0.968646 + 0.248445i \(0.0799195\pi\)
0.699483 + 0.714650i \(0.253414\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.06995 + 2.16234i −0.535621 + 0.143519i −0.516483 0.856298i \(-0.672759\pi\)
−0.0191384 + 0.999817i \(0.506092\pi\)
\(228\) 0 0
\(229\) 18.5393 + 4.96759i 1.22511 + 0.328268i 0.812674 0.582718i \(-0.198011\pi\)
0.412438 + 0.910986i \(0.364677\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.96265 0.194090 0.0970450 0.995280i \(-0.469061\pi\)
0.0970450 + 0.995280i \(0.469061\pi\)
\(234\) 0 0
\(235\) −18.9573 18.9573i −1.23664 1.23664i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.14390 + 8.90950i 0.332731 + 0.576307i 0.983046 0.183357i \(-0.0586965\pi\)
−0.650315 + 0.759665i \(0.725363\pi\)
\(240\) 0 0
\(241\) −12.8722 + 22.2954i −0.829173 + 1.43617i 0.0695144 + 0.997581i \(0.477855\pi\)
−0.898688 + 0.438589i \(0.855478\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.15290 0.308920i 0.0736564 0.0197362i
\(246\) 0 0
\(247\) 1.82134 + 3.15465i 0.115889 + 0.200725i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.7668 + 16.7668i −1.05831 + 1.05831i −0.0601228 + 0.998191i \(0.519149\pi\)
−0.998191 + 0.0601228i \(0.980851\pi\)
\(252\) 0 0
\(253\) −11.9859 11.9859i −0.753544 0.753544i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.74821 3.89608i 0.420942 0.243031i −0.274538 0.961576i \(-0.588525\pi\)
0.695480 + 0.718545i \(0.255192\pi\)
\(258\) 0 0
\(259\) 4.49874 + 16.7895i 0.279538 + 1.04325i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.3513 + 7.13103i 0.761615 + 0.439718i 0.829875 0.557949i \(-0.188412\pi\)
−0.0682606 + 0.997668i \(0.521745\pi\)
\(264\) 0 0
\(265\) 2.48718 1.43597i 0.152786 0.0882112i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.70265 + 1.70265i −0.103812 + 0.103812i −0.757105 0.653293i \(-0.773387\pi\)
0.653293 + 0.757105i \(0.273387\pi\)
\(270\) 0 0
\(271\) 9.55642i 0.580511i 0.956949 + 0.290256i \(0.0937403\pi\)
−0.956949 + 0.290256i \(0.906260\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.76469 + 17.7821i −0.287321 + 1.07230i
\(276\) 0 0
\(277\) 0.571577 + 2.13315i 0.0343427 + 0.128169i 0.980969 0.194164i \(-0.0621995\pi\)
−0.946626 + 0.322333i \(0.895533\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.26158 14.3095i 0.492845 0.853632i −0.507121 0.861875i \(-0.669290\pi\)
0.999966 + 0.00824250i \(0.00262370\pi\)
\(282\) 0 0
\(283\) 1.95433 7.29366i 0.116173 0.433563i −0.883199 0.468998i \(-0.844615\pi\)
0.999372 + 0.0354353i \(0.0112818\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.28838 0.194107
\(288\) 0 0
\(289\) −0.122073 −0.00718078
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.12613 + 22.8630i −0.357892 + 1.33567i 0.518913 + 0.854827i \(0.326337\pi\)
−0.876805 + 0.480845i \(0.840330\pi\)
\(294\) 0 0
\(295\) −15.3928 + 26.6612i −0.896206 + 1.55227i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.16755 8.08940i −0.125353 0.467822i
\(300\) 0 0
\(301\) 1.00758 3.76033i 0.0580758 0.216742i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 26.0547i 1.49189i
\(306\) 0 0
\(307\) −12.9528 + 12.9528i −0.739255 + 0.739255i −0.972434 0.233179i \(-0.925087\pi\)
0.233179 + 0.972434i \(0.425087\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.74301 + 2.16103i −0.212247 + 0.122541i −0.602355 0.798228i \(-0.705771\pi\)
0.390108 + 0.920769i \(0.372438\pi\)
\(312\) 0 0
\(313\) −13.7859 7.95932i −0.779228 0.449887i 0.0569286 0.998378i \(-0.481869\pi\)
−0.836157 + 0.548491i \(0.815203\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.69292 + 28.7104i 0.432077 + 1.61253i 0.747965 + 0.663738i \(0.231031\pi\)
