Properties

Label 1710.4.f.a.341.3
Level $1710$
Weight $4$
Character 1710.341
Analytic conductor $100.893$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(341,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.341"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 341.3
Character \(\chi\) \(=\) 1710.341
Dual form 1710.4.f.a.341.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -5.00000i q^{5} +32.6046 q^{7} -8.00000 q^{8} +10.0000i q^{10} -52.9133i q^{11} +20.1863i q^{13} -65.2091 q^{14} +16.0000 q^{16} -21.3488i q^{17} +(50.1729 + 65.8914i) q^{19} -20.0000i q^{20} +105.827i q^{22} +24.2406i q^{23} -25.0000 q^{25} -40.3725i q^{26} +130.418 q^{28} +186.987 q^{29} +118.246i q^{31} -32.0000 q^{32} +42.6976i q^{34} -163.023i q^{35} +229.120i q^{37} +(-100.346 - 131.783i) q^{38} +40.0000i q^{40} +79.7794 q^{41} +85.5228 q^{43} -211.653i q^{44} -48.4811i q^{46} +216.581i q^{47} +720.057 q^{49} +50.0000 q^{50} +80.7450i q^{52} +475.719 q^{53} -264.567 q^{55} -260.836 q^{56} -373.974 q^{58} +418.563 q^{59} -16.3957 q^{61} -236.492i q^{62} +64.0000 q^{64} +100.931 q^{65} -769.606i q^{67} -85.3952i q^{68} +326.046i q^{70} +358.177 q^{71} -173.467 q^{73} -458.239i q^{74} +(200.692 + 263.566i) q^{76} -1725.22i q^{77} +475.363i q^{79} -80.0000i q^{80} -159.559 q^{82} +1275.17i q^{83} -106.744 q^{85} -171.046 q^{86} +423.307i q^{88} -933.329 q^{89} +658.164i q^{91} +96.9623i q^{92} -433.162i q^{94} +(329.457 - 250.864i) q^{95} +324.190i q^{97} -1440.11 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 80 q^{2} + 160 q^{4} - 56 q^{7} - 320 q^{8} + 112 q^{14} + 640 q^{16} - 76 q^{19} - 1000 q^{25} - 224 q^{28} - 120 q^{29} - 1280 q^{32} + 152 q^{38} - 312 q^{41} + 56 q^{43} + 2112 q^{49} + 2000 q^{50}+ \cdots - 4224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 32.6046 1.76048 0.880240 0.474528i \(-0.157381\pi\)
0.880240 + 0.474528i \(0.157381\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000i 0.316228i
\(11\) 52.9133i 1.45036i −0.688559 0.725180i \(-0.741756\pi\)
0.688559 0.725180i \(-0.258244\pi\)
\(12\) 0 0
\(13\) 20.1863i 0.430666i 0.976541 + 0.215333i \(0.0690837\pi\)
−0.976541 + 0.215333i \(0.930916\pi\)
\(14\) −65.2091 −1.24485
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 21.3488i 0.304579i −0.988336 0.152290i \(-0.951335\pi\)
0.988336 0.152290i \(-0.0486646\pi\)
\(18\) 0 0
\(19\) 50.1729 + 65.8914i 0.605813 + 0.795607i
\(20\) 20.0000i 0.223607i
\(21\) 0 0
\(22\) 105.827i 1.02556i
\(23\) 24.2406i 0.219761i 0.993945 + 0.109881i \(0.0350469\pi\)
−0.993945 + 0.109881i \(0.964953\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 40.3725i 0.304527i
\(27\) 0 0
\(28\) 130.418 0.880240
\(29\) 186.987 1.19733 0.598666 0.800999i \(-0.295698\pi\)
0.598666 + 0.800999i \(0.295698\pi\)
\(30\) 0 0
\(31\) 118.246i 0.685085i 0.939502 + 0.342543i \(0.111288\pi\)
−0.939502 + 0.342543i \(0.888712\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 42.6976i 0.215370i
\(35\) 163.023i 0.787311i
\(36\) 0 0
\(37\) 229.120i 1.01803i 0.860758 + 0.509014i \(0.169990\pi\)
−0.860758 + 0.509014i \(0.830010\pi\)
\(38\) −100.346 131.783i −0.428374 0.562579i
\(39\) 0 0
\(40\) 40.0000i 0.158114i
\(41\) 79.7794 0.303889 0.151945 0.988389i \(-0.451446\pi\)
0.151945 + 0.988389i \(0.451446\pi\)
\(42\) 0 0
\(43\) 85.5228 0.303305 0.151652 0.988434i \(-0.451541\pi\)
0.151652 + 0.988434i \(0.451541\pi\)
\(44\) 211.653i 0.725180i
\(45\) 0 0
\(46\) 48.4811i 0.155395i
\(47\) 216.581i 0.672161i 0.941833 + 0.336081i \(0.109102\pi\)
−0.941833 + 0.336081i \(0.890898\pi\)
\(48\) 0 0
\(49\) 720.057 2.09929
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 80.7450i 0.215333i
\(53\) 475.719 1.23293 0.616463 0.787384i \(-0.288565\pi\)
0.616463 + 0.787384i \(0.288565\pi\)
\(54\) 0 0
\(55\) −264.567 −0.648621
\(56\) −260.836 −0.622424
\(57\) 0 0
\(58\) −373.974 −0.846641
\(59\) 418.563 0.923597 0.461799 0.886985i \(-0.347204\pi\)
0.461799 + 0.886985i \(0.347204\pi\)
\(60\) 0 0
\(61\) −16.3957 −0.0344140 −0.0172070 0.999852i \(-0.505477\pi\)
−0.0172070 + 0.999852i \(0.505477\pi\)
\(62\) 236.492i 0.484429i
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 100.931 0.192600
\(66\) 0 0
\(67\) 769.606i 1.40332i −0.712513 0.701659i \(-0.752443\pi\)
0.712513 0.701659i \(-0.247557\pi\)
\(68\) 85.3952i 0.152290i
\(69\) 0 0
\(70\) 326.046i 0.556713i
\(71\) 358.177 0.598701 0.299351 0.954143i \(-0.403230\pi\)
0.299351 + 0.954143i \(0.403230\pi\)
\(72\) 0 0
\(73\) −173.467 −0.278120 −0.139060 0.990284i \(-0.544408\pi\)
−0.139060 + 0.990284i \(0.544408\pi\)
\(74\) 458.239i 0.719855i
\(75\) 0 0
