Properties

Label 1710.4.f.a.341.21
Level $1710$
Weight $4$
Character 1710.341
Analytic conductor $100.893$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(341,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.341"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 341.21
Character \(\chi\) \(=\) 1710.341
Dual form 1710.4.f.a.341.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -5.00000i q^{5} +4.15148 q^{7} -8.00000 q^{8} +10.0000i q^{10} -13.6396i q^{11} +65.3955i q^{13} -8.30297 q^{14} +16.0000 q^{16} -44.6878i q^{17} +(29.3300 - 77.4516i) q^{19} -20.0000i q^{20} +27.2792i q^{22} +76.5757i q^{23} -25.0000 q^{25} -130.791i q^{26} +16.6059 q^{28} -175.756 q^{29} -85.0245i q^{31} -32.0000 q^{32} +89.3756i q^{34} -20.7574i q^{35} +367.851i q^{37} +(-58.6600 + 154.903i) q^{38} +40.0000i q^{40} +29.6257 q^{41} +217.300 q^{43} -54.5584i q^{44} -153.151i q^{46} -613.034i q^{47} -325.765 q^{49} +50.0000 q^{50} +261.582i q^{52} +706.146 q^{53} -68.1980 q^{55} -33.2119 q^{56} +351.513 q^{58} -115.406 q^{59} -602.179 q^{61} +170.049i q^{62} +64.0000 q^{64} +326.978 q^{65} -514.633i q^{67} -178.751i q^{68} +41.5148i q^{70} -233.009 q^{71} -42.8481 q^{73} -735.702i q^{74} +(117.320 - 309.806i) q^{76} -56.6245i q^{77} -41.1864i q^{79} -80.0000i q^{80} -59.2514 q^{82} -1308.54i q^{83} -223.439 q^{85} -434.599 q^{86} +109.117i q^{88} +600.186 q^{89} +271.488i q^{91} +306.303i q^{92} +1226.07i q^{94} +(-387.258 - 146.650i) q^{95} -554.623i q^{97} +651.530 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 80 q^{2} + 160 q^{4} - 56 q^{7} - 320 q^{8} + 112 q^{14} + 640 q^{16} - 76 q^{19} - 1000 q^{25} - 224 q^{28} - 120 q^{29} - 1280 q^{32} + 152 q^{38} - 312 q^{41} + 56 q^{43} + 2112 q^{49} + 2000 q^{50}+ \cdots - 4224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 4.15148 0.224159 0.112080 0.993699i \(-0.464249\pi\)
0.112080 + 0.993699i \(0.464249\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000i 0.316228i
\(11\) 13.6396i 0.373863i −0.982373 0.186931i \(-0.940146\pi\)
0.982373 0.186931i \(-0.0598542\pi\)
\(12\) 0 0
\(13\) 65.3955i 1.39519i 0.716493 + 0.697594i \(0.245746\pi\)
−0.716493 + 0.697594i \(0.754254\pi\)
\(14\) −8.30297 −0.158504
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 44.6878i 0.637552i −0.947830 0.318776i \(-0.896728\pi\)
0.947830 0.318776i \(-0.103272\pi\)
\(18\) 0 0
\(19\) 29.3300 77.4516i 0.354146 0.935190i
\(20\) 20.0000i 0.223607i
\(21\) 0 0
\(22\) 27.2792i 0.264361i
\(23\) 76.5757i 0.694224i 0.937824 + 0.347112i \(0.112838\pi\)
−0.937824 + 0.347112i \(0.887162\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 130.791i 0.986547i
\(27\) 0 0
\(28\) 16.6059 0.112080
\(29\) −175.756 −1.12542 −0.562710 0.826655i \(-0.690241\pi\)
−0.562710 + 0.826655i \(0.690241\pi\)
\(30\) 0 0
\(31\) 85.0245i 0.492608i −0.969193 0.246304i \(-0.920784\pi\)
0.969193 0.246304i \(-0.0792162\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 89.3756i 0.450817i
\(35\) 20.7574i 0.100247i
\(36\) 0 0
\(37\) 367.851i 1.63444i 0.576325 + 0.817220i \(0.304486\pi\)
−0.576325 + 0.817220i \(0.695514\pi\)
\(38\) −58.6600 + 154.903i −0.250419 + 0.661279i
\(39\) 0 0
\(40\) 40.0000i 0.158114i
\(41\) 29.6257 0.112848 0.0564239 0.998407i \(-0.482030\pi\)
0.0564239 + 0.998407i \(0.482030\pi\)
\(42\) 0 0
\(43\) 217.300 0.770648 0.385324 0.922781i \(-0.374090\pi\)
0.385324 + 0.922781i \(0.374090\pi\)
\(44\) 54.5584i 0.186931i
\(45\) 0 0
\(46\) 153.151i 0.490890i
\(47\) 613.034i 1.90256i −0.308331 0.951279i \(-0.599770\pi\)
0.308331 0.951279i \(-0.400230\pi\)
\(48\) 0 0
\(49\) −325.765 −0.949753
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 261.582i 0.697594i
\(53\) 706.146 1.83013 0.915063 0.403311i \(-0.132141\pi\)
0.915063 + 0.403311i \(0.132141\pi\)
\(54\) 0 0
\(55\) −68.1980 −0.167197
\(56\) −33.2119 −0.0792522
\(57\) 0 0
\(58\) 351.513 0.795792
\(59\) −115.406 −0.254655 −0.127327 0.991861i \(-0.540640\pi\)
−0.127327 + 0.991861i \(0.540640\pi\)
\(60\) 0 0
\(61\) −602.179 −1.26395 −0.631977 0.774987i \(-0.717756\pi\)
−0.631977 + 0.774987i \(0.717756\pi\)
\(62\) 170.049i 0.348327i
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 326.978 0.623947
\(66\) 0 0
\(67\) 514.633i 0.938394i −0.883093 0.469197i \(-0.844543\pi\)
0.883093 0.469197i \(-0.155457\pi\)
\(68\) 178.751i 0.318776i
\(69\) 0 0
\(70\) 41.5148i 0.0708853i
\(71\) −233.009 −0.389480 −0.194740 0.980855i \(-0.562386\pi\)
−0.194740 + 0.980855i \(0.562386\pi\)
\(72\) 0 0
\(73\) −42.8481 −0.0686985 −0.0343492 0.999410i \(-0.510936\pi\)
−0.0343492 + 0.999410i \(0.510936\pi\)
\(74\) 735.702i 1.15572i
\(75\) 0 0