−0.315888 + 0.948797i \(0.602302\pi\)
\(318\) 0 0
\(319\) 13.1712 7.60441i 0.737447 0.425765i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.3149 + 10.3149i 0.573935 + 0.573935i
\(324\) 0 0
\(325\) −6.43149 + 6.43149i −0.356755 + 0.356755i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.32459 16.1507i −0.514082 0.890415i
\(330\) 0 0
\(331\) 1.90112 0.509403i 0.104495 0.0279993i −0.206193 0.978511i \(-0.566107\pi\)
0.310688 + 0.950512i \(0.399441\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.39709 9.34803i 0.294874 0.510738i
\(336\) 0 0
\(337\) 9.46585 + 16.3953i 0.515638 + 0.893111i 0.999835 + 0.0181522i \(0.00577834\pi\)
−0.484197 + 0.874959i \(0.660888\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.47208 + 3.47208i 0.188024 + 0.188024i
\(342\) 0 0
\(343\) 18.9205 1.02161
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.06413 0.821032i −0.164491 0.0440753i 0.175634 0.984456i \(-0.443803\pi\)
−0.340125 + 0.940380i \(0.610469\pi\)
\(348\) 0 0
\(349\) 15.9915 4.28490i 0.856003 0.229365i 0.195978 0.980608i \(-0.437212\pi\)
0.660026 + 0.751243i \(0.270545\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.7145 11.3822i −1.04930 0.605813i −0.126846 0.991922i \(-0.540486\pi\)
−0.922453 + 0.386109i \(0.873819\pi\)
\(354\) 0 0
\(355\) 23.6649 + 6.34099i 1.25600 + 0.336545i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.54182i 0.398042i 0.979995 + 0.199021i \(0.0637762\pi\)
−0.979995 + 0.199021i \(0.936224\pi\)
\(360\) 0 0
\(361\) 6.57197i 0.345893i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 31.5329 + 8.44921i 1.65051 + 0.442252i
\(366\) 0 0
\(367\) −20.6334 11.9127i −1.07706 0.621839i −0.146955 0.989143i \(-0.546947\pi\)
−0.930101 + 0.367304i \(0.880281\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.92969 0.517059i 0.100185 0.0268444i
\(372\) 0 0
\(373\) 8.84822 + 2.37087i 0.458143 + 0.122759i 0.480507 0.876991i \(-0.340453\pi\)
−0.0223639 + 0.999750i \(0.507119\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.51422 0.387002
\(378\) 0 0
\(379\) −0.636018 0.636018i −0.0326701 0.0326701i 0.690583 0.723253i \(-0.257354\pi\)
−0.723253 + 0.690583i \(0.757354\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.80598 11.7883i −0.347769 0.602354i 0.638084 0.769967i \(-0.279727\pi\)
−0.985853 + 0.167613i \(0.946394\pi\)
\(384\) 0 0
\(385\) −10.0398 + 17.3895i −0.511678 + 0.886252i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.00251 2.14427i 0.405744 0.108719i −0.0501744 0.998740i \(-0.515978\pi\)
0.455918 + 0.890022i \(0.349311\pi\)
\(390\) 0 0
\(391\) −16.7688 29.0444i −0.848034 1.46884i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 17.1370 17.1370i 0.862258 0.862258i
\(396\) 0 0
\(397\) −6.79264 6.79264i −0.340913 0.340913i 0.515798 0.856710i \(-0.327496\pi\)
−0.856710 + 0.515798i \(0.827496\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.01378 + 2.89471i −0.250376 + 0.144555i −0.619936 0.784652i \(-0.712842\pi\)
0.369560 + 0.929207i \(0.379508\pi\)
\(402\) 0 0
\(403\) 0.627898 + 2.34335i 0.0312778 + 0.116731i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.1817 + 7.03312i 0.603826 + 0.348619i
\(408\) 0 0
\(409\) 11.5152 6.64832i 0.569392 0.328738i −0.187515 0.982262i \(-0.560043\pi\)
0.756906 + 0.653523i \(0.226710\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −15.1426 + 15.1426i −0.745120 + 0.745120i
\(414\) 0 0
\(415\) 29.6834i 1.45710i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.29438 + 12.2948i −0.160941 + 0.600639i 0.837582 + 0.546311i \(0.183968\pi\)