\(76\) 200.692 + 263.566i 0.302907 + 0.397804i
\(77\) 1725.22i 2.55333i
\(78\) 0 0
\(79\) 475.363i 0.676994i 0.940967 + 0.338497i \(0.109919\pi\)
−0.940967 + 0.338497i \(0.890081\pi\)
\(80\) 80.0000i 0.111803i
\(81\) 0 0
\(82\) −159.559 −0.214882
\(83\) 1275.17i 1.68636i 0.537633 + 0.843179i \(0.319319\pi\)
−0.537633 + 0.843179i \(0.680681\pi\)
\(84\) 0 0
\(85\) −106.744 −0.136212
\(86\) −171.046 −0.214469
\(87\) 0 0
\(88\) 423.307i 0.512780i
\(89\) −933.329 −1.11160 −0.555802 0.831315i \(-0.687589\pi\)
−0.555802 + 0.831315i \(0.687589\pi\)
\(90\) 0 0
\(91\) 658.164i 0.758179i
\(92\) 96.9623i 0.109881i
\(93\) 0 0
\(94\) 433.162i 0.475290i
\(95\) 329.457 250.864i 0.355806 0.270928i
\(96\) 0 0
\(97\) 324.190i 0.339345i 0.985501 + 0.169672i \(0.0542710\pi\)
−0.985501 + 0.169672i \(0.945729\pi\)
\(98\) −1440.11 −1.48442
\(99\) 0 0
\(100\) −100.000 −0.100000
\(101\) 685.379i 0.675225i 0.941285 + 0.337613i \(0.109619\pi\)
−0.941285 + 0.337613i \(0.890381\pi\)
\(102\) 0 0
\(103\) 133.983i 0.128173i −0.997944 0.0640863i \(-0.979587\pi\)
0.997944 0.0640863i \(-0.0204133\pi\)
\(104\) 161.490i 0.152263i
\(105\) 0 0
\(106\) −951.438 −0.871810
\(107\) 736.340 0.665277 0.332638 0.943054i \(-0.392061\pi\)
0.332638 + 0.943054i \(0.392061\pi\)
\(108\) 0 0
\(109\) 884.479i 0.777227i 0.921401 + 0.388613i \(0.127046\pi\)
−0.921401 + 0.388613i \(0.872954\pi\)
\(110\) 529.133 0.458644
\(111\) 0 0
\(112\) 521.673 0.440120
\(113\) −2128.70 −1.77214 −0.886068 0.463555i \(-0.846574\pi\)
−0.886068 + 0.463555i \(0.846574\pi\)
\(114\) 0 0
\(115\) 121.203 0.0982802
\(116\) 747.948 0.598666
\(117\) 0 0
\(118\) −837.126 −0.653082
\(119\) 696.068i 0.536205i
\(120\) 0 0
\(121\) −1468.82 −1.10355
\(122\) 32.7914 0.0243344
\(123\) 0 0
\(124\) 472.985i 0.342543i
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 1919.74i 1.34133i −0.741760 0.670666i \(-0.766008\pi\)
0.741760 0.670666i \(-0.233992\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −201.863 −0.136189
\(131\) 602.975i 0.402154i −0.979575 0.201077i \(-0.935556\pi\)
0.979575 0.201077i \(-0.0644442\pi\)
\(132\) 0 0
\(133\) 1635.86 + 2148.36i 1.06652 + 1.40065i
\(134\) 1539.21i 0.992296i
\(135\) 0 0
\(136\) 170.790i 0.107685i
\(137\) 390.538i 0.243547i 0.992558 + 0.121773i \(0.0388581\pi\)
−0.992558 + 0.121773i \(0.961142\pi\)
\(138\) 0 0
\(139\) 2712.81 1.65538 0.827689 0.561186i \(-0.189655\pi\)
0.827689 + 0.561186i \(0.189655\pi\)
\(140\) 652.091i 0.393655i
\(141\) 0 0
\(142\) −716.354 −0.423346
\(143\) 1068.12 0.624621
\(144\) 0 0
\(145\) 934.935i 0.535463i
\(146\) 346.934 0.196661
\(147\) 0 0
\(148\) 916.479i 0.509014i
\(149\) 2172.84i 1.19467i −0.801991 0.597336i \(-0.796226\pi\)
0.801991 0.597336i \(-0.203774\pi\)
\(150\) 0 0
\(151\) 316.539i 0.170593i −0.996356 0.0852965i \(-0.972816\pi\)
0.996356 0.0852965i \(-0.0271838\pi\)
\(152\) −401.383 527.132i −0.214187 0.281290i
\(153\) 0 0
\(154\) 3450.43i 1.80548i
\(155\) 591.231 0.306379
\(156\) 0 0
\(157\) −2883.16 −1.46561 −0.732806 0.680438i \(-0.761790\pi\)
−0.732806 + 0.680438i \(0.761790\pi\)
\(158\) 950.727i 0.478707i
\(159\) 0 0
\(160\) 160.000i 0.0790569i
\(161\) 790.353i 0.386885i
\(162\) 0 0
\(163\) −387.370 −0.186142 −0.0930709 0.995659i \(-0.529668\pi\)
−0.0930709 + 0.995659i \(0.529668\pi\)
\(164\) 319.118 0.151945
\(165\) 0 0
\(166\) 2550.33i 1.19244i
\(167\) −1191.80 −0.552242 −0.276121 0.961123i \(-0.589049\pi\)
−0.276121 + 0.961123i \(0.589049\pi\)
\(168\) 0 0
\(169\) 1789.52 0.814527
\(170\) 213.488 0.0963164
\(171\) 0 0
\(172\) 342.091 0.151652
\(173\) −1079.15 −0.474254 −0.237127 0.971479i \(-0.576206\pi\)
−0.237127 + 0.971479i \(0.576206\pi\)
\(174\) 0 0
\(175\) −815.114 −0.352096
\(176\) 846.613i 0.362590i
\(177\) 0 0
\(178\) 1866.66 0.786022
\(179\) −2093.09 −0.873995 −0.436998 0.899463i \(-0.643958\pi\)
−0.436998 + 0.899463i \(0.643958\pi\)
\(180\) 0 0
\(181\) 1400.49i 0.575125i 0.957762 + 0.287563i \(0.0928450\pi\)
−0.957762 + 0.287563i \(0.907155\pi\)
\(182\) 1316.33i 0.536114i
\(183\) 0 0
\(184\) 193.925i 0.0776973i
\(185\) 1145.60 0.455276
\(186\) 0 0
\(187\) −1129.64 −0.441749
\(188\) 866.324i 0.336081i
\(189\) 0 0
\(190\) −658.914 + 501.729i −0.251593 + 0.191575i
\(191\) 3957.48i 1.49923i −0.661874 0.749615i \(-0.730239\pi\)
0.661874 0.749615i \(-0.269761\pi\)
\(192\) 0 0
\(193\) 193.248i 0.0720739i 0.999350 + 0.0360370i \(0.0114734\pi\)
−0.999350 + 0.0360370i \(0.988527\pi\)
\(194\) 648.379i 0.239953i
\(195\) 0 0
\(196\) 2880.23 1.04965
\(197\) 3971.35i 1.43628i −0.695898 0.718140i \(-0.744994\pi\)
0.695898 0.718140i \(-0.255006\pi\)
\(198\) 0 0
\(199\) 4340.04 1.54602 0.773008 0.634396i \(-0.218751\pi\)