\(76\) 117.320 309.806i 0.177073 0.467595i
\(77\) 56.6245i 0.0838047i
\(78\) 0 0
\(79\) 41.1864i 0.0586560i −0.999570 0.0293280i \(-0.990663\pi\)
0.999570 0.0293280i \(-0.00933674\pi\)
\(80\) 80.0000i 0.111803i
\(81\) 0 0
\(82\) −59.2514 −0.0797954
\(83\) 1308.54i 1.73049i −0.501347 0.865246i \(-0.667162\pi\)
0.501347 0.865246i \(-0.332838\pi\)
\(84\) 0 0
\(85\) −223.439 −0.285122
\(86\) −434.599 −0.544931
\(87\) 0 0
\(88\) 109.117i 0.132180i
\(89\) 600.186 0.714827 0.357414 0.933946i \(-0.383659\pi\)
0.357414 + 0.933946i \(0.383659\pi\)
\(90\) 0 0
\(91\) 271.488i 0.312744i
\(92\) 306.303i 0.347112i
\(93\) 0 0
\(94\) 1226.07i 1.34531i
\(95\) −387.258 146.650i −0.418230 0.158379i
\(96\) 0 0
\(97\) 554.623i 0.580551i −0.956943 0.290275i \(-0.906253\pi\)
0.956943 0.290275i \(-0.0937469\pi\)
\(98\) 651.530 0.671577
\(99\) 0 0
\(100\) −100.000 −0.100000
\(101\) 963.620i 0.949345i 0.880163 + 0.474672i \(0.157433\pi\)
−0.880163 + 0.474672i \(0.842567\pi\)
\(102\) 0 0
\(103\) 1781.63i 1.70437i 0.523245 + 0.852183i \(0.324721\pi\)
−0.523245 + 0.852183i \(0.675279\pi\)
\(104\) 523.164i 0.493274i
\(105\) 0 0
\(106\) −1412.29 −1.29409
\(107\) −1171.80 −1.05871 −0.529357 0.848399i \(-0.677567\pi\)
−0.529357 + 0.848399i \(0.677567\pi\)
\(108\) 0 0
\(109\) 603.780i 0.530565i 0.964171 + 0.265283i \(0.0854653\pi\)
−0.964171 + 0.265283i \(0.914535\pi\)
\(110\) 136.396 0.118226
\(111\) 0 0
\(112\) 66.4237 0.0560398
\(113\) −739.988 −0.616038 −0.308019 0.951380i \(-0.599666\pi\)
−0.308019 + 0.951380i \(0.599666\pi\)
\(114\) 0 0
\(115\) 382.879 0.310466
\(116\) −703.026 −0.562710
\(117\) 0 0
\(118\) 230.813 0.180068
\(119\) 185.521i 0.142913i
\(120\) 0 0
\(121\) 1144.96 0.860227
\(122\) 1204.36 0.893750
\(123\) 0 0
\(124\) 340.098i 0.246304i
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 1276.15i 0.891652i 0.895120 + 0.445826i \(0.147090\pi\)
−0.895120 + 0.445826i \(0.852910\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −653.955 −0.441197
\(131\) 1084.70i 0.723442i −0.932286 0.361721i \(-0.882189\pi\)
0.932286 0.361721i \(-0.117811\pi\)
\(132\) 0 0
\(133\) 121.763 321.539i 0.0793849 0.209631i
\(134\) 1029.27i 0.663545i
\(135\) 0 0
\(136\) 357.503i 0.225409i
\(137\) 2300.40i 1.43457i −0.696779 0.717286i \(-0.745384\pi\)
0.696779 0.717286i \(-0.254616\pi\)
\(138\) 0 0
\(139\) 1476.92 0.901227 0.450614 0.892719i \(-0.351205\pi\)
0.450614 + 0.892719i \(0.351205\pi\)
\(140\) 83.0297i 0.0501235i
\(141\) 0 0
\(142\) 466.018 0.275404
\(143\) 891.968 0.521609
\(144\) 0 0
\(145\) 878.782i 0.503303i
\(146\) 85.6962 0.0485772
\(147\) 0 0
\(148\) 1471.40i 0.817220i
\(149\) 586.724i 0.322593i −0.986906 0.161296i \(-0.948432\pi\)
0.986906 0.161296i \(-0.0515675\pi\)
\(150\) 0 0
\(151\) 1640.73i 0.884246i −0.896954 0.442123i \(-0.854226\pi\)
0.896954 0.442123i \(-0.145774\pi\)
\(152\) −234.640 + 619.613i −0.125209 + 0.330640i
\(153\) 0 0
\(154\) 113.249i 0.0592589i
\(155\) −425.123 −0.220301
\(156\) 0 0
\(157\) −3695.13 −1.87837 −0.939183 0.343416i \(-0.888416\pi\)
−0.939183 + 0.343416i \(0.888416\pi\)
\(158\) 82.3727i 0.0414761i
\(159\) 0 0
\(160\) 160.000i 0.0790569i
\(161\) 317.903i 0.155617i
\(162\) 0 0
\(163\) −1012.89 −0.486724 −0.243362 0.969936i \(-0.578250\pi\)
−0.243362 + 0.969936i \(0.578250\pi\)
\(164\) 118.503 0.0564239
\(165\) 0 0
\(166\) 2617.08i 1.22364i
\(167\) 425.197 0.197023 0.0985113 0.995136i \(-0.468592\pi\)
0.0985113 + 0.995136i \(0.468592\pi\)
\(168\) 0 0
\(169\) −2079.57 −0.946551
\(170\) 446.878 0.201612
\(171\) 0 0
\(172\) 869.198 0.385324
\(173\) 435.146 0.191234 0.0956171 0.995418i \(-0.469518\pi\)
0.0956171 + 0.995418i \(0.469518\pi\)
\(174\) 0 0
\(175\) −103.787 −0.0448318
\(176\) 218.233i 0.0934657i
\(177\) 0 0
\(178\) −1200.37 −0.505459
\(179\) −1268.07 −0.529496 −0.264748 0.964318i \(-0.585289\pi\)
−0.264748 + 0.964318i \(0.585289\pi\)
\(180\) 0 0
\(181\) 1298.55i 0.533262i 0.963799 + 0.266631i \(0.0859105\pi\)
−0.963799 + 0.266631i \(0.914089\pi\)
\(182\) 542.977i 0.221144i
\(183\) 0 0
\(184\) 612.606i 0.245445i
\(185\) 1839.25 0.730944
\(186\) 0 0
\(187\) −609.523 −0.238357
\(188\) 2452.14i 0.951279i
\(189\) 0 0
\(190\) 774.516 + 293.300i 0.295733 + 0.111991i
\(191\) 170.790i 0.0647014i −0.999477 0.0323507i \(-0.989701\pi\)
0.999477 0.0323507i \(-0.0102993\pi\)
\(192\) 0 0
\(193\) 503.406i 0.187751i −0.995584 0.0938755i \(-0.970074\pi\)
0.995584 0.0938755i \(-0.0299256\pi\)
\(194\) 1109.25i 0.410511i
\(195\) 0 0
\(196\) −1303.06 −0.474876
\(197\) 1133.50i 0.409941i −0.978768 0.204970i \(-0.934290\pi\)
0.978768 0.204970i \(-0.0657098\pi\)
\(198\) 0 0
\(199\) −758.201 −0.270087 −0.135044 0.990840i \(-0.543117\pi\)