−0.998523 + 0.0543282i \(0.982698\pi\)
\(420\) 0 0
\(421\) 1.72149 + 6.42470i 0.0839004 + 0.313121i 0.995104 0.0988365i \(-0.0315121\pi\)
−0.911203 + 0.411957i \(0.864845\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −18.2119 + 31.5440i −0.883408 + 1.53011i
\(426\) 0 0
\(427\) −4.69083 + 17.5064i −0.227005 + 0.847194i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 37.3843 1.80074 0.900370 0.435126i \(-0.143296\pi\)
0.900370 + 0.435126i \(0.143296\pi\)
\(432\) 0 0
\(433\) −18.8561 −0.906166 −0.453083 0.891468i \(-0.649676\pi\)
−0.453083 + 0.891468i \(0.649676\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.39522 + 27.5993i −0.353761 + 1.32026i
\(438\) 0 0
\(439\) 4.21577 7.30192i 0.201208 0.348502i −0.747710 0.664025i \(-0.768847\pi\)
0.948918 + 0.315523i \(0.102180\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.46777 9.20983i −0.117247 0.437572i 0.882198 0.470879i \(-0.156063\pi\)
−0.999445 + 0.0333063i \(0.989396\pi\)
\(444\) 0 0
\(445\) −13.6482 + 50.9358i −0.646987 + 2.41459i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.54348i 0.355999i −0.984031 0.177999i \(-0.943038\pi\)
0.984031 0.177999i \(-0.0569625\pi\)
\(450\) 0 0
\(451\) 1.88170 1.88170i 0.0886058 0.0886058i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.59164 + 4.96039i −0.402782 + 0.232546i
\(456\) 0 0
\(457\) −5.15261 2.97486i −0.241029 0.139158i 0.374621 0.927178i \(-0.377773\pi\)
−0.615649 + 0.788020i \(0.711106\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.37780 23.8023i −0.297044 1.10858i −0.939581 0.342328i \(-0.888785\pi\)
0.642537 0.766255i \(-0.277882\pi\)
\(462\) 0 0
\(463\) 20.8183 12.0194i 0.967507 0.558590i 0.0690315 0.997614i \(-0.478009\pi\)
0.898475 + 0.439024i \(0.144676\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.3702 + 25.3702i 1.17399 + 1.17399i 0.981249 + 0.192744i \(0.0617388\pi\)
0.192744 + 0.981249i \(0.438261\pi\)
\(468\) 0 0
\(469\) 5.30936 5.30936i 0.245163 0.245163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.57520 2.72833i −0.0724278 0.125449i
\(474\) 0 0
\(475\) 29.9745 8.03166i 1.37533 0.368518i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.498647 0.863682i 0.0227838 0.0394626i −0.854409 0.519602i \(-0.826080\pi\)
0.877192 + 0.480139i \(0.159414\pi\)
\(480\) 0 0
\(481\) 3.47486 + 6.01863i 0.158440 + 0.274426i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −34.3904 34.3904i −1.56159 1.56159i
\(486\) 0 0
\(487\) 18.8397 0.853709 0.426855 0.904320i \(-0.359622\pi\)
0.426855 + 0.904320i \(0.359622\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.535020 + 0.143358i 0.0241451 + 0.00646966i 0.270871 0.962616i \(-0.412688\pi\)
−0.246726 + 0.969085i \(0.579355\pi\)
\(492\) 0 0
\(493\) 29.0661 7.78824i 1.30907 0.350765i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14.7591 + 8.52115i 0.662035 + 0.382226i
\(498\) 0 0
\(499\) 42.1874 + 11.3041i 1.88857 + 0.506041i 0.998764 + 0.0497007i \(0.0158267\pi\)
0.889805 + 0.456340i \(0.150840\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.7324i 0.924412i −0.886773 0.462206i \(-0.847058\pi\)
0.886773 0.462206i \(-0.152942\pi\)
\(504\) 0 0
\(505\) 15.1733i 0.675203i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.69736 + 2.59840i 0.429828 + 0.115172i 0.467245 0.884128i \(-0.345246\pi\)
−0.0374174 + 0.999300i \(0.511913\pi\)
\(510\) 0 0
\(511\) 19.6661 + 11.3542i 0.869976 + 0.502281i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −15.9956 + 4.28602i −0.704852 + 0.188865i
\(516\) 0 0