0.773008 + 0.634396i \(0.218751\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) 1370.76i 0.477456i
\(203\) 6096.63 2.10788
\(204\) 0 0
\(205\) 398.897i 0.135903i
\(206\) 267.967i 0.0906316i
\(207\) 0 0
\(208\) 322.980i 0.107667i
\(209\) 3486.54 2654.81i 1.15392 0.878647i
\(210\) 0 0
\(211\) 3071.11i 1.00201i 0.865445 + 0.501005i \(0.167036\pi\)
−0.865445 + 0.501005i \(0.832964\pi\)
\(212\) 1902.88 0.616463
\(213\) 0 0
\(214\) −1472.68 −0.470422
\(215\) 427.614i 0.135642i
\(216\) 0 0
\(217\) 3855.36i 1.20608i
\(218\) 1768.96i 0.549582i
\(219\) 0 0
\(220\) −1058.27 −0.324310
\(221\) 430.952 0.131172
\(222\) 0 0
\(223\) 1531.70i 0.459956i 0.973196 + 0.229978i \(0.0738655\pi\)
−0.973196 + 0.229978i \(0.926135\pi\)
\(224\) −1043.35 −0.311212
\(225\) 0 0
\(226\) 4257.40 1.25309
\(227\) 5558.67 1.62529 0.812647 0.582756i \(-0.198026\pi\)
0.812647 + 0.582756i \(0.198026\pi\)
\(228\) 0 0
\(229\) −3306.38 −0.954114 −0.477057 0.878872i \(-0.658296\pi\)
−0.477057 + 0.878872i \(0.658296\pi\)
\(230\) −242.406 −0.0694946
\(231\) 0 0
\(232\) −1495.90 −0.423321
\(233\) 3124.50i 0.878510i −0.898362 0.439255i \(-0.855242\pi\)
0.898362 0.439255i \(-0.144758\pi\)
\(234\) 0 0
\(235\) 1082.91 0.300600
\(236\) 1674.25 0.461799
\(237\) 0 0
\(238\) 1392.14i 0.379154i
\(239\) 2597.12i 0.702903i −0.936206 0.351451i \(-0.885688\pi\)
0.936206 0.351451i \(-0.114312\pi\)
\(240\) 0 0
\(241\) 2709.02i 0.724081i −0.932162 0.362041i \(-0.882080\pi\)
0.932162 0.362041i \(-0.117920\pi\)
\(242\) 2937.64 0.780325
\(243\) 0 0
\(244\) −65.5828 −0.0172070
\(245\) 3600.28i 0.938832i
\(246\) 0 0
\(247\) −1330.10 + 1012.80i −0.342641 + 0.260903i
\(248\) 945.970i 0.242214i
\(249\) 0 0
\(250\) 250.000i 0.0632456i
\(251\) 170.585i 0.0428973i 0.999770 + 0.0214487i \(0.00682785\pi\)
−0.999770 + 0.0214487i \(0.993172\pi\)
\(252\) 0 0
\(253\) 1282.65 0.318733
\(254\) 3839.47i 0.948465i
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4928.58 1.19625 0.598125 0.801403i \(-0.295913\pi\)
0.598125 + 0.801403i \(0.295913\pi\)
\(258\) 0 0
\(259\) 7470.34i 1.79222i
\(260\) 403.725 0.0962999
\(261\) 0 0
\(262\) 1205.95i 0.284366i
\(263\) 6370.31i 1.49358i 0.665062 + 0.746788i \(0.268405\pi\)
−0.665062 + 0.746788i \(0.731595\pi\)
\(264\) 0 0
\(265\) 2378.60i 0.551381i
\(266\) −3271.73 4296.72i −0.754145 0.990410i
\(267\) 0 0
\(268\) 3078.42i 0.701659i
\(269\) −6479.43 −1.46862 −0.734308 0.678816i \(-0.762493\pi\)
−0.734308 + 0.678816i \(0.762493\pi\)
\(270\) 0 0
\(271\) 3026.25 0.678345 0.339173 0.940724i \(-0.389853\pi\)
0.339173 + 0.940724i \(0.389853\pi\)
\(272\) 341.581i 0.0761448i
\(273\) 0 0
\(274\) 781.076i 0.172214i
\(275\) 1322.83i 0.290072i
\(276\) 0 0
\(277\) 989.863 0.214712 0.107356 0.994221i \(-0.465762\pi\)
0.107356 + 0.994221i \(0.465762\pi\)
\(278\) −5425.62 −1.17053
\(279\) 0 0
\(280\) 1304.18i 0.278356i
\(281\) −7382.21 −1.56721 −0.783605 0.621260i \(-0.786621\pi\)
−0.783605 + 0.621260i \(0.786621\pi\)
\(282\) 0 0
\(283\) 3104.66 0.652129 0.326065 0.945347i \(-0.394277\pi\)
0.326065 + 0.945347i \(0.394277\pi\)
\(284\) 1432.71 0.299351
\(285\) 0 0
\(286\) −2136.24 −0.441674
\(287\) 2601.17 0.534991
\(288\) 0 0
\(289\) 4457.23 0.907232
\(290\) 1869.87i 0.378630i
\(291\) 0 0
\(292\) −693.868 −0.139060
\(293\) 9085.97 1.81163 0.905816 0.423672i \(-0.139259\pi\)
0.905816 + 0.423672i \(0.139259\pi\)
\(294\) 0 0
\(295\) 2092.81i 0.413045i
\(296\) 1832.96i 0.359927i
\(297\) 0 0
\(298\) 4345.68i 0.844760i
\(299\) −489.326 −0.0946437
\(300\) 0 0
\(301\) 2788.43 0.533962
\(302\) 633.077i 0.120627i
\(303\) 0 0
\(304\) 802.766 + 1054.26i 0.151453 + 0.198902i
\(305\) 81.9785i 0.0153904i
\(306\) 0 0
\(307\) 2544.01i 0.472946i 0.971638 + 0.236473i \(0.0759915\pi\)
−0.971638 + 0.236473i \(0.924009\pi\)
\(308\) 6900.86i 1.27667i
\(309\) 0 0
\(310\) −1182.46 −0.216643
\(311\) 5169.11i 0.942488i −0.882003 0.471244i \(-0.843805\pi\)
0.882003 0.471244i \(-0.156195\pi\)
\(312\) 0 0
\(313\) 6584.44 1.18906 0.594528 0.804075i \(-0.297339\pi\)
0.594528 + 0.804075i \(0.297339\pi\)
\(314\) 5766.31 1.03634
\(315\) 0 0
\(316\) 1901.45i 0.338497i
\(317\) −3044.97 −0.539503 −0.269752 0.962930i \(-0.586942\pi\)
−0.269752 + 0.962930i \(0.586942\pi\)
\(318\) 0 0
\(319\) 9894.10i 1.73656i
\(320\) 320.000i 0.0559017i
\(321\) 0 0
\(322\) 1580.71i 0.273569i
\(323\) 1406.70 1071.13i 0.242325 0.184518i
\(324\) 0 0
\(325\) 504.656i 0.0861332i
\(326\) 774.739 0.131622
\(327\) 0 0
\(328\) −638.236 −0.107441
\(329\) 7061.53i 1.18333i
\(330\) 0 0
\(331\) 9909.79i 1.64559i −0.568337 0.822796i \(-0.692413\pi\)
0.568337 0.822796i \(-0.307587\pi\)
