Properties

Label 1710.4.f.a.341.11
Level $1710$
Weight $4$
Character 1710.341
Analytic conductor $100.893$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(341,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.341"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 341.11
Character \(\chi\) \(=\) 1710.341
Dual form 1710.4.f.a.341.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -5.00000i q^{5} +26.6820 q^{7} -8.00000 q^{8} +10.0000i q^{10} +4.03096i q^{11} +20.1697i q^{13} -53.3639 q^{14} +16.0000 q^{16} +61.6549i q^{17} +(78.1463 + 27.4256i) q^{19} -20.0000i q^{20} -8.06192i q^{22} +63.3084i q^{23} -25.0000 q^{25} -40.3393i q^{26} +106.728 q^{28} -175.684 q^{29} +282.447i q^{31} -32.0000 q^{32} -123.310i q^{34} -133.410i q^{35} -197.954i q^{37} +(-156.293 - 54.8512i) q^{38} +40.0000i q^{40} -205.876 q^{41} -203.226 q^{43} +16.1238i q^{44} -126.617i q^{46} +504.324i q^{47} +368.928 q^{49} +50.0000 q^{50} +80.6787i q^{52} -165.512 q^{53} +20.1548 q^{55} -213.456 q^{56} +351.368 q^{58} -577.107 q^{59} -495.177 q^{61} -564.893i q^{62} +64.0000 q^{64} +100.848 q^{65} +138.983i q^{67} +246.619i q^{68} +266.820i q^{70} -342.233 q^{71} -418.213 q^{73} +395.909i q^{74} +(312.585 + 109.702i) q^{76} +107.554i q^{77} +860.281i q^{79} -80.0000i q^{80} +411.752 q^{82} -595.093i q^{83} +308.274 q^{85} +406.453 q^{86} -32.2477i q^{88} +25.7141 q^{89} +538.166i q^{91} +253.234i q^{92} -1008.65i q^{94} +(137.128 - 390.731i) q^{95} +310.597i q^{97} -737.855 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 80 q^{2} + 160 q^{4} - 56 q^{7} - 320 q^{8} + 112 q^{14} + 640 q^{16} - 76 q^{19} - 1000 q^{25} - 224 q^{28} - 120 q^{29} - 1280 q^{32} + 152 q^{38} - 312 q^{41} + 56 q^{43} + 2112 q^{49} + 2000 q^{50}+ \cdots - 4224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 26.6820 1.44069 0.720346 0.693615i \(-0.243983\pi\)
0.720346 + 0.693615i \(0.243983\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000i 0.316228i
\(11\) 4.03096i 0.110489i 0.998473 + 0.0552446i \(0.0175939\pi\)
−0.998473 + 0.0552446i \(0.982406\pi\)
\(12\) 0 0
\(13\) 20.1697i 0.430312i 0.976580 + 0.215156i \(0.0690260\pi\)
−0.976580 + 0.215156i \(0.930974\pi\)
\(14\) −53.3639 −1.01872
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 61.6549i 0.879618i 0.898091 + 0.439809i \(0.144954\pi\)
−0.898091 + 0.439809i \(0.855046\pi\)
\(18\) 0 0
\(19\) 78.1463 + 27.4256i 0.943578 + 0.331151i
\(20\) 20.0000i 0.223607i
\(21\) 0 0
\(22\) 8.06192i 0.0781276i
\(23\) 63.3084i 0.573944i 0.957939 + 0.286972i \(0.0926487\pi\)
−0.957939 + 0.286972i \(0.907351\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 40.3393i 0.304277i
\(27\) 0 0
\(28\) 106.728 0.720346
\(29\) −175.684 −1.12496 −0.562478 0.826813i \(-0.690152\pi\)
−0.562478 + 0.826813i \(0.690152\pi\)
\(30\) 0 0
\(31\) 282.447i 1.63642i 0.574922 + 0.818208i \(0.305032\pi\)
−0.574922 + 0.818208i \(0.694968\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 123.310i 0.621984i
\(35\) 133.410i 0.644297i
\(36\) 0 0
\(37\) 197.954i 0.879554i −0.898107 0.439777i \(-0.855058\pi\)
0.898107 0.439777i \(-0.144942\pi\)
\(38\) −156.293 54.8512i −0.667210 0.234159i
\(39\) 0 0
\(40\) 40.0000i 0.158114i
\(41\) −205.876 −0.784206 −0.392103 0.919921i \(-0.628252\pi\)
−0.392103 + 0.919921i \(0.628252\pi\)
\(42\) 0 0
\(43\) −203.226 −0.720738 −0.360369 0.932810i \(-0.617349\pi\)
−0.360369 + 0.932810i \(0.617349\pi\)