\(517\) −14.5776 3.90607i −0.641124 0.171789i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.20573 0.140445 0.0702227 0.997531i \(-0.477629\pi\)
0.0702227 + 0.997531i \(0.477629\pi\)
\(522\) 0 0
\(523\) 28.1479 + 28.1479i 1.23082 + 1.23082i 0.963648 + 0.267175i \(0.0860902\pi\)
0.267175 + 0.963648i \(0.413910\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.85760 + 8.41362i 0.211601 + 0.366503i
\(528\) 0 0
\(529\) 21.3456 36.9717i 0.928070 1.60746i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.26998 0.340291i 0.0550091 0.0147396i
\(534\) 0 0
\(535\) 10.5453 + 18.2650i 0.455914 + 0.789666i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.475101 0.475101i 0.0204640 0.0204640i
\(540\) 0 0
\(541\) 14.6373 + 14.6373i 0.629307 + 0.629307i 0.947894 0.318586i \(-0.103208\pi\)
−0.318586 + 0.947894i \(0.603208\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −31.1683 + 17.9950i −1.33510 + 0.770822i
\(546\) 0 0
\(547\) −4.55558 17.0017i −0.194783 0.726938i −0.992323 0.123673i \(-0.960533\pi\)
0.797541 0.603265i \(-0.206134\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −22.2022 12.8185i −0.945847 0.546085i
\(552\) 0 0
\(553\) 14.5999 8.42924i 0.620850 0.358448i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.32037 8.32037i 0.352546 0.352546i −0.508510 0.861056i \(-0.669804\pi\)
0.861056 + 0.508510i \(0.169804\pi\)
\(558\) 0 0
\(559\) 1.55652i 0.0658337i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.81439 21.6996i 0.245047 0.914529i −0.728312 0.685245i \(-0.759695\pi\)
0.973360 0.229284i \(-0.0736383\pi\)
\(564\) 0 0
\(565\) −8.85525 33.0482i −0.372543 1.39035i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.57037 + 13.1123i −0.317367 + 0.549695i −0.979938 0.199304i \(-0.936132\pi\)
0.662571 + 0.748999i \(0.269465\pi\)
\(570\) 0 0
\(571\) 8.82715 32.9434i 0.369405 1.37864i −0.491945 0.870626i \(-0.663714\pi\)
0.861350 0.508012i \(-0.169619\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −71.3446 −2.97528
\(576\) 0 0
\(577\) 19.9524 0.830629 0.415315 0.909678i \(-0.363671\pi\)
0.415315 + 0.909678i \(0.363671\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.34414 19.9446i 0.221712 0.827442i
\(582\) 0 0
\(583\) 0.808347 1.40010i 0.0334783 0.0579861i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.04265 30.0156i −0.331955 1.23887i −0.907132 0.420846i \(-0.861733\pi\)
0.575177 0.818029i \(-0.304933\pi\)
\(588\) 0 0
\(589\) 2.14226 7.99501i 0.0882701 0.329429i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 38.3863i 1.57634i 0.615460 + 0.788168i \(0.288970\pi\)
−0.615460 + 0.788168i \(0.711030\pi\)
\(594\) 0 0
\(595\) −28.0924 + 28.0924i −1.15168 + 1.15168i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.9602 + 14.4108i −1.01985 + 0.588809i −0.914060 0.405580i \(-0.867070\pi\)
−0.105787 + 0.994389i \(0.533736\pi\)
\(600\) 0 0
\(601\) −19.8695 11.4716i −0.810492 0.467938i 0.0366348 0.999329i \(-0.488336\pi\)
−0.847127 + 0.531391i \(0.821670\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.37146 23.7786i −0.259037 0.966738i
\(606\) 0 0
\(607\) −16.8592 + 9.73364i −0.684292 + 0.395076i −0.801470 0.598035i \(-0.795949\pi\)
0.117178 + 0.993111i \(0.462615\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.27251 5.27251i −0.213303 0.213303i
\(612\) 0 0
\(613\) −10.5918 + 10.5918i −0.427797 + 0.427797i −0.887877 0.460080i \(-0.847821\pi\)
0.460080 + 0.887877i \(0.347821\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.33080 + 16.1614i 0.375644 + 0.650634i 0.990423 0.138065i \(-0.0440882\pi\)
−0.614779 + 0.788699i \(0.710755\pi\)
\(618\) 0 0