\(332\) 5100.67i 0.843179i
\(333\) 0 0
\(334\) 2383.60 0.390494
\(335\) −3848.03 −0.627583
\(336\) 0 0
\(337\) 6770.17i 1.09435i 0.837019 + 0.547173i \(0.184296\pi\)
−0.837019 + 0.547173i \(0.815704\pi\)
\(338\) −3579.03 −0.575957
\(339\) 0 0
\(340\) −426.976 −0.0681059
\(341\) 6256.80 0.993621
\(342\) 0 0
\(343\) 12293.8 1.93528
\(344\) −684.182 −0.107234
\(345\) 0 0
\(346\) 2158.29 0.335348
\(347\) 10131.6i 1.56742i 0.621129 + 0.783709i \(0.286674\pi\)
−0.621129 + 0.783709i \(0.713326\pi\)
\(348\) 0 0
\(349\) 313.776 0.0481262 0.0240631 0.999710i \(-0.492340\pi\)
0.0240631 + 0.999710i \(0.492340\pi\)
\(350\) 1630.23 0.248970
\(351\) 0 0
\(352\) 1693.23i 0.256390i
\(353\) 808.934i 0.121969i 0.998139 + 0.0609847i \(0.0194241\pi\)
−0.998139 + 0.0609847i \(0.980576\pi\)
\(354\) 0 0
\(355\) 1790.89i 0.267747i
\(356\) −3733.32 −0.555802
\(357\) 0 0
\(358\) 4186.19 0.618008
\(359\) 3535.56i 0.519776i 0.965639 + 0.259888i \(0.0836857\pi\)
−0.965639 + 0.259888i \(0.916314\pi\)
\(360\) 0 0
\(361\) −1824.36 + 6611.93i −0.265981 + 0.963978i
\(362\) 2800.98i 0.406675i
\(363\) 0 0
\(364\) 2632.65i 0.379090i
\(365\) 867.335i 0.124379i
\(366\) 0 0
\(367\) 12642.8 1.79822 0.899110 0.437724i \(-0.144215\pi\)
0.899110 + 0.437724i \(0.144215\pi\)
\(368\) 387.849i 0.0549403i
\(369\) 0 0
\(370\) −2291.20 −0.321929
\(371\) 15510.6 2.17054
\(372\) 0 0
\(373\) 12884.5i 1.78856i −0.447509 0.894279i \(-0.647689\pi\)
0.447509 0.894279i \(-0.352311\pi\)
\(374\) 2259.27 0.312364
\(375\) 0 0
\(376\) 1732.65i 0.237645i
\(377\) 3774.57i 0.515650i
\(378\) 0 0
\(379\) 14537.8i 1.97033i −0.171602 0.985166i \(-0.554894\pi\)
0.171602 0.985166i \(-0.445106\pi\)
\(380\) 1317.83 1003.46i 0.177903 0.135464i
\(381\) 0 0
\(382\) 7914.95i 1.06012i
\(383\) −8218.59 −1.09648 −0.548238 0.836322i \(-0.684701\pi\)
−0.548238 + 0.836322i \(0.684701\pi\)
\(384\) 0 0
\(385\) −8626.08 −1.14188
\(386\) 386.495i 0.0509640i
\(387\) 0 0
\(388\) 1296.76i 0.169672i
\(389\) 8759.62i 1.14172i −0.821046 0.570861i \(-0.806609\pi\)
0.821046 0.570861i \(-0.193391\pi\)
\(390\) 0 0
\(391\) 517.507 0.0669347
\(392\) −5760.46 −0.742212
\(393\) 0 0
\(394\) 7942.71i 1.01560i
\(395\) 2376.82 0.302761
\(396\) 0 0
\(397\) 9334.89 1.18011 0.590056 0.807362i \(-0.299106\pi\)
0.590056 + 0.807362i \(0.299106\pi\)
\(398\) −8680.08 −1.09320
\(399\) 0 0
\(400\) −400.000 −0.0500000
\(401\) 12194.4 1.51860 0.759298 0.650743i \(-0.225542\pi\)
0.759298 + 0.650743i \(0.225542\pi\)
\(402\) 0 0
\(403\) −2386.95 −0.295043
\(404\) 2741.52i 0.337613i
\(405\) 0 0
\(406\) −12193.3 −1.49050
\(407\) 12123.5 1.47651
\(408\) 0 0
\(409\) 12954.3i 1.56613i −0.621941 0.783064i \(-0.713656\pi\)
0.621941 0.783064i \(-0.286344\pi\)
\(410\) 797.794i 0.0960982i
\(411\) 0 0
\(412\) 535.933i 0.0640863i
\(413\) 13647.1 1.62597
\(414\) 0 0
\(415\) 6375.83 0.754162
\(416\) 645.960i 0.0761317i
\(417\) 0 0
\(418\) −6973.07 + 5309.63i −0.815943 + 0.621297i
\(419\) 1466.91i 0.171034i −0.996337 0.0855171i \(-0.972746\pi\)
0.996337 0.0855171i \(-0.0272542\pi\)
\(420\) 0 0
\(421\) 7089.04i 0.820662i 0.911937 + 0.410331i \(0.134587\pi\)
−0.911937 + 0.410331i \(0.865413\pi\)
\(422\) 6142.22i 0.708527i
\(423\) 0 0
\(424\) −3805.75 −0.435905
\(425\) 533.720i 0.0609158i
\(426\) 0 0
\(427\) −534.575 −0.0605852
\(428\) 2945.36 0.332638
\(429\) 0 0
\(430\) 855.228i 0.0959134i
\(431\) −6662.99 −0.744651 −0.372326 0.928102i \(-0.621440\pi\)
−0.372326 + 0.928102i \(0.621440\pi\)
\(432\) 0 0
\(433\) 10340.0i 1.14760i 0.818996 + 0.573799i \(0.194531\pi\)
−0.818996 + 0.573799i \(0.805469\pi\)
\(434\) 7710.73i 0.852827i
\(435\) 0 0
\(436\) 3537.92i 0.388613i
\(437\) −1597.25 + 1216.22i −0.174844 + 0.133134i
\(438\) 0 0
\(439\) 6619.90i 0.719705i −0.933009 0.359853i \(-0.882827\pi\)
0.933009 0.359853i \(-0.117173\pi\)
\(440\) 2116.53 0.229322
\(441\) 0 0
\(442\) −861.904 −0.0927525
\(443\) 3409.67i 0.365685i −0.983142 0.182842i \(-0.941470\pi\)
0.983142 0.182842i \(-0.0585298\pi\)
\(444\) 0 0
\(445\) 4666.65i 0.497124i
\(446\) 3063.40i 0.325238i
\(447\) 0 0
\(448\) 2086.69 0.220060
\(449\) −15642.3 −1.64411 −0.822057 0.569405i \(-0.807173\pi\)
−0.822057 + 0.569405i \(0.807173\pi\)
\(450\) 0 0
\(451\) 4221.40i 0.440749i
\(452\) −8514.81 −0.886068
\(453\) 0 0
\(454\) −11117.3 −1.14926
\(455\) 3290.82 0.339068
\(456\) 0 0
\(457\) 1073.59 0.109892 0.0549460 0.998489i \(-0.482501\pi\)
0.0549460 + 0.998489i \(0.482501\pi\)
\(458\) 6612.77 0.674660
\(459\) 0 0
\(460\) 484.811 0.0491401
\(461\) 3384.99i 0.341984i −0.985272 0.170992i \(-0.945303\pi\)
0.985272 0.170992i \(-0.0546972\pi\)
\(462\) 0 0