−0.135044 + 0.990840i \(0.543117\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) 1927.24i 0.671288i
\(203\) −729.650 −0.252273
\(204\) 0 0
\(205\) 148.129i 0.0504670i
\(206\) 3563.27i 1.20517i
\(207\) 0 0
\(208\) 1046.33i 0.348797i
\(209\) −1056.41 400.049i −0.349633 0.132402i
\(210\) 0 0
\(211\) 1242.75i 0.405472i 0.979233 + 0.202736i \(0.0649833\pi\)
−0.979233 + 0.202736i \(0.935017\pi\)
\(212\) 2824.59 0.915063
\(213\) 0 0
\(214\) 2343.60 0.748624
\(215\) 1086.50i 0.344644i
\(216\) 0 0
\(217\) 352.978i 0.110423i
\(218\) 1207.56i 0.375166i
\(219\) 0 0
\(220\) −272.792 −0.0835983
\(221\) 2922.38 0.889505
\(222\) 0 0
\(223\) 4924.02i 1.47864i −0.673354 0.739320i \(-0.735147\pi\)
0.673354 0.739320i \(-0.264853\pi\)
\(224\) −132.847 −0.0396261
\(225\) 0 0
\(226\) 1479.98 0.435604
\(227\) 1903.39 0.556531 0.278265 0.960504i \(-0.410241\pi\)
0.278265 + 0.960504i \(0.410241\pi\)
\(228\) 0 0
\(229\) −4308.36 −1.24325 −0.621625 0.783315i \(-0.713527\pi\)
−0.621625 + 0.783315i \(0.713527\pi\)
\(230\) −765.757 −0.219533
\(231\) 0 0
\(232\) 1406.05 0.397896
\(233\) 6736.17i 1.89400i −0.321239 0.946998i \(-0.604099\pi\)
0.321239 0.946998i \(-0.395901\pi\)
\(234\) 0 0
\(235\) −3065.17 −0.850850
\(236\) −461.626 −0.127327
\(237\) 0 0
\(238\) 371.041i 0.101055i
\(239\) 5564.76i 1.50608i −0.657972 0.753042i \(-0.728585\pi\)
0.657972 0.753042i \(-0.271415\pi\)
\(240\) 0 0
\(241\) 5906.43i 1.57870i 0.613944 + 0.789350i \(0.289582\pi\)
−0.613944 + 0.789350i \(0.710418\pi\)
\(242\) −2289.92 −0.608272
\(243\) 0 0
\(244\) −2408.72 −0.631977
\(245\) 1628.83i 0.424742i
\(246\) 0 0
\(247\) 5064.99 + 1918.05i 1.30477 + 0.494100i
\(248\) 680.196i 0.174163i
\(249\) 0 0
\(250\) 250.000i 0.0632456i
\(251\) 2484.79i 0.624856i 0.949941 + 0.312428i \(0.101142\pi\)
−0.949941 + 0.312428i \(0.898858\pi\)
\(252\) 0 0
\(253\) 1044.46 0.259544
\(254\) 2552.30i 0.630493i
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5495.16 −1.33377 −0.666884 0.745161i \(-0.732372\pi\)
−0.666884 + 0.745161i \(0.732372\pi\)
\(258\) 0 0
\(259\) 1527.13i 0.366375i
\(260\) 1307.91 0.311974
\(261\) 0 0
\(262\) 2169.40i 0.511550i
\(263\) 5987.43i 1.40381i 0.712273 + 0.701903i \(0.247666\pi\)
−0.712273 + 0.701903i \(0.752334\pi\)
\(264\) 0 0
\(265\) 3530.73i 0.818457i
\(266\) −243.526 + 643.078i −0.0561336 + 0.148232i
\(267\) 0 0
\(268\) 2058.53i 0.469197i
\(269\) −7707.70 −1.74701 −0.873507 0.486812i \(-0.838160\pi\)
−0.873507 + 0.486812i \(0.838160\pi\)
\(270\) 0 0
\(271\) −6368.52 −1.42753 −0.713764 0.700387i \(-0.753011\pi\)
−0.713764 + 0.700387i \(0.753011\pi\)
\(272\) 715.005i 0.159388i
\(273\) 0 0
\(274\) 4600.80i 1.01440i
\(275\) 340.990i 0.0747726i
\(276\) 0 0
\(277\) −4375.82 −0.949160 −0.474580 0.880212i \(-0.657400\pi\)
−0.474580 + 0.880212i \(0.657400\pi\)
\(278\) −2953.84 −0.637264
\(279\) 0 0
\(280\) 166.059i 0.0354427i
\(281\) −2039.75 −0.433029 −0.216515 0.976279i \(-0.569469\pi\)
−0.216515 + 0.976279i \(0.569469\pi\)
\(282\) 0 0
\(283\) −3952.88 −0.830299 −0.415149 0.909753i \(-0.636271\pi\)
−0.415149 + 0.909753i \(0.636271\pi\)
\(284\) −932.036 −0.194740
\(285\) 0 0
\(286\) −1783.94 −0.368833
\(287\) 122.991 0.0252958
\(288\) 0 0
\(289\) 2916.00 0.593527
\(290\) 1757.56i 0.355889i
\(291\) 0 0
\(292\) −171.392 −0.0343492
\(293\) −8906.70 −1.77589 −0.887944 0.459952i \(-0.847866\pi\)
−0.887944 + 0.459952i \(0.847866\pi\)
\(294\) 0 0
\(295\) 577.032i 0.113885i
\(296\) 2942.81i 0.577862i
\(297\) 0 0
\(298\) 1173.45i 0.228108i
\(299\) −5007.71 −0.968573
\(300\) 0 0
\(301\) 902.116 0.172748
\(302\) 3281.47i 0.625256i
\(303\) 0 0
\(304\) 469.280 1239.23i 0.0885364 0.233798i
\(305\) 3010.90i 0.565257i
\(306\) 0 0
\(307\) 7611.80i 1.41508i −0.706676 0.707538i \(-0.749806\pi\)
0.706676 0.707538i \(-0.250194\pi\)
\(308\) 226.498i 0.0419024i
\(309\) 0 0
\(310\) 850.245 0.155776
\(311\) 5645.48i 1.02934i −0.857388 0.514671i \(-0.827914\pi\)
0.857388 0.514671i \(-0.172086\pi\)
\(312\) 0 0
\(313\) 1932.47 0.348977 0.174488 0.984659i \(-0.444173\pi\)
0.174488 + 0.984659i \(0.444173\pi\)
\(314\) 7390.26 1.32821
\(315\) 0 0
\(316\) 164.745i 0.0293280i
\(317\) 5098.52 0.903348 0.451674 0.892183i \(-0.350827\pi\)
0.451674 + 0.892183i \(0.350827\pi\)
\(318\) 0 0
\(319\) 2397.25i 0.420752i
\(320\) 320.000i 0.0559017i
\(321\) 0 0
\(322\) 635.806i 0.110038i
\(323\) −3461.14 1310.69i −0.596233 0.225786i
\(324\) 0 0
\(325\) 1634.89i 0.279038i
\(326\) 2025.79 0.344166
\(327\) 0 0
\(328\) −237.006 −0.0398977
\(329\) 2545.00i 0.426476i
\(330\) 0 0
\(331\) 4627.19i 0.768378i −0.923254 0.384189i \(-0.874481\pi\)