\(619\) −21.0028 + 5.62767i −0.844172 + 0.226195i −0.654887 0.755727i \(-0.727284\pi\)
−0.189285 + 0.981922i \(0.560617\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −18.3407 + 31.7671i −0.734807 + 1.27272i
\(624\) 0 0
\(625\) 4.23597 + 7.33691i 0.169439 + 0.293477i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.6794 + 19.6794i 0.784667 + 0.784667i
\(630\) 0 0
\(631\) −26.5211 −1.05579 −0.527894 0.849310i \(-0.677018\pi\)
−0.527894 + 0.849310i \(0.677018\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.0742 + 4.57502i 0.677569 + 0.181554i
\(636\) 0 0
\(637\) 0.320651 0.0859183i 0.0127047 0.00340421i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.35222 0.780702i −0.0534093 0.0308359i 0.473058 0.881032i \(-0.343150\pi\)
−0.526467 + 0.850196i \(0.676484\pi\)
\(642\) 0 0
\(643\) −33.6691 9.02160i −1.32778 0.355777i −0.475892 0.879503i \(-0.657875\pi\)
−0.851887 + 0.523726i \(0.824542\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.73678i 0.304164i 0.988368 + 0.152082i \(0.0485978\pi\)
−0.988368 + 0.152082i \(0.951402\pi\)
\(648\) 0 0
\(649\) 17.3300i 0.680264i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.2429 3.81636i −0.557366 0.149346i −0.0308703 0.999523i \(-0.509828\pi\)
−0.526496 + 0.850178i \(0.676495\pi\)
\(654\) 0 0
\(655\) −27.8615 16.0858i −1.08864 0.628526i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 33.8013 9.05703i 1.31671 0.352812i 0.468967 0.883216i \(-0.344626\pi\)
0.847745 + 0.530404i \(0.177960\pi\)
\(660\) 0 0
\(661\) 35.8049 + 9.59389i 1.39265 + 0.373159i 0.875699 0.482857i \(-0.160401\pi\)
0.516949 + 0.856016i \(0.327068\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 33.8476 1.31255
\(666\) 0 0
\(667\) 41.6777 + 41.6777i 1.61377 + 1.61377i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.33342 + 12.7019i 0.283103 + 0.490350i
\(672\) 0 0
\(673\) −14.5046 + 25.1226i −0.559109 + 0.968406i 0.438462 + 0.898750i \(0.355523\pi\)
−0.997571 + 0.0696559i \(0.977810\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.8441 5.58517i 0.801105 0.214655i 0.165036 0.986288i \(-0.447226\pi\)
0.636069 + 0.771632i \(0.280559\pi\)
\(678\) 0 0
\(679\) −16.9157 29.2989i −0.649165 1.12439i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.1487 + 19.1487i −0.732704 + 0.732704i −0.971155 0.238451i \(-0.923360\pi\)
0.238451 + 0.971155i \(0.423360\pi\)
\(684\) 0 0
\(685\) −43.5861 43.5861i −1.66534 1.66534i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.691747 0.399380i 0.0263534 0.0152152i
\(690\) 0 0
\(691\) −8.78531 32.7872i −0.334209 1.24728i −0.904724 0.425997i \(-0.859923\pi\)
0.570516 0.821287i \(-0.306743\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.8971 + 13.2197i 0.868538 + 0.501450i
\(696\) 0 0
\(697\) 4.55978 2.63259i 0.172714 0.0997165i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.6582 28.6582i 1.08240 1.08240i 0.0861190 0.996285i \(-0.472553\pi\)
0.996285 0.0861190i \(-0.0274465\pi\)
\(702\) 0 0
\(703\) 23.7109i 0.894275i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.73177 10.1951i 0.102739 0.383426i
\(708\) 0 0
\(709\) 2.14398 + 8.00146i 0.0805190 + 0.300501i 0.994428 0.105418i \(-0.0336181\pi\)
−0.913909 + 0.405919i \(0.866951\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.51476 + 16.4800i −0.356330 + 0.617182i
\(714\) 0 0
\(715\) −2.07790 + 7.75484i −0.0777091 + 0.290014i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.3387 −0.646625 −0.323312 0.946292i \(-0.604796\pi\)
−0.323312 + 0.946292i \(0.604796\pi\)
\(720\) 0 0
\(721\) −11.5193 −0.429001