\(463\) 6722.43 0.674768 0.337384 0.941367i \(-0.390458\pi\)
0.337384 + 0.941367i \(0.390458\pi\)
\(464\) 2991.79 0.299333
\(465\) 0 0
\(466\) 6249.00i 0.621201i
\(467\) 785.347i 0.0778191i 0.999243 + 0.0389096i \(0.0123884\pi\)
−0.999243 + 0.0389096i \(0.987612\pi\)
\(468\) 0 0
\(469\) 25092.7i 2.47051i
\(470\) −2165.81 −0.212556
\(471\) 0 0
\(472\) −3348.50 −0.326541
\(473\) 4525.29i 0.439901i
\(474\) 0 0
\(475\) −1254.32 1647.29i −0.121163 0.159121i
\(476\) 2784.27i 0.268103i
\(477\) 0 0
\(478\) 5194.24i 0.497027i
\(479\) 8127.14i 0.775237i −0.921820 0.387619i \(-0.873298\pi\)
0.921820 0.387619i \(-0.126702\pi\)
\(480\) 0 0
\(481\) −4625.07 −0.438430
\(482\) 5418.05i 0.512003i
\(483\) 0 0
\(484\) −5875.28 −0.551773
\(485\) 1620.95 0.151760
\(486\) 0 0
\(487\) 6703.97i 0.623790i −0.950117 0.311895i \(-0.899036\pi\)
0.950117 0.311895i \(-0.100964\pi\)
\(488\) 131.166 0.0121672
\(489\) 0 0
\(490\) 7200.57i 0.663854i
\(491\) 1359.32i 0.124940i 0.998047 + 0.0624698i \(0.0198977\pi\)
−0.998047 + 0.0624698i \(0.980102\pi\)
\(492\) 0 0
\(493\) 3991.95i 0.364682i
\(494\) 2660.20 2025.60i 0.242284 0.184486i
\(495\) 0 0
\(496\) 1891.94i 0.171271i
\(497\) 11678.2 1.05400
\(498\) 0 0
\(499\) −9449.65 −0.847744 −0.423872 0.905722i \(-0.639329\pi\)
−0.423872 + 0.905722i \(0.639329\pi\)
\(500\) 500.000i 0.0447214i
\(501\) 0 0
\(502\) 341.170i 0.0303330i
\(503\) 3954.44i 0.350537i 0.984521 + 0.175268i \(0.0560793\pi\)
−0.984521 + 0.175268i \(0.943921\pi\)
\(504\) 0 0
\(505\) 3426.89 0.301970
\(506\) −2565.30 −0.225378
\(507\) 0 0
\(508\) 7678.95i 0.670666i
\(509\) 9984.26 0.869439 0.434719 0.900566i \(-0.356848\pi\)
0.434719 + 0.900566i \(0.356848\pi\)
\(510\) 0 0
\(511\) −5655.81 −0.489625
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −9857.16 −0.845877
\(515\) −669.917 −0.0573205
\(516\) 0 0
\(517\) 11460.0 0.974877
\(518\) 14940.7i 1.26729i
\(519\) 0 0
\(520\) −807.450 −0.0680943
\(521\) 1419.65 0.119378 0.0596892 0.998217i \(-0.480989\pi\)
0.0596892 + 0.998217i \(0.480989\pi\)
\(522\) 0 0
\(523\) 1225.63i 0.102472i 0.998687 + 0.0512362i \(0.0163161\pi\)
−0.998687 + 0.0512362i \(0.983684\pi\)
\(524\) 2411.90i 0.201077i
\(525\) 0 0
\(526\) 12740.6i 1.05612i
\(527\) 2524.41 0.208663
\(528\) 0 0
\(529\) 11579.4 0.951705
\(530\) 4757.19i 0.389885i
\(531\) 0 0
\(532\) 6543.46 + 8593.44i 0.533261 + 0.700325i
\(533\) 1610.45i 0.130875i
\(534\) 0 0
\(535\) 3681.70i 0.297521i
\(536\) 6156.85i 0.496148i
\(537\) 0 0
\(538\) 12958.9 1.03847
\(539\) 38100.6i 3.04473i
\(540\) 0 0
\(541\) 13317.1 1.05831 0.529155 0.848525i \(-0.322509\pi\)
0.529155 + 0.848525i \(0.322509\pi\)
\(542\) −6052.50 −0.479663
\(543\) 0 0
\(544\) 683.161i 0.0538425i
\(545\) 4422.40 0.347586
\(546\) 0 0
\(547\) 17683.3i 1.38224i 0.722740 + 0.691120i \(0.242882\pi\)
−0.722740 + 0.691120i \(0.757118\pi\)
\(548\) 1562.15i 0.121773i
\(549\) 0 0
\(550\) 2645.67i 0.205112i
\(551\) 9381.68 + 12320.8i 0.725359 + 0.952606i
\(552\) 0 0
\(553\) 15499.0i 1.19184i
\(554\) −1979.73 −0.151824
\(555\) 0 0
\(556\) 10851.2 0.827689
\(557\) 12618.3i 0.959882i 0.877301 + 0.479941i \(0.159342\pi\)
−0.877301 + 0.479941i \(0.840658\pi\)
\(558\) 0 0
\(559\) 1726.38i 0.130623i
\(560\) 2608.36i 0.196828i
\(561\) 0 0
\(562\) 14764.4 1.10818
\(563\) −20701.3 −1.54966 −0.774829 0.632171i \(-0.782164\pi\)
−0.774829 + 0.632171i \(0.782164\pi\)
\(564\) 0 0
\(565\) 10643.5i 0.792523i
\(566\) −6209.31 −0.461125
\(567\) 0 0
\(568\) −2865.42 −0.211673
\(569\) 1423.11 0.104850 0.0524251 0.998625i \(-0.483305\pi\)
0.0524251 + 0.998625i \(0.483305\pi\)
\(570\) 0 0
\(571\) 14162.1 1.03795 0.518973 0.854791i \(-0.326315\pi\)
0.518973 + 0.854791i \(0.326315\pi\)
\(572\) 4272.49 0.312311
\(573\) 0 0
\(574\) −5202.35 −0.378296
\(575\) 606.014i 0.0439522i
\(576\) 0 0
\(577\) −13148.9 −0.948695 −0.474348 0.880338i \(-0.657316\pi\)
−0.474348 + 0.880338i \(0.657316\pi\)
\(578\) −8914.46 −0.641510
\(579\) 0 0
\(580\) 3739.74i 0.267732i
\(581\) 41576.2i 2.96880i
\(582\) 0 0
\(583\) 25171.9i 1.78819i
\(584\) 1387.74 0.0983303
\(585\) 0 0
\(586\) −18171.9 −1.28102
\(587\) 13282.4i 0.933944i 0.884272 + 0.466972i \(0.154655\pi\)
−0.884272 + 0.466972i \(0.845345\pi\)
\(588\) 0 0
\(589\) −7791.41 + 5932.75i −0.545059 + 0.415034i
\(590\) 4185.63i 0.292067i
\(591\) 0 0
\(592\) 3665.91i 0.254507i
\(593\) 8070.49i 0.558879i 0.960163 + 0.279440i \(0.0901487\pi\)
−0.960163 + 0.279440i \(0.909851\pi\)
\(594\) 0 0
\(595\) −3480.34 −0.239798
\(596\) 8691.36i 0.597336i
\(597\) 0 0
\(598\) 978.652 0.0669232
\(599\) 6265.24 0.427363 0.213682 0.976903i \(-0.431454\pi\)
0.213682 + 0.976903i \(0.431454\pi\)
\(600\) 0 0