0.923254 0.384189i \(-0.125519\pi\)
\(332\) 5234.16i 0.865246i
\(333\) 0 0
\(334\) −850.395 −0.139316
\(335\) −2573.16 −0.419663
\(336\) 0 0
\(337\) 4092.12i 0.661459i −0.943726 0.330730i \(-0.892705\pi\)
0.943726 0.330730i \(-0.107295\pi\)
\(338\) 4159.15 0.669313
\(339\) 0 0
\(340\) −893.756 −0.142561
\(341\) −1159.70 −0.184168
\(342\) 0 0
\(343\) −2776.37 −0.437055
\(344\) −1738.40 −0.272465
\(345\) 0 0
\(346\) −870.291 −0.135223
\(347\) 11294.3i 1.74728i −0.486569 0.873642i \(-0.661752\pi\)
0.486569 0.873642i \(-0.338248\pi\)
\(348\) 0 0
\(349\) −2963.59 −0.454548 −0.227274 0.973831i \(-0.572981\pi\)
−0.227274 + 0.973831i \(0.572981\pi\)
\(350\) 207.574 0.0317009
\(351\) 0 0
\(352\) 436.467i 0.0660902i
\(353\) 4672.70i 0.704541i −0.935898 0.352270i \(-0.885410\pi\)
0.935898 0.352270i \(-0.114590\pi\)
\(354\) 0 0
\(355\) 1165.04i 0.174181i
\(356\) 2400.75 0.357414
\(357\) 0 0
\(358\) 2536.13 0.374410
\(359\) 3891.41i 0.572091i −0.958216 0.286045i \(-0.907659\pi\)
0.958216 0.286045i \(-0.0923408\pi\)
\(360\) 0 0
\(361\) −5138.50 4543.31i −0.749162 0.662387i
\(362\) 2597.10i 0.377073i
\(363\) 0 0
\(364\) 1085.95i 0.156372i
\(365\) 214.240i 0.0307229i
\(366\) 0 0
\(367\) −6600.96 −0.938876 −0.469438 0.882966i \(-0.655543\pi\)
−0.469438 + 0.882966i \(0.655543\pi\)
\(368\) 1225.21i 0.173556i
\(369\) 0 0
\(370\) −3678.51 −0.516856
\(371\) 2931.56 0.410239
\(372\) 0 0
\(373\) 3309.44i 0.459400i −0.973261 0.229700i \(-0.926225\pi\)
0.973261 0.229700i \(-0.0737746\pi\)
\(374\) 1219.05 0.168544
\(375\) 0 0
\(376\) 4904.27i 0.672656i
\(377\) 11493.7i 1.57017i
\(378\) 0 0
\(379\) 4421.21i 0.599215i −0.954063 0.299608i \(-0.903144\pi\)
0.954063 0.299608i \(-0.0968557\pi\)
\(380\) −1549.03 586.600i −0.209115 0.0791893i
\(381\) 0 0
\(382\) 341.581i 0.0457508i
\(383\) −13442.0 −1.79335 −0.896675 0.442689i \(-0.854025\pi\)
−0.896675 + 0.442689i \(0.854025\pi\)
\(384\) 0 0
\(385\) −283.123 −0.0374786
\(386\) 1006.81i 0.132760i
\(387\) 0 0
\(388\) 2218.49i 0.290275i
\(389\) 13460.2i 1.75440i 0.480126 + 0.877199i \(0.340591\pi\)
−0.480126 + 0.877199i \(0.659409\pi\)
\(390\) 0 0
\(391\) 3422.00 0.442604
\(392\) 2606.12 0.335788
\(393\) 0 0
\(394\) 2267.00i 0.289872i
\(395\) −205.932 −0.0262318
\(396\) 0 0
\(397\) 1872.73 0.236749 0.118375 0.992969i \(-0.462232\pi\)
0.118375 + 0.992969i \(0.462232\pi\)
\(398\) 1516.40 0.190981
\(399\) 0 0
\(400\) −400.000 −0.0500000
\(401\) −10551.8 −1.31404 −0.657021 0.753873i \(-0.728184\pi\)
−0.657021 + 0.753873i \(0.728184\pi\)
\(402\) 0 0
\(403\) 5560.22 0.687282
\(404\) 3854.48i 0.474672i
\(405\) 0 0
\(406\) 1459.30 0.178384
\(407\) 5017.34 0.611057
\(408\) 0 0
\(409\) 8447.18i 1.02124i −0.859807 0.510619i \(-0.829416\pi\)
0.859807 0.510619i \(-0.170584\pi\)
\(410\) 296.257i 0.0356856i
\(411\) 0 0
\(412\) 7126.54i 0.852183i
\(413\) −479.108 −0.0570832
\(414\) 0 0
\(415\) −6542.70 −0.773900
\(416\) 2092.66i 0.246637i
\(417\) 0 0
\(418\) 2112.82 + 800.099i 0.247228 + 0.0936223i
\(419\) 5198.00i 0.606060i 0.952981 + 0.303030i \(0.0979982\pi\)
−0.952981 + 0.303030i \(0.902002\pi\)
\(420\) 0 0
\(421\) 10164.6i 1.17671i −0.808603 0.588354i \(-0.799776\pi\)
0.808603 0.588354i \(-0.200224\pi\)
\(422\) 2485.50i 0.286712i
\(423\) 0 0
\(424\) −5649.17 −0.647047
\(425\) 1117.20i 0.127510i
\(426\) 0 0
\(427\) −2499.94 −0.283327
\(428\) −4687.21 −0.529357
\(429\) 0 0
\(430\) 2173.00i 0.243700i
\(431\) −14568.7 −1.62819 −0.814097 0.580729i \(-0.802768\pi\)
−0.814097 + 0.580729i \(0.802768\pi\)
\(432\) 0 0
\(433\) 11453.2i 1.27115i −0.772039 0.635575i \(-0.780763\pi\)
0.772039 0.635575i \(-0.219237\pi\)
\(434\) 705.956i 0.0780806i
\(435\) 0 0
\(436\) 2415.12i 0.265283i
\(437\) 5930.91 + 2245.97i 0.649231 + 0.245856i
\(438\) 0 0
\(439\) 17377.6i 1.88926i 0.328133 + 0.944632i \(0.393581\pi\)
−0.328133 + 0.944632i \(0.606419\pi\)
\(440\) 545.584 0.0591129
\(441\) 0 0
\(442\) −5844.76 −0.628975
\(443\) 12355.4i 1.32510i −0.749016 0.662552i \(-0.769473\pi\)
0.749016 0.662552i \(-0.230527\pi\)
\(444\) 0 0
\(445\) 3000.93i 0.319680i
\(446\) 9848.04i 1.04556i
\(447\) 0 0
\(448\) 265.695 0.0280199
\(449\) 6284.98 0.660594 0.330297 0.943877i \(-0.392851\pi\)
0.330297 + 0.943877i \(0.392851\pi\)
\(450\) 0 0
\(451\) 404.082i 0.0421896i
\(452\) −2959.95 −0.308019
\(453\) 0 0
\(454\) −3806.78 −0.393527
\(455\) 1357.44 0.139863
\(456\) 0 0
\(457\) 13350.6 1.36655 0.683275 0.730161i \(-0.260555\pi\)
0.683275 + 0.730161i \(0.260555\pi\)
\(458\) 8616.72 0.879111
\(459\) 0 0
\(460\) 1531.51 0.155233
\(461\) 6439.57i 0.650587i −0.945613 0.325294i \(-0.894537\pi\)
0.945613 0.325294i \(-0.105463\pi\)
\(462\) 0 0