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16.5680 61.8325i 0.615318 2.29640i
\(726\) 0 0
\(727\) −25.1782 + 43.6100i −0.933809 + 1.61741i −0.157066 + 0.987588i \(0.550204\pi\)
−0.776743 + 0.629817i \(0.783130\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.61328 6.02084i −0.0596693 0.222689i
\(732\) 0 0
\(733\) −0.123620 + 0.461357i −0.00456602 + 0.0170406i −0.968171 0.250289i \(-0.919474\pi\)
0.963605 + 0.267329i \(0.0861411\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.07632i 0.223824i
\(738\) 0 0
\(739\) −35.7895 + 35.7895i −1.31654 + 1.31654i −0.400038 + 0.916499i \(0.631003\pi\)
−0.916499 + 0.400038i \(0.868997\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.8564 23.5884i 1.49888 0.865376i 0.498877 0.866673i \(-0.333746\pi\)
0.999999 + 0.00129681i \(0.000412789\pi\)
\(744\) 0 0
\(745\) 12.0568 + 6.96101i 0.441728 + 0.255032i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.79711 + 14.1710i 0.138743 + 0.517798i
\(750\) 0 0
\(751\) 12.6419 7.29878i 0.461308 0.266336i −0.251286 0.967913i \(-0.580853\pi\)
0.712594 + 0.701577i \(0.247520\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.11001 + 7.11001i 0.258760 + 0.258760i
\(756\) 0 0
\(757\) 22.1300 22.1300i 0.804329 0.804329i −0.179440 0.983769i \(-0.557429\pi\)
0.983769 + 0.179440i \(0.0574286\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.0131 22.5393i −0.471724 0.817050i 0.527753 0.849398i \(-0.323035\pi\)
−0.999477 + 0.0323484i \(0.989701\pi\)
\(762\) 0 0
\(763\) −24.1821 + 6.47957i −0.875451 + 0.234576i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.28113 + 7.41513i −0.154583 + 0.267745i
\(768\) 0 0
\(769\) −17.7312 30.7114i −0.639404 1.10748i −0.985564 0.169305i \(-0.945848\pi\)
0.346159 0.938176i \(-0.387486\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.23556 3.23556i −0.116375 0.116375i 0.646521 0.762896i \(-0.276223\pi\)
−0.762896 + 0.646521i \(0.776223\pi\)
\(774\) 0 0
\(775\) 20.6672 0.742388
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.33291 1.16100i −0.155243 0.0415972i
\(780\) 0 0
\(781\) 13.3216 3.56951i 0.476683 0.127727i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.9691 + 9.21977i 0.569962 + 0.329068i
\(786\) 0 0
\(787\) −24.4646 6.55528i −0.872070 0.233671i −0.205087 0.978744i \(-0.565748\pi\)
−0.666983 + 0.745073i \(0.732415\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 23.7997i 0.846221i
\(792\) 0 0
\(793\) 7.24645i 0.257329i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −30.4414 8.15674i −1.07829 0.288927i −0.324394 0.945922i \(-0.605160\pi\)
−0.753895 + 0.656995i \(0.771827\pi\)
\(798\) 0 0
\(799\) −25.8596 14.9300i −0.914847 0.528187i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 17.7507 4.75628i 0.626407 0.167845i
\(804\) 0 0
\(805\) −75.1664 20.1408i −2.64927 0.709869i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −46.7989 −1.64536 −0.822681 0.568503i \(-0.807523\pi\)
−0.822681 + 0.568503i \(0.807523\pi\)
\(810\) 0 0
\(811\) −32.5365 32.5365i −1.14251 1.14251i −0.987989 0.154522i \(-0.950616\pi\)
−0.154522 0.987989i \(-0.549384\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −22.0734 38.2322i −0.773197 1.33922i
\(816\) 0 0
\(817\) −2.65526 + 4.59904i −0.0928956 + 0.160900i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.3044 + 2.76106i −0.359627 + 0.0963618i −0.434108 0.900861i \(-0.642937\pi\)
0.0744814 + 0.997222i \(0.476270\pi\)
\(822\) 0 0
\(823\) 9.53960 + 16.5231i 0.332530 + 0.575958i 0.983007 0.183567i \(-0.0587645\pi\)