\(601\) 15518.5i 1.05327i −0.850093 0.526633i \(-0.823454\pi\)
0.850093 0.526633i \(-0.176546\pi\)
\(602\) −5576.86 −0.377568
\(603\) 0 0
\(604\) 1266.15i 0.0852965i
\(605\) 7344.10i 0.493521i
\(606\) 0 0
\(607\) 14506.8i 0.970039i −0.874503 0.485020i \(-0.838812\pi\)
0.874503 0.485020i \(-0.161188\pi\)
\(608\) −1605.53 2108.53i −0.107094 0.140645i
\(609\) 0 0
\(610\) 163.957i 0.0108827i
\(611\) −4371.96 −0.289477
\(612\) 0 0
\(613\) −7997.78 −0.526962 −0.263481 0.964665i \(-0.584871\pi\)
−0.263481 + 0.964665i \(0.584871\pi\)
\(614\) 5088.02i 0.334423i
\(615\) 0 0
\(616\) 13801.7i 0.902739i
\(617\) 15350.5i 1.00160i 0.865562 + 0.500802i \(0.166961\pi\)
−0.865562 + 0.500802i \(0.833039\pi\)
\(618\) 0 0
\(619\) −23894.0 −1.55151 −0.775753 0.631037i \(-0.782630\pi\)
−0.775753 + 0.631037i \(0.782630\pi\)
\(620\) 2364.92 0.153190
\(621\) 0 0
\(622\) 10338.2i 0.666439i
\(623\) −30430.8 −1.95696
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −13168.9 −0.840790
\(627\) 0 0
\(628\) −11532.6 −0.732806
\(629\) 4891.43 0.310070
\(630\) 0 0
\(631\) 2.64044 0.000166584 8.32918e−5 1.00000i \(-0.499973\pi\)
8.32918e−5 1.00000i \(0.499973\pi\)
\(632\) 3802.91i 0.239354i
\(633\) 0 0
\(634\) 6089.94 0.381487
\(635\) −9598.69 −0.599862
\(636\) 0 0
\(637\) 14535.2i 0.904094i
\(638\) 19788.2i 1.22794i
\(639\) 0 0
\(640\) 640.000i 0.0395285i
\(641\) 8327.48 0.513129 0.256565 0.966527i \(-0.417409\pi\)
0.256565 + 0.966527i \(0.417409\pi\)
\(642\) 0 0
\(643\) 1852.11 0.113593 0.0567963 0.998386i \(-0.481911\pi\)
0.0567963 + 0.998386i \(0.481911\pi\)
\(644\) 3161.41i 0.193443i
\(645\) 0 0
\(646\) −2813.41 + 2142.26i −0.171350 + 0.130474i
\(647\) 18096.3i 1.09960i 0.835298 + 0.549798i \(0.185295\pi\)
−0.835298 + 0.549798i \(0.814705\pi\)
\(648\) 0 0
\(649\) 22147.5i 1.33955i
\(650\) 1009.31i 0.0609054i
\(651\) 0 0
\(652\) −1549.48 −0.0930709
\(653\) 25855.0i 1.54944i 0.632304 + 0.774720i \(0.282109\pi\)
−0.632304 + 0.774720i \(0.717891\pi\)
\(654\) 0 0
\(655\) −3014.88 −0.179849
\(656\) 1276.47 0.0759723
\(657\) 0 0
\(658\) 14123.1i 0.836739i
\(659\) −16207.3 −0.958039 −0.479020 0.877804i \(-0.659008\pi\)
−0.479020 + 0.877804i \(0.659008\pi\)
\(660\) 0 0
\(661\) 3696.48i 0.217513i 0.994068 + 0.108757i \(0.0346869\pi\)
−0.994068 + 0.108757i \(0.965313\pi\)
\(662\) 19819.6i 1.16361i
\(663\) 0 0
\(664\) 10201.3i 0.596218i
\(665\) 10741.8 8179.32i 0.626390 0.476963i
\(666\) 0 0
\(667\) 4532.67i 0.263127i
\(668\) −4767.21 −0.276121
\(669\) 0 0
\(670\) 7696.06 0.443768
\(671\) 867.551i 0.0499127i
\(672\) 0 0
\(673\) 10038.0i 0.574942i −0.957789 0.287471i \(-0.907186\pi\)
0.957789 0.287471i \(-0.0928144\pi\)
\(674\) 13540.3i 0.773820i
\(675\) 0 0
\(676\) 7158.06 0.407263
\(677\) −998.108 −0.0566624 −0.0283312 0.999599i \(-0.509019\pi\)
−0.0283312 + 0.999599i \(0.509019\pi\)
\(678\) 0 0
\(679\) 10570.1i 0.597410i
\(680\) 853.952 0.0481582
\(681\) 0 0
\(682\) −12513.6 −0.702596
\(683\) −26244.3 −1.47029 −0.735145 0.677909i \(-0.762886\pi\)
−0.735145 + 0.677909i \(0.762886\pi\)
\(684\) 0 0
\(685\) 1952.69 0.108917
\(686\) −24587.5 −1.36845
\(687\) 0 0
\(688\) 1368.36 0.0758262
\(689\) 9602.99i 0.530979i
\(690\) 0 0
\(691\) −19900.1 −1.09557 −0.547783 0.836621i \(-0.684528\pi\)
−0.547783 + 0.836621i \(0.684528\pi\)
\(692\) −4316.58 −0.237127
\(693\) 0 0
\(694\) 20263.2i 1.10833i
\(695\) 13564.1i 0.740308i
\(696\) 0 0
\(697\) 1703.20i 0.0925583i
\(698\) −627.553 −0.0340304
\(699\) 0 0
\(700\) −3260.46 −0.176048
\(701\) 2772.66i 0.149389i −0.997206 0.0746946i \(-0.976202\pi\)
0.997206 0.0746946i \(-0.0237982\pi\)
\(702\) 0 0
\(703\) −15097.0 + 11495.6i −0.809950 + 0.616735i
\(704\) 3386.45i 0.181295i
\(705\) 0 0
\(706\) 1617.87i 0.0862454i
\(707\) 22346.5i 1.18872i
\(708\) 0 0
\(709\) −24784.7 −1.31285 −0.656423 0.754393i \(-0.727931\pi\)
−0.656423 + 0.754393i \(0.727931\pi\)
\(710\) 3581.77i 0.189326i
\(711\) 0 0
\(712\) 7466.63 0.393011
\(713\) −2866.36 −0.150555
\(714\) 0 0
\(715\) 5340.61i 0.279339i
\(716\) −8372.38 −0.436998
\(717\) 0 0
\(718\) 7071.12i 0.367537i
\(719\) 27114.7i 1.40641i −0.710989 0.703203i \(-0.751752\pi\)
0.710989 0.703203i \(-0.248248\pi\)
\(720\) 0 0
\(721\) 4368.47i 0.225645i
\(722\) 3648.73 13223.9i 0.188077 0.681636i
\(723\) 0 0
\(724\) 5601.97i 0.287563i
\(725\) −4674.68 −0.239466
\(726\) 0 0
\(727\) 11250.7 0.573954 0.286977 0.957937i \(-0.407350\pi\)
0.286977 + 0.957937i \(0.407350\pi\)
\(728\) 5265.31i 0.268057i
\(729\) 0 0
\(730\) 1734.67i 0.0879493i
\(731\) 1825.81i 0.0923802i
\(732\) 0 0
\(733\) −28013.1 −1.41158 −0.705790 0.708421i \(-0.749408\pi\)
−0.705790 + 0.708421i \(0.749408\pi\)