\(463\) −5189.74 −0.520923 −0.260462 0.965484i \(-0.583875\pi\)
−0.260462 + 0.965484i \(0.583875\pi\)
\(464\) −2812.10 −0.281355
\(465\) 0 0
\(466\) 13472.3i 1.33926i
\(467\) 10235.6i 1.01423i 0.861877 + 0.507117i \(0.169289\pi\)
−0.861877 + 0.507117i \(0.830711\pi\)
\(468\) 0 0
\(469\) 2136.49i 0.210350i
\(470\) 6130.34 0.601642
\(471\) 0 0
\(472\) 923.251 0.0900341
\(473\) 2963.88i 0.288117i
\(474\) 0 0
\(475\) −733.250 + 1936.29i −0.0708291 + 0.187038i
\(476\) 742.083i 0.0714565i
\(477\) 0 0
\(478\) 11129.5i 1.06496i
\(479\) 19901.6i 1.89839i 0.314696 + 0.949193i \(0.398098\pi\)
−0.314696 + 0.949193i \(0.601902\pi\)
\(480\) 0 0
\(481\) −24055.8 −2.28035
\(482\) 11812.9i 1.11631i
\(483\) 0 0
\(484\) 4579.85 0.430113
\(485\) −2773.11 −0.259630
\(486\) 0 0
\(487\) 15569.3i 1.44869i −0.689439 0.724344i \(-0.742143\pi\)
0.689439 0.724344i \(-0.257857\pi\)
\(488\) 4817.43 0.446875
\(489\) 0 0
\(490\) 3257.65i 0.300338i
\(491\) 798.662i 0.0734076i 0.999326 + 0.0367038i \(0.0116858\pi\)
−0.999326 + 0.0367038i \(0.988314\pi\)
\(492\) 0 0
\(493\) 7854.17i 0.717513i
\(494\) −10130.0 3836.10i −0.922610 0.349381i
\(495\) 0 0
\(496\) 1360.39i 0.123152i
\(497\) −967.333 −0.0873055
\(498\) 0 0
\(499\) −17364.6 −1.55781 −0.778906 0.627141i \(-0.784225\pi\)
−0.778906 + 0.627141i \(0.784225\pi\)
\(500\) 500.000i 0.0447214i
\(501\) 0 0
\(502\) 4969.59i 0.441840i
\(503\) 14649.6i 1.29860i 0.760534 + 0.649298i \(0.224937\pi\)
−0.760534 + 0.649298i \(0.775063\pi\)
\(504\) 0 0
\(505\) 4818.10 0.424560
\(506\) −2088.92 −0.183526
\(507\) 0 0
\(508\) 5104.59i 0.445826i
\(509\) −11409.3 −0.993529 −0.496764 0.867885i \(-0.665479\pi\)
−0.496764 + 0.867885i \(0.665479\pi\)
\(510\) 0 0
\(511\) −177.883 −0.0153994
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 10990.3 0.943117
\(515\) 8908.17 0.762215
\(516\) 0 0
\(517\) −8361.54 −0.711296
\(518\) 3054.25i 0.259066i
\(519\) 0 0
\(520\) −2615.82 −0.220599
\(521\) 10248.7 0.861812 0.430906 0.902397i \(-0.358194\pi\)
0.430906 + 0.902397i \(0.358194\pi\)
\(522\) 0 0
\(523\) 9591.08i 0.801890i 0.916102 + 0.400945i \(0.131318\pi\)
−0.916102 + 0.400945i \(0.868682\pi\)
\(524\) 4338.81i 0.361721i
\(525\) 0 0
\(526\) 11974.9i 0.992641i
\(527\) −3799.56 −0.314064
\(528\) 0 0
\(529\) 6303.16 0.518053
\(530\) 7061.46i 0.578737i
\(531\) 0 0
\(532\) 487.052 1286.16i 0.0396925 0.104816i
\(533\) 1937.39i 0.157444i
\(534\) 0 0
\(535\) 5859.01i 0.473471i
\(536\) 4117.06i 0.331772i
\(537\) 0 0
\(538\) 15415.4 1.23533
\(539\) 4443.30i 0.355077i
\(540\) 0 0
\(541\) 1750.62 0.139122 0.0695609 0.997578i \(-0.477840\pi\)
0.0695609 + 0.997578i \(0.477840\pi\)
\(542\) 12737.0 1.00941
\(543\) 0 0
\(544\) 1430.01i 0.112704i
\(545\) 3018.90 0.237276
\(546\) 0 0
\(547\) 17617.8i 1.37712i −0.725181 0.688558i \(-0.758244\pi\)
0.725181 0.688558i \(-0.241756\pi\)
\(548\) 9201.60i 0.717286i
\(549\) 0 0
\(550\) 681.980i 0.0528722i
\(551\) −5154.94 + 13612.6i −0.398562 + 1.05248i
\(552\) 0 0
\(553\) 170.984i 0.0131483i
\(554\) 8751.64 0.671158
\(555\) 0 0
\(556\) 5907.67 0.450614
\(557\) 13846.9i 1.05334i 0.850070 + 0.526670i \(0.176560\pi\)
−0.850070 + 0.526670i \(0.823440\pi\)
\(558\) 0 0
\(559\) 14210.4i 1.07520i
\(560\) 332.119i 0.0250617i
\(561\) 0 0
\(562\) 4079.50 0.306198
\(563\) −14800.9 −1.10797 −0.553983 0.832528i \(-0.686893\pi\)
−0.553983 + 0.832528i \(0.686893\pi\)
\(564\) 0 0
\(565\) 3699.94i 0.275500i
\(566\) 7905.77 0.587110
\(567\) 0 0
\(568\) 1864.07 0.137702
\(569\) −6786.69 −0.500023 −0.250011 0.968243i \(-0.580434\pi\)
−0.250011 + 0.968243i \(0.580434\pi\)
\(570\) 0 0
\(571\) 16430.6 1.20420 0.602102 0.798419i \(-0.294330\pi\)
0.602102 + 0.798419i \(0.294330\pi\)
\(572\) 3567.87 0.260805
\(573\) 0 0
\(574\) −245.981 −0.0178869
\(575\) 1914.39i 0.138845i
\(576\) 0 0
\(577\) 12651.6 0.912813 0.456407 0.889771i \(-0.349136\pi\)
0.456407 + 0.889771i \(0.349136\pi\)
\(578\) −5832.00 −0.419687
\(579\) 0 0
\(580\) 3515.13i 0.251651i
\(581\) 5432.38i 0.387906i
\(582\) 0 0
\(583\) 9631.55i 0.684216i
\(584\) 342.785 0.0242886
\(585\) 0 0
\(586\) 17813.4 1.25574
\(587\) 11.0824i 0.000779248i 1.00000 0.000389624i \(0.000124021\pi\)
−1.00000 0.000389624i \(0.999876\pi\)
\(588\) 0 0
\(589\) −6585.29 2493.77i −0.460683 0.174455i
\(590\) 1154.06i 0.0805289i
\(591\) 0 0
\(592\) 5885.61i 0.408610i
\(593\) 10519.8i 0.728493i −0.931302 0.364247i \(-0.881326\pi\)
0.931302 0.364247i \(-0.118674\pi\)
\(594\) 0 0
\(595\) −927.604 −0.0639127
\(596\) 2346.90i 0.161296i
\(597\) 0 0
\(598\) 10015.4 0.684885
\(599\) −6103.55 −0.416335 −0.208167 0.978093i \(-0.566750\pi\)
−0.208167 + 0.978093i \(0.566750\pi\)