−0.650478 + 0.759526i \(0.725431\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.6788 11.6788i 0.406113 0.406113i −0.474268 0.880381i \(-0.657287\pi\)
0.880381 + 0.474268i \(0.157287\pi\)
\(828\) 0 0
\(829\) 29.2209 + 29.2209i 1.01488 + 1.01488i 0.999888 + 0.0149948i \(0.00477317\pi\)
0.0149948 + 0.999888i \(0.495227\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.15127 0.664689i 0.0398893 0.0230301i
\(834\) 0 0
\(835\) 7.90094 + 29.4867i 0.273423 + 1.02043i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.64393 2.68117i −0.160326 0.0925643i 0.417690 0.908589i \(-0.362840\pi\)
−0.578016 + 0.816025i \(0.696173\pi\)
\(840\) 0 0
\(841\) −20.6847 + 11.9423i −0.713267 + 0.411805i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 31.3465 31.3465i 1.07835 1.07835i
\(846\) 0 0
\(847\) 17.1242i 0.588394i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −14.1090 + 52.6557i −0.483652 + 1.80501i
\(852\) 0 0
\(853\) 5.89168 + 21.9880i 0.201727 + 0.752856i 0.990422 + 0.138072i \(0.0440904\pi\)
−0.788695 + 0.614785i \(0.789243\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.7367 37.6490i 0.742510 1.28607i −0.208839 0.977950i \(-0.566968\pi\)
0.951349 0.308115i \(-0.0996983\pi\)
\(858\) 0 0
\(859\) −0.490831 + 1.83181i −0.0167469 + 0.0625005i −0.973794 0.227433i \(-0.926967\pi\)
0.957047 + 0.289934i \(0.0936333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.75112 0.195770 0.0978852 0.995198i \(-0.468792\pi\)
0.0978852 + 0.995198i \(0.468792\pi\)
\(864\) 0 0
\(865\) −95.6627 −3.25263
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.53100 13.1779i 0.119781 0.447029i
\(870\) 0 0
\(871\) 1.50106 2.59992i 0.0508616 0.0880949i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.44921 + 35.2649i 0.319442 + 1.19217i
\(876\) 0 0
\(877\) −10.6306 + 39.6739i −0.358969 + 1.33969i 0.516446 + 0.856320i \(0.327255\pi\)
−0.875415 + 0.483372i \(0.839412\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.20282i 0.242669i −0.992612 0.121335i \(-0.961283\pi\)
0.992612 0.121335i \(-0.0387174\pi\)
\(882\) 0 0
\(883\) 30.8474 30.8474i 1.03810 1.03810i 0.0388519 0.999245i \(-0.487630\pi\)
0.999245 0.0388519i \(-0.0123701\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 34.5994 19.9760i 1.16173 0.670728i 0.210016 0.977698i \(-0.432649\pi\)
0.951719 + 0.306970i \(0.0993152\pi\)
\(888\) 0 0
\(889\) 10.6487 + 6.14801i 0.357145 + 0.206198i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.58431 + 24.5730i 0.220336 + 0.822304i
\(894\) 0 0
\(895\) −66.3904 + 38.3305i −2.21919 + 1.28125i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.0732 12.0732i −0.402665 0.402665i
\(900\) 0 0
\(901\) 2.26183 2.26183i 0.0753526 0.0753526i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −21.5259 37.2840i −0.715546 1.23936i
\(906\) 0 0
\(907\) 43.5725 11.6752i 1.44680 0.387670i 0.551892 0.833916i \(-0.313906\pi\)
0.894910 + 0.446246i \(0.147239\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.452588 + 0.783905i −0.0149949 + 0.0259719i −0.873425 0.486958i \(-0.838107\pi\)
0.858431 + 0.512930i \(0.171440\pi\)
\(912\) 0 0
\(913\) −8.35479 14.4709i −0.276503 0.478917i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.8244 15.8244i −0.522566 0.522566i
\(918\) 0 0
\(919\) 0.631829 0.0208421 0.0104211 0.999946i \(-0.496683\pi\)
0.0104211 + 0.999946i \(0.496683\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.58179 + 1.76359i 0.216642 + 0.0580492i
\(924\) 0 0
\(925\) 57.1873 15.3233i 1.88031 0.503826i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.7169 + 12.5383i 0.712509 + 0.411367i 0.811989 0.583672i \(-0.198385\pi\)