\(734\) −25285.5 −1.27153
\(735\) 0 0
\(736\) 775.698i 0.0388487i
\(737\) −40722.4 −2.03532
\(738\) 0 0
\(739\) −21386.6 −1.06457 −0.532286 0.846565i \(-0.678667\pi\)
−0.532286 + 0.846565i \(0.678667\pi\)
\(740\) 4582.39 0.227638
\(741\) 0 0
\(742\) −31021.2 −1.53480
\(743\) 16319.5 0.805793 0.402897 0.915245i \(-0.368003\pi\)
0.402897 + 0.915245i \(0.368003\pi\)
\(744\) 0 0
\(745\) −10864.2 −0.534273
\(746\) 25768.9i 1.26470i
\(747\) 0 0
\(748\) −4518.54 −0.220875
\(749\) 24008.0 1.17121
\(750\) 0 0
\(751\) 3692.61i 0.179421i 0.995968 + 0.0897105i \(0.0285942\pi\)
−0.995968 + 0.0897105i \(0.971406\pi\)
\(752\) 3465.30i 0.168040i
\(753\) 0 0
\(754\) 7549.13i 0.364620i
\(755\) −1582.69 −0.0762915
\(756\) 0 0
\(757\) −31829.4 −1.52822 −0.764109 0.645088i \(-0.776821\pi\)
−0.764109 + 0.645088i \(0.776821\pi\)
\(758\) 29075.6i 1.39324i
\(759\) 0 0
\(760\) −2635.66 + 2006.92i −0.125797 + 0.0957874i
\(761\) 20092.5i 0.957102i 0.878060 + 0.478551i \(0.158838\pi\)
−0.878060 + 0.478551i \(0.841162\pi\)
\(762\) 0 0
\(763\) 28838.0i 1.36829i
\(764\) 15829.9i 0.749615i
\(765\) 0 0
\(766\) 16437.2 0.775326
\(767\) 8449.21i 0.397762i
\(768\) 0 0
\(769\) 15880.6 0.744694 0.372347 0.928094i \(-0.378553\pi\)
0.372347 + 0.928094i \(0.378553\pi\)
\(770\) 17252.2 0.807434
\(771\) 0 0
\(772\) 772.990i 0.0360370i
\(773\) −15034.9 −0.699568 −0.349784 0.936830i \(-0.613745\pi\)
−0.349784 + 0.936830i \(0.613745\pi\)
\(774\) 0 0
\(775\) 2956.16i 0.137017i
\(776\) 2593.52i 0.119977i
\(777\) 0 0
\(778\) 17519.2i 0.807320i
\(779\) 4002.76 + 5256.78i 0.184100 + 0.241776i
\(780\) 0 0
\(781\) 18952.3i 0.868333i
\(782\) −1035.01 −0.0473300
\(783\) 0 0
\(784\) 11520.9 0.524823
\(785\) 14415.8i 0.655441i
\(786\) 0 0
\(787\) 4385.91i 0.198654i 0.995055 + 0.0993271i \(0.0316690\pi\)
−0.995055 + 0.0993271i \(0.968331\pi\)
\(788\) 15885.4i 0.718140i
\(789\) 0 0
\(790\) −4753.63 −0.214084
\(791\) −69405.4 −3.11981
\(792\) 0 0
\(793\) 330.968i 0.0148209i
\(794\) −18669.8 −0.834466
\(795\) 0 0
\(796\) 17360.2 0.773008
\(797\) −37878.4 −1.68347 −0.841733 0.539894i \(-0.818464\pi\)
−0.841733 + 0.539894i \(0.818464\pi\)
\(798\) 0 0
\(799\) 4623.74 0.204726
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) −24388.7 −1.07381
\(803\) 9178.71i 0.403374i
\(804\) 0 0
\(805\) 3951.76 0.173020
\(806\) 4773.90 0.208627
\(807\) 0 0
\(808\) 5483.03i 0.238728i
\(809\) 24331.6i 1.05742i −0.848802 0.528710i \(-0.822676\pi\)
0.848802 0.528710i \(-0.177324\pi\)
\(810\) 0 0
\(811\) 28135.4i 1.21821i 0.793090 + 0.609105i \(0.208471\pi\)
−0.793090 + 0.609105i \(0.791529\pi\)
\(812\) 24386.5 1.05394
\(813\) 0 0
\(814\) −24247.0 −1.04405
\(815\) 1936.85i 0.0832452i
\(816\) 0 0
\(817\) 4290.92 + 5635.22i 0.183746 + 0.241311i
\(818\) 25908.5i 1.10742i
\(819\) 0 0
\(820\) 1595.59i 0.0679517i
\(821\) 7287.14i 0.309772i 0.987932 + 0.154886i \(0.0495011\pi\)
−0.987932 + 0.154886i \(0.950499\pi\)
\(822\) 0 0
\(823\) 23616.7 1.00028 0.500138 0.865946i \(-0.333283\pi\)
0.500138 + 0.865946i \(0.333283\pi\)
\(824\) 1071.87i 0.0453158i
\(825\) 0 0
\(826\) −27294.1 −1.14974
\(827\) 45536.2 1.91469 0.957345 0.288949i \(-0.0933058\pi\)
0.957345 + 0.288949i \(0.0933058\pi\)
\(828\) 0 0
\(829\) 23319.7i 0.976991i −0.872567 0.488495i \(-0.837546\pi\)
0.872567 0.488495i \(-0.162454\pi\)
\(830\) −12751.7 −0.533273
\(831\) 0 0
\(832\) 1291.92i 0.0538333i
\(833\) 15372.3i 0.639400i
\(834\) 0 0
\(835\) 5959.01i 0.246970i
\(836\) 13946.1 10619.3i 0.576959 0.439324i
\(837\) 0 0
\(838\) 2933.82i 0.120939i
\(839\) 12589.5 0.518042 0.259021 0.965872i \(-0.416600\pi\)
0.259021 + 0.965872i \(0.416600\pi\)
\(840\) 0 0
\(841\) 10575.1 0.433603
\(842\) 14178.1i 0.580295i
\(843\) 0 0
\(844\) 12284.4i 0.501005i
\(845\) 8947.58i 0.364267i
\(846\) 0 0
\(847\) −47890.2 −1.94277
\(848\) 7611.51 0.308231
\(849\) 0 0
\(850\) 1067.44i 0.0430740i
\(851\) −5553.99 −0.223723
\(852\) 0 0
\(853\) 35803.8 1.43716 0.718581 0.695443i \(-0.244792\pi\)
0.718581 + 0.695443i \(0.244792\pi\)
\(854\) 1069.15 0.0428402
\(855\) 0 0
\(856\) −5890.72 −0.235211
\(857\) 517.971 0.0206459 0.0103230 0.999947i \(-0.496714\pi\)
0.0103230 + 0.999947i \(0.496714\pi\)
\(858\) 0 0
\(859\) −17684.4 −0.702425 −0.351212 0.936296i \(-0.614230\pi\)
−0.351212 + 0.936296i \(0.614230\pi\)
\(860\) 1710.46i 0.0678210i
\(861\) 0 0
\(862\) 13326.0 0.526548
\(863\) −31064.6 −1.22532 −0.612659 0.790347i \(-0.709900\pi\)
−0.612659 + 0.790347i \(0.709900\pi\)
\(864\) 0 0
\(865\) 5395.73i 0.212093i
\(866\) 20680.0i 0.811474i
\(867\) 0 0
\(868\) 15421.5i 0.603040i
\(869\) 25153.0 0.981886
\(870\) 0 0
\(871\) 15535.5 0.604361