\(600\) 0 0
\(601\) 27303.0i 1.85310i −0.376170 0.926551i \(-0.622759\pi\)
0.376170 0.926551i \(-0.377241\pi\)
\(602\) −1804.23 −0.122151
\(603\) 0 0
\(604\) 6562.94i 0.442123i
\(605\) 5724.81i 0.384705i
\(606\) 0 0
\(607\) 3520.94i 0.235437i −0.993047 0.117719i \(-0.962442\pi\)
0.993047 0.117719i \(-0.0375581\pi\)
\(608\) −938.560 + 2478.45i −0.0626047 + 0.165320i
\(609\) 0 0
\(610\) 6021.79i 0.399697i
\(611\) 40089.7 2.65443
\(612\) 0 0
\(613\) 17496.4 1.15281 0.576405 0.817164i \(-0.304455\pi\)
0.576405 + 0.817164i \(0.304455\pi\)
\(614\) 15223.6i 1.00061i
\(615\) 0 0
\(616\) 452.996i 0.0296295i
\(617\) 6227.73i 0.406352i −0.979142 0.203176i \(-0.934874\pi\)
0.979142 0.203176i \(-0.0651263\pi\)
\(618\) 0 0
\(619\) −26012.6 −1.68907 −0.844534 0.535502i \(-0.820122\pi\)
−0.844534 + 0.535502i \(0.820122\pi\)
\(620\) −1700.49 −0.110151
\(621\) 0 0
\(622\) 11291.0i 0.727855i
\(623\) 2491.66 0.160235
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −3864.94 −0.246764
\(627\) 0 0
\(628\) −14780.5 −0.939183
\(629\) 16438.5 1.04204
\(630\) 0 0
\(631\) 4445.40 0.280457 0.140229 0.990119i \(-0.455216\pi\)
0.140229 + 0.990119i \(0.455216\pi\)
\(632\) 329.491i 0.0207380i
\(633\) 0 0
\(634\) −10197.0 −0.638763
\(635\) 6380.74 0.398759
\(636\) 0 0
\(637\) 21303.6i 1.32508i
\(638\) 4794.49i 0.297517i
\(639\) 0 0
\(640\) 640.000i 0.0395285i
\(641\) −18974.6 −1.16919 −0.584594 0.811326i \(-0.698746\pi\)
−0.584594 + 0.811326i \(0.698746\pi\)
\(642\) 0 0
\(643\) 26283.2 1.61199 0.805994 0.591924i \(-0.201631\pi\)
0.805994 + 0.591924i \(0.201631\pi\)
\(644\) 1271.61i 0.0778083i
\(645\) 0 0
\(646\) 6922.29 + 2621.39i 0.421600 + 0.159655i
\(647\) 14181.6i 0.861724i 0.902418 + 0.430862i \(0.141790\pi\)
−0.902418 + 0.430862i \(0.858210\pi\)
\(648\) 0 0
\(649\) 1574.10i 0.0952060i
\(650\) 3269.78i 0.197309i
\(651\) 0 0
\(652\) −4051.58 −0.243362
\(653\) 28895.3i 1.73164i 0.500356 + 0.865820i \(0.333203\pi\)
−0.500356 + 0.865820i \(0.666797\pi\)
\(654\) 0 0
\(655\) −5423.51 −0.323533
\(656\) 474.011 0.0282119
\(657\) 0 0
\(658\) 5090.00i 0.301564i
\(659\) −12577.3 −0.743463 −0.371731 0.928340i \(-0.621236\pi\)
−0.371731 + 0.928340i \(0.621236\pi\)
\(660\) 0 0
\(661\) 7017.06i 0.412907i −0.978456 0.206454i \(-0.933808\pi\)
0.978456 0.206454i \(-0.0661923\pi\)
\(662\) 9254.38i 0.543326i
\(663\) 0 0
\(664\) 10468.3i 0.611822i
\(665\) −1607.70 608.815i −0.0937500 0.0355020i
\(666\) 0 0
\(667\) 13458.7i 0.781293i
\(668\) 1700.79 0.0985113
\(669\) 0 0
\(670\) 5146.33 0.296746
\(671\) 8213.48i 0.472545i
\(672\) 0 0
\(673\) 16806.6i 0.962625i 0.876549 + 0.481313i \(0.159840\pi\)
−0.876549 + 0.481313i \(0.840160\pi\)
\(674\) 8184.23i 0.467722i
\(675\) 0 0
\(676\) −8318.29 −0.473276
\(677\) 23241.2 1.31939 0.659697 0.751531i \(-0.270684\pi\)
0.659697 + 0.751531i \(0.270684\pi\)
\(678\) 0 0
\(679\) 2302.51i 0.130136i
\(680\) 1787.51 0.100806
\(681\) 0 0
\(682\) 2319.40 0.130226
\(683\) 16838.9 0.943373 0.471686 0.881766i \(-0.343645\pi\)
0.471686 + 0.881766i \(0.343645\pi\)
\(684\) 0 0
\(685\) −11502.0 −0.641560
\(686\) 5552.74 0.309044
\(687\) 0 0
\(688\) 3476.79 0.192662
\(689\) 46178.8i 2.55337i
\(690\) 0 0
\(691\) 29238.0 1.60964 0.804822 0.593516i \(-0.202261\pi\)
0.804822 + 0.593516i \(0.202261\pi\)
\(692\) 1740.58 0.0956171
\(693\) 0 0
\(694\) 22588.5i 1.23552i
\(695\) 7384.59i 0.403041i
\(696\) 0 0
\(697\) 1323.91i 0.0719463i
\(698\) 5927.17 0.321414
\(699\) 0 0
\(700\) −415.148 −0.0224159
\(701\) 8103.20i 0.436596i −0.975882 0.218298i \(-0.929950\pi\)
0.975882 0.218298i \(-0.0700505\pi\)
\(702\) 0 0
\(703\) 28490.6 + 10789.1i 1.52851 + 0.578830i
\(704\) 872.934i 0.0467329i
\(705\) 0 0
\(706\) 9345.40i 0.498185i
\(707\) 4000.45i 0.212804i
\(708\) 0 0
\(709\) 3316.19 0.175659 0.0878295 0.996136i \(-0.472007\pi\)
0.0878295 + 0.996136i \(0.472007\pi\)
\(710\) 2330.09i 0.123164i
\(711\) 0 0
\(712\) −4801.49 −0.252730
\(713\) 6510.82 0.341980
\(714\) 0 0
\(715\) 4459.84i 0.233271i
\(716\) −5072.27 −0.264748
\(717\) 0 0
\(718\) 7782.81i 0.404529i
\(719\) 8484.76i 0.440095i −0.975489 0.220047i \(-0.929379\pi\)
0.975489 0.220047i \(-0.0706212\pi\)
\(720\) 0 0
\(721\) 7396.42i 0.382049i
\(722\) 10277.0 + 9086.62i 0.529737 + 0.468378i
\(723\) 0 0
\(724\) 5194.20i 0.266631i
\(725\) 4393.91 0.225084
\(726\) 0 0
\(727\) 15912.5 0.811776 0.405888 0.913923i \(-0.366962\pi\)
0.405888 + 0.913923i \(0.366962\pi\)
\(728\) 2171.91i 0.110572i
\(729\) 0 0
\(730\) 428.481i 0.0217244i
\(731\) 9710.64i 0.491328i
\(732\) 0 0
\(733\) 26040.8 1.31219 0.656097 0.754677i \(-0.272206\pi\)
0.656097 + 0.754677i \(0.272206\pi\)
\(734\) 13201.9 0.663885