−0.0994805 + 0.995040i \(0.531718\pi\)
\(930\) 0 0
\(931\) −1.09399 0.293135i −0.0358542 0.00960711i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32.1505i 1.05143i
\(936\) 0 0
\(937\) 40.0398i 1.30804i 0.756476 + 0.654021i \(0.226919\pi\)
−0.756476 + 0.654021i \(0.773081\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.3853 + 2.78273i 0.338551 + 0.0907146i 0.424089 0.905620i \(-0.360594\pi\)
−0.0855380 + 0.996335i \(0.527261\pi\)
\(942\) 0 0
\(943\) 8.93140 + 5.15654i 0.290846 + 0.167920i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −37.6297 + 10.0828i −1.22280 + 0.327648i −0.811772 0.583975i \(-0.801497\pi\)
−0.411028 + 0.911623i \(0.634830\pi\)
\(948\) 0 0
\(949\) 8.77007 + 2.34993i 0.284689 + 0.0762821i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.83389 0.253765 0.126882 0.991918i \(-0.459503\pi\)
0.126882 + 0.991918i \(0.459503\pi\)
\(954\) 0 0
\(955\) −14.7419 14.7419i −0.477037 0.477037i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −21.4388 37.1331i −0.692295 1.19909i
\(960\) 0 0
\(961\) −12.7438 + 22.0728i −0.411089 + 0.712027i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −90.2370 + 24.1789i −2.90483 + 0.778347i
\(966\) 0 0
\(967\) −22.1358 38.3403i −0.711839 1.23294i −0.964166 0.265299i \(-0.914529\pi\)
0.252328 0.967642i \(-0.418804\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.0737 28.0737i 0.900928 0.900928i −0.0945888 0.995516i \(-0.530154\pi\)
0.995516 + 0.0945888i \(0.0301536\pi\)
\(972\) 0 0
\(973\) 13.0048 + 13.0048i 0.416914 + 0.416914i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.8614 8.58022i 0.475458 0.274506i −0.243064 0.970010i \(-0.578152\pi\)
0.718522 + 0.695505i \(0.244819\pi\)
\(978\) 0 0
\(979\) 7.68293 + 28.6731i 0.245547 + 0.916396i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −26.8455 15.4993i −0.856240 0.494350i 0.00651160 0.999979i \(-0.497927\pi\)
−0.862751 + 0.505629i \(0.831261\pi\)
\(984\) 0 0
\(985\) 19.6423 11.3405i 0.625854 0.361337i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.63324 8.63324i 0.274521 0.274521i
\(990\) 0 0
\(991\) 37.2374i 1.18289i −0.806347 0.591443i \(-0.798558\pi\)
0.806347 0.591443i \(-0.201442\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.1008 52.6247i 0.447024 1.66832i
\(996\) 0 0
\(997\) −3.73234 13.9293i −0.118204 0.441145i 0.881302 0.472553i \(-0.156667\pi\)
−0.999507 + 0.0314082i \(0.990001\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.1007.21 88
3.2 odd 2 576.2.y.a.47.1 88
4.3 odd 2 432.2.v.a.35.21 88
9.4 even 3 576.2.y.a.239.10 88
9.5 odd 6 inner 1728.2.z.a.1583.21 88
12.11 even 2 144.2.u.a.83.2 yes 88
16.5 even 4 432.2.v.a.251.14 88
16.11 odd 4 inner 1728.2.z.a.143.21 88
36.23 even 6 432.2.v.a.179.14 88
36.31 odd 6 144.2.u.a.131.9 yes 88
48.5 odd 4 144.2.u.a.11.9 88
48.11 even 4 576.2.y.a.335.10 88
144.5 odd 12 432.2.v.a.395.21 88
144.59 even 12 inner 1728.2.z.a.719.21 88
144.85 even 12 144.2.u.a.59.2 yes 88
144.139 odd 12 576.2.y.a.527.1 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.9 88 48.5 odd 4
144.2.u.a.59.2 yes 88 144.85 even 12
144.2.u.a.83.2 yes 88 12.11 even 2
144.2.u.a.131.9 yes 88 36.31 odd 6
432.2.v.a.35.21 88 4.3 odd 2
432.2.v.a.179.14 88 36.23 even 6
432.2.v.a.251.14 88 16.5 even 4
432.2.v.a.395.21 88 144.5 odd 12
576.2.y.a.47.1 88 3.2 odd 2
576.2.y.a.239.10 88 9.4 even 3
576.2.y.a.335.10 88 48.11 even 4
576.2.y.a.527.1 88 144.139 odd 12
1728.2.z.a.143.21 88 16.11 odd 4 inner
1728.2.z.a.719.21 88 144.59 even 12 inner
1728.2.z.a.1007.21 88 1.1 even 1 trivial
1728.2.z.a.1583.21 88 9.5 odd 6 inner