\(872\) 7075.83i 0.274791i
\(873\) 0 0
\(874\) 3194.49 2432.44i 0.123633 0.0941401i
\(875\) 4075.57i 0.157462i
\(876\) 0 0
\(877\) 39558.3i 1.52313i −0.648086 0.761567i \(-0.724430\pi\)
0.648086 0.761567i \(-0.275570\pi\)
\(878\) 13239.8i 0.508909i
\(879\) 0 0
\(880\) −4233.07 −0.162155
\(881\) 6220.93i 0.237898i −0.992900 0.118949i \(-0.962047\pi\)
0.992900 0.118949i \(-0.0379526\pi\)
\(882\) 0 0
\(883\) −46769.7 −1.78247 −0.891237 0.453538i \(-0.850162\pi\)
−0.891237 + 0.453538i \(0.850162\pi\)
\(884\) 1723.81 0.0655859
\(885\) 0 0
\(886\) 6819.34i 0.258578i
\(887\) 20419.6 0.772970 0.386485 0.922296i \(-0.373689\pi\)
0.386485 + 0.922296i \(0.373689\pi\)
\(888\) 0 0
\(889\) 62592.2i 2.36139i
\(890\) 9333.29i 0.351520i
\(891\) 0 0
\(892\) 6126.80i 0.229978i
\(893\) −14270.8 + 10866.5i −0.534776 + 0.407204i
\(894\) 0 0
\(895\) 10465.5i 0.390863i
\(896\) −4173.38 −0.155606
\(897\) 0 0
\(898\) 31284.7 1.16256
\(899\) 22110.5i 0.820274i
\(900\) 0 0
\(901\) 10156.0i 0.375523i
\(902\) 8442.79i 0.311657i
\(903\) 0 0
\(904\) 17029.6 0.626545
\(905\) 7002.46 0.257204
\(906\) 0 0
\(907\) 27572.3i 1.00940i 0.863296 + 0.504699i \(0.168396\pi\)
−0.863296 + 0.504699i \(0.831604\pi\)
\(908\) 22234.7 0.812647
\(909\) 0 0
\(910\) −6581.64 −0.239757
\(911\) −10690.2 −0.388785 −0.194392 0.980924i \(-0.562273\pi\)
−0.194392 + 0.980924i \(0.562273\pi\)
\(912\) 0 0
\(913\) 67473.3 2.44583
\(914\) −2147.19 −0.0777053
\(915\) 0 0
\(916\) −13225.5 −0.477057
\(917\) 19659.7i 0.707984i
\(918\) 0 0
\(919\) −1917.86 −0.0688404 −0.0344202 0.999407i \(-0.510958\pi\)
−0.0344202 + 0.999407i \(0.510958\pi\)
\(920\) −969.623 −0.0347473
\(921\) 0 0
\(922\) 6769.98i 0.241819i
\(923\) 7230.25i 0.257840i
\(924\) 0 0
\(925\) 5727.99i 0.203606i
\(926\) −13444.9 −0.477133
\(927\) 0 0
\(928\) −5983.58 −0.211660
\(929\) 4510.71i 0.159302i 0.996823 + 0.0796510i \(0.0253806\pi\)
−0.996823 + 0.0796510i \(0.974619\pi\)
\(930\) 0 0
\(931\) 36127.3 + 47445.6i 1.27178 + 1.67021i
\(932\) 12498.0i 0.439255i
\(933\) 0 0
\(934\) 1570.69i 0.0550264i
\(935\) 5648.18i 0.197556i
\(936\) 0 0
\(937\) −11740.7 −0.409341 −0.204670 0.978831i \(-0.565612\pi\)
−0.204670 + 0.978831i \(0.565612\pi\)
\(938\) 50185.3i 1.74692i
\(939\) 0 0
\(940\) 4331.62 0.150300
\(941\) 5038.12 0.174536 0.0872678 0.996185i \(-0.472186\pi\)
0.0872678 + 0.996185i \(0.472186\pi\)
\(942\) 0 0
\(943\) 1933.90i 0.0667831i
\(944\) 6697.01 0.230899
\(945\) 0 0
\(946\) 9050.59i 0.311057i
\(947\) 44851.5i 1.53905i −0.638619 0.769523i \(-0.720494\pi\)
0.638619 0.769523i \(-0.279506\pi\)
\(948\) 0 0
\(949\) 3501.65i 0.119777i
\(950\) 2508.64 + 3294.57i 0.0856749 + 0.112516i
\(951\) 0 0
\(952\) 5568.54i 0.189577i
\(953\) −3551.34 −0.120713 −0.0603564 0.998177i \(-0.519224\pi\)
−0.0603564 + 0.998177i \(0.519224\pi\)
\(954\) 0 0
\(955\) −19787.4 −0.670476
\(956\) 10388.5i 0.351451i
\(957\) 0 0
\(958\) 16254.3i 0.548175i
\(959\) 12733.3i 0.428759i
\(960\) 0 0
\(961\) 15808.8 0.530658
\(962\) 9250.13 0.310017
\(963\) 0 0
\(964\) 10836.1i 0.362041i
\(965\) 966.238 0.0322324
\(966\) 0 0
\(967\) 1399.51 0.0465411 0.0232706 0.999729i \(-0.492592\pi\)
0.0232706 + 0.999729i \(0.492592\pi\)
\(968\) 11750.6 0.390162
\(969\) 0 0
\(970\) −3241.90 −0.107310
\(971\) −30479.8 −1.00736 −0.503678 0.863892i \(-0.668020\pi\)
−0.503678 + 0.863892i \(0.668020\pi\)
\(972\) 0 0
\(973\) 88450.0 2.91426
\(974\) 13407.9i 0.441086i
\(975\) 0 0
\(976\) −262.331 −0.00860350
\(977\) 47276.1 1.54810 0.774052 0.633122i \(-0.218227\pi\)
0.774052 + 0.633122i \(0.218227\pi\)
\(978\) 0 0
\(979\) 49385.6i 1.61223i
\(980\) 14401.1i 0.469416i
\(981\) 0 0
\(982\) 2718.64i 0.0883457i
\(983\) −29707.9 −0.963921 −0.481960 0.876193i \(-0.660075\pi\)
−0.481960 + 0.876193i \(0.660075\pi\)
\(984\) 0 0
\(985\) −19856.8 −0.642324
\(986\) 7983.90i 0.257869i
\(987\) 0 0
\(988\) −5320.41 + 4051.21i −0.171320 + 0.130452i
\(989\) 2073.12i 0.0666546i
\(990\) 0 0
\(991\) 51601.0i 1.65405i −0.562168 0.827023i \(-0.690033\pi\)
0.562168 0.827023i \(-0.309967\pi\)
\(992\) 3783.88i 0.121107i
\(993\) 0 0
\(994\) −23356.4 −0.745292
\(995\) 21700.2i 0.691399i
\(996\) 0 0
\(997\) 21421.7 0.680472 0.340236 0.940340i \(-0.389493\pi\)
0.340236 + 0.940340i \(0.389493\pi\)
\(998\) 18899.3 0.599446
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.4.f.a.341.3 40
3.2 odd 2 1710.4.f.b.341.4 yes 40
19.18 odd 2 1710.4.f.b.341.3 yes 40
57.56 even 2 inner 1710.4.f.a.341.4 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.4.f.a.341.3 40 1.1 even 1 trivial
1710.4.f.a.341.4 yes 40 57.56 even 2 inner
1710.4.f.b.341.3 yes 40 19.18 odd 2
1710.4.f.b.341.4 yes 40 3.2 odd 2