\(735\) 0 0
\(736\) 2450.42i 0.122723i
\(737\) −7019.38 −0.350831
\(738\) 0 0
\(739\) 27765.9 1.38212 0.691059 0.722798i \(-0.257144\pi\)
0.691059 + 0.722798i \(0.257144\pi\)
\(740\) 7357.02 0.365472
\(741\) 0 0
\(742\) −5863.11 −0.290083
\(743\) −1321.31 −0.0652413 −0.0326207 0.999468i \(-0.510385\pi\)
−0.0326207 + 0.999468i \(0.510385\pi\)
\(744\) 0 0
\(745\) −2933.62 −0.144268
\(746\) 6618.88i 0.324845i
\(747\) 0 0
\(748\) −2438.09 −0.119179
\(749\) −4864.72 −0.237320
\(750\) 0 0
\(751\) 855.394i 0.0415629i −0.999784 0.0207815i \(-0.993385\pi\)
0.999784 0.0207815i \(-0.00661542\pi\)
\(752\) 9808.55i 0.475640i
\(753\) 0 0
\(754\) 22987.4i 1.11028i
\(755\) −8203.67 −0.395447
\(756\) 0 0
\(757\) −19685.7 −0.945163 −0.472581 0.881287i \(-0.656678\pi\)
−0.472581 + 0.881287i \(0.656678\pi\)
\(758\) 8842.43i 0.423709i
\(759\) 0 0
\(760\) 3098.06 + 1173.20i 0.147867 + 0.0559953i
\(761\) 2346.44i 0.111772i −0.998437 0.0558859i \(-0.982202\pi\)
0.998437 0.0558859i \(-0.0177983\pi\)
\(762\) 0 0
\(763\) 2506.58i 0.118931i
\(764\) 683.162i 0.0323507i
\(765\) 0 0
\(766\) 26884.0 1.26809
\(767\) 7547.06i 0.355291i
\(768\) 0 0
\(769\) −2983.65 −0.139913 −0.0699565 0.997550i \(-0.522286\pi\)
−0.0699565 + 0.997550i \(0.522286\pi\)
\(770\) 566.245 0.0265014
\(771\) 0 0
\(772\) 2013.62i 0.0938755i
\(773\) −673.298 −0.0313284 −0.0156642 0.999877i \(-0.504986\pi\)
−0.0156642 + 0.999877i \(0.504986\pi\)
\(774\) 0 0
\(775\) 2125.61i 0.0985217i
\(776\) 4436.98i 0.205256i
\(777\) 0 0
\(778\) 26920.5i 1.24055i
\(779\) 868.922 2294.56i 0.0399645 0.105534i
\(780\) 0 0
\(781\) 3178.15i 0.145612i
\(782\) −6844.00 −0.312968
\(783\) 0 0
\(784\) −5212.24 −0.237438
\(785\) 18475.7i 0.840031i
\(786\) 0 0
\(787\) 9634.69i 0.436391i 0.975905 + 0.218195i \(0.0700170\pi\)
−0.975905 + 0.218195i \(0.929983\pi\)
\(788\) 4533.99i 0.204970i
\(789\) 0 0
\(790\) 411.864 0.0185487
\(791\) −3072.05 −0.138090
\(792\) 0 0
\(793\) 39379.8i 1.76345i
\(794\) −3745.45 −0.167407
\(795\) 0 0
\(796\) −3032.80 −0.135044
\(797\) 12203.1 0.542354 0.271177 0.962529i \(-0.412587\pi\)
0.271177 + 0.962529i \(0.412587\pi\)
\(798\) 0 0
\(799\) −27395.2 −1.21298
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) 21103.6 0.929167
\(803\) 584.430i 0.0256838i
\(804\) 0 0
\(805\) 1589.51 0.0695938
\(806\) −11120.4 −0.485981
\(807\) 0 0
\(808\) 7708.96i 0.335644i
\(809\) 12209.4i 0.530604i 0.964165 + 0.265302i \(0.0854716\pi\)
−0.964165 + 0.265302i \(0.914528\pi\)
\(810\) 0 0
\(811\) 30281.1i 1.31112i 0.755145 + 0.655558i \(0.227566\pi\)
−0.755145 + 0.655558i \(0.772434\pi\)
\(812\) −2918.60 −0.126136
\(813\) 0 0
\(814\) −10034.7 −0.432082
\(815\) 5064.47i 0.217670i
\(816\) 0 0
\(817\) 6373.40 16830.2i 0.272922 0.720703i
\(818\) 16894.4i 0.722124i
\(819\) 0 0
\(820\) 592.514i 0.0252335i
\(821\) 13979.7i 0.594270i −0.954836 0.297135i \(-0.903969\pi\)
0.954836 0.297135i \(-0.0960311\pi\)
\(822\) 0 0
\(823\) 29479.0 1.24857 0.624286 0.781196i \(-0.285390\pi\)
0.624286 + 0.781196i \(0.285390\pi\)
\(824\) 14253.1i 0.602584i
\(825\) 0 0
\(826\) 958.216 0.0403639
\(827\) 5311.72 0.223345 0.111673 0.993745i \(-0.464379\pi\)
0.111673 + 0.993745i \(0.464379\pi\)
\(828\) 0 0
\(829\) 18971.2i 0.794807i 0.917644 + 0.397404i \(0.130089\pi\)
−0.917644 + 0.397404i \(0.869911\pi\)
\(830\) 13085.4 0.547230
\(831\) 0 0
\(832\) 4185.31i 0.174399i
\(833\) 14557.7i 0.605517i
\(834\) 0 0
\(835\) 2125.99i 0.0881112i
\(836\) −4225.63 1600.20i −0.174816 0.0662009i
\(837\) 0 0
\(838\) 10396.0i 0.428549i
\(839\) 17833.1 0.733811 0.366905 0.930258i \(-0.380417\pi\)
0.366905 + 0.930258i \(0.380417\pi\)
\(840\) 0 0
\(841\) 6501.34 0.266568
\(842\) 20329.3i 0.832059i
\(843\) 0 0
\(844\) 4971.01i 0.202736i
\(845\) 10397.9i 0.423311i
\(846\) 0 0
\(847\) 4753.29 0.192828
\(848\) 11298.3 0.457531
\(849\) 0 0
\(850\) 2234.39i 0.0901635i
\(851\) −28168.5 −1.13467
\(852\) 0 0
\(853\) −38798.0 −1.55735 −0.778674 0.627429i \(-0.784107\pi\)
−0.778674 + 0.627429i \(0.784107\pi\)
\(854\) 4999.88 0.200342
\(855\) 0 0
\(856\) 9374.42 0.374312
\(857\) 43650.6 1.73988 0.869939 0.493159i \(-0.164158\pi\)
0.869939 + 0.493159i \(0.164158\pi\)
\(858\) 0 0
\(859\) −9559.58 −0.379707 −0.189854 0.981812i \(-0.560801\pi\)
−0.189854 + 0.981812i \(0.560801\pi\)
\(860\) 4345.99i 0.172322i
\(861\) 0 0
\(862\) 29137.5 1.15131
\(863\) 4318.16 0.170327 0.0851633 0.996367i \(-0.472859\pi\)
0.0851633 + 0.996367i \(0.472859\pi\)
\(864\) 0 0
\(865\) 2175.73i 0.0855225i
\(866\) 22906.5i 0.898838i
\(867\) 0 0
\(868\) 1411.91i 0.0552113i
\(869\) −561.765 −0.0219293
\(870\) 0 0
\(871\) 33654.7 1.30924
\(872\) 4830.24i 0.187583i
\(873\) 0 0
\(874\) −11861.8 4491.93i −0.459076 0.173847i
\(875\) 518.935i 0.0200494i
\(876\) 0 0
\(877\) 45060.7i 1.73500i 0.497440 + 0.867498i \(0.334273\pi\)
−0.497440 + 0.867498i \(0.665727\pi\)
\(878\) 34755.2i 1.33591i
\(879\) 0 0
\(880\) −1091.17 −0.0417991
\(881\) 2580.52i 0.0986832i 0.998782 + 0.0493416i \(0.0157123\pi\)
−0.998782 + 0.0493416i \(0.984288\pi\)
\(882\) 0 0
\(883\) 30115.7 1.14776 0.573880 0.818939i \(-0.305438\pi\)
0.573880 + 0.818939i \(0.305438\pi\)
\(884\) 11689.5 0.444753
\(885\) 0 0
\(886\) 24710.7i 0.936990i
\(887\) 40935.9 1.54960 0.774799 0.632208i \(-0.217851\pi\)
0.774799 + 0.632208i \(0.217851\pi\)
\(888\) 0 0
\(889\) 5297.91i 0.199872i
\(890\) 6001.86i 0.226048i
\(891\) 0 0
\(892\) 19696.1i 0.739320i
\(893\) −47480.5 17980.3i −1.77925 0.673782i
\(894\) 0 0
\(895\) 6340.33i 0.236798i
\(896\) −531.390 −0.0198130
\(897\) 0 0
\(898\) −12570.0 −0.467110
\(899\) 14943.6i 0.554391i
\(900\) 0 0
\(901\) 31556.1i 1.16680i
\(902\) 808.165i 0.0298325i
\(903\) 0 0
\(904\) 5919.91 0.217802
\(905\) 6492.75 0.238482
\(906\) 0 0
\(907\) 14928.9i 0.546534i 0.961938 + 0.273267i \(0.0881043\pi\)
−0.961938 + 0.273267i \(0.911896\pi\)
\(908\) 7613.56 0.278265
\(909\) 0 0
\(910\) −2714.88 −0.0988984
\(911\) 21444.8 0.779909 0.389955 0.920834i \(-0.372491\pi\)
0.389955 + 0.920834i \(0.372491\pi\)
\(912\) 0 0
\(913\) −17847.9 −0.646967
\(914\) −26701.1 −0.966296
\(915\) 0 0
\(916\) −17233.4 −0.621625
\(917\) 4503.12i 0.162166i
\(918\) 0 0
\(919\) −19268.9 −0.691647 −0.345824 0.938300i \(-0.612400\pi\)
−0.345824 + 0.938300i \(0.612400\pi\)
\(920\) −3063.03 −0.109766
\(921\) 0 0
\(922\) 12879.1i 0.460035i
\(923\) 15237.7i 0.543398i
\(924\) 0 0
\(925\) 9196.27i 0.326888i
\(926\) 10379.5 0.368348
\(927\) 0 0
\(928\) 5624.21 0.198948
\(929\) 48551.4i 1.71466i 0.514765 + 0.857331i \(0.327879\pi\)
−0.514765 + 0.857331i \(0.672121\pi\)
\(930\) 0 0
\(931\) −9554.69 + 25231.0i −0.336351 + 0.888200i
\(932\) 26944.7i 0.946998i
\(933\) 0 0
\(934\) 20471.2i 0.717172i
\(935\) 3047.62i 0.106597i
\(936\) 0 0
\(937\) 3206.26 0.111786 0.0558932 0.998437i \(-0.482199\pi\)
0.0558932 + 0.998437i \(0.482199\pi\)
\(938\) 4272.98i 0.148740i
\(939\) 0 0
\(940\) −12260.7 −0.425425
\(941\) −27414.2 −0.949711 −0.474856 0.880064i \(-0.657500\pi\)
−0.474856 + 0.880064i \(0.657500\pi\)
\(942\) 0 0
\(943\) 2268.61i 0.0783416i
\(944\) −1846.50 −0.0636637
\(945\) 0 0
\(946\) 5927.75i 0.203729i
\(947\) 22829.9i 0.783392i 0.920095 + 0.391696i \(0.128111\pi\)
−0.920095 + 0.391696i \(0.871889\pi\)
\(948\) 0 0
\(949\) 2802.07i 0.0958473i
\(950\) 1466.50 3872.58i 0.0500837 0.132256i
\(951\) 0 0
\(952\) 1484.17i 0.0505274i
\(953\) −31171.4 −1.05954 −0.529769 0.848142i \(-0.677721\pi\)
−0.529769 + 0.848142i \(0.677721\pi\)
\(954\) 0 0
\(955\) −853.952 −0.0289353
\(956\) 22259.0i 0.753042i
\(957\) 0 0
\(958\) 39803.2i 1.34236i
\(959\) 9550.07i 0.321572i
\(960\) 0 0
\(961\) 22561.8 0.757337
\(962\) 48111.6 1.61245
\(963\) 0 0
\(964\) 23625.7i 0.789350i
\(965\) −2517.03 −0.0839648
\(966\) 0 0
\(967\) −29863.0 −0.993101 −0.496551 0.868008i \(-0.665400\pi\)
−0.496551 + 0.868008i \(0.665400\pi\)
\(968\) −9159.69 −0.304136
\(969\) 0 0
\(970\) 5546.23 0.183586
\(971\) 17583.6 0.581138 0.290569 0.956854i \(-0.406155\pi\)
0.290569 + 0.956854i \(0.406155\pi\)
\(972\) 0 0
\(973\) 6131.40 0.202018
\(974\) 31138.5i 1.02438i
\(975\) 0 0
\(976\) −9634.87 −0.315988
\(977\) −41266.1 −1.35130 −0.675649 0.737223i \(-0.736137\pi\)
−0.675649 + 0.737223i \(0.736137\pi\)
\(978\) 0 0
\(979\) 8186.30i 0.267247i
\(980\) 6515.30i 0.212371i
\(981\) 0 0
\(982\) 1597.32i 0.0519070i
\(983\) −32351.4 −1.04969 −0.524847 0.851197i \(-0.675877\pi\)
−0.524847 + 0.851197i \(0.675877\pi\)
\(984\) 0 0
\(985\) −5667.49 −0.183331
\(986\) 15708.3i 0.507359i
\(987\) 0 0
\(988\) 20259.9 + 7672.20i 0.652383 + 0.247050i
\(989\) 16639.9i 0.535002i
\(990\) 0 0
\(991\) 31689.1i 1.01578i −0.861422 0.507890i \(-0.830426\pi\)
0.861422 0.507890i \(-0.169574\pi\)
\(992\) 2720.79i 0.0870817i
\(993\) 0 0
\(994\) 1934.67 0.0617343
\(995\) 3791.00i 0.120787i
\(996\) 0 0
\(997\) −27589.3 −0.876391 −0.438196 0.898880i \(-0.644382\pi\)
−0.438196 + 0.898880i \(0.644382\pi\)
\(998\) 34729.3 1.10154
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.4.f.a.341.21 40
3.2 odd 2 1710.4.f.b.341.22 yes 40
19.18 odd 2 1710.4.f.b.341.21 yes 40
57.56 even 2 inner 1710.4.f.a.341.22 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.4.f.a.341.21 40 1.1 even 1 trivial
1710.4.f.a.341.22 yes 40 57.56 even 2 inner
1710.4.f.b.341.21 yes 40 19.18 odd 2
1710.4.f.b.341.22 yes 40 3.2 odd 2