\(44\) 16.1238i 0.0552446i
\(45\) 0 0
\(46\) 126.617i 0.405840i
\(47\) 504.324i 1.56517i 0.622541 + 0.782587i \(0.286100\pi\)
−0.622541 + 0.782587i \(0.713900\pi\)
\(48\) 0 0
\(49\) 368.928 1.07559
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 80.6787i 0.215156i
\(53\) −165.512 −0.428959 −0.214480 0.976728i \(-0.568806\pi\)
−0.214480 + 0.976728i \(0.568806\pi\)
\(54\) 0 0
\(55\) 20.1548 0.0494123
\(56\) −213.456 −0.509361
\(57\) 0 0
\(58\) 351.368 0.795463
\(59\) −577.107 −1.27344 −0.636720 0.771095i \(-0.719709\pi\)
−0.636720 + 0.771095i \(0.719709\pi\)
\(60\) 0 0
\(61\) −495.177 −1.03936 −0.519680 0.854361i \(-0.673949\pi\)
−0.519680 + 0.854361i \(0.673949\pi\)
\(62\) 564.893i 1.15712i
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 100.848 0.192441
\(66\) 0 0
\(67\) 138.983i 0.253425i 0.991939 + 0.126712i \(0.0404425\pi\)
−0.991939 + 0.126712i \(0.959557\pi\)
\(68\) 246.619i 0.439809i
\(69\) 0 0
\(70\) 266.820i 0.455587i
\(71\) −342.233 −0.572051 −0.286025 0.958222i \(-0.592334\pi\)
−0.286025 + 0.958222i \(0.592334\pi\)
\(72\) 0 0
\(73\) −418.213 −0.670522 −0.335261 0.942125i \(-0.608824\pi\)
−0.335261 + 0.942125i \(0.608824\pi\)
\(74\) 395.909i 0.621938i
\(75\) 0 0
\(76\) 312.585 + 109.702i 0.471789 + 0.165575i
\(77\) 107.554i 0.159181i
\(78\) 0 0
\(79\) 860.281i 1.22518i 0.790401 + 0.612590i \(0.209872\pi\)
−0.790401 + 0.612590i \(0.790128\pi\)
\(80\) 80.0000i 0.111803i
\(81\) 0 0
\(82\) 411.752 0.554517
\(83\) 595.093i 0.786987i −0.919327 0.393494i \(-0.871266\pi\)
0.919327 0.393494i \(-0.128734\pi\)
\(84\) 0 0
\(85\) 308.274 0.393377
\(86\) 406.453 0.509638
\(87\) 0 0
\(88\) 32.2477i 0.0390638i
\(89\) 25.7141 0.0306257 0.0153129 0.999883i \(-0.495126\pi\)
0.0153129 + 0.999883i \(0.495126\pi\)
\(90\) 0 0
\(91\) 538.166i 0.619947i
\(92\) 253.234i 0.286972i
\(93\) 0 0
\(94\) 1008.65i 1.10675i
\(95\) 137.128 390.731i 0.148095 0.421981i
\(96\) 0 0
\(97\) 310.597i 0.325117i 0.986699 + 0.162558i \(0.0519745\pi\)
−0.986699 + 0.162558i \(0.948025\pi\)
\(98\) −737.855 −0.760558
\(99\) 0 0
\(100\) −100.000 −0.100000
\(101\) 1413.46i 1.39252i −0.717790 0.696259i \(-0.754846\pi\)
0.717790 0.696259i \(-0.245154\pi\)
\(102\) 0 0
\(103\) 1039.28i 0.994206i −0.867691 0.497103i \(-0.834397\pi\)
0.867691 0.497103i \(-0.165603\pi\)
\(104\) 161.357i 0.152138i
\(105\) 0 0
\(106\) 331.024 0.303320
\(107\) 15.7183 0.0142014 0.00710069 0.999975i \(-0.497740\pi\)
0.00710069 + 0.999975i \(0.497740\pi\)
\(108\) 0 0
\(109\) 1811.26i 1.59163i −0.605541 0.795814i \(-0.707043\pi\)
0.605541 0.795814i \(-0.292957\pi\)
\(110\) −40.3096 −0.0349397
\(111\) 0 0
\(112\) 426.912 0.360173
\(113\) −253.224 −0.210808 −0.105404 0.994429i \(-0.533614\pi\)
−0.105404 + 0.994429i \(0.533614\pi\)
\(114\) 0 0
\(115\) 316.542 0.256676
\(116\) −702.736 −0.562478
\(117\) 0 0
\(118\) 1154.21 0.900458
\(119\) 1645.07i 1.26726i
\(120\) 0 0
\(121\) 1314.75 0.987792
\(122\) 990.354 0.734938
\(123\) 0 0
\(124\) 1129.79i 0.818208i
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 1241.87i 0.867700i 0.900985 + 0.433850i \(0.142845\pi\)
−0.900985 + 0.433850i \(0.857155\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −201.697 −0.136077
\(131\) 174.213i 0.116191i 0.998311 + 0.0580956i \(0.0185028\pi\)
−0.998311 + 0.0580956i \(0.981497\pi\)
\(132\) 0 0
\(133\) 2085.10 + 731.769i 1.35940 + 0.477086i
\(134\) 277.966i 0.179198i
\(135\) 0 0
\(136\) 493.239i 0.310992i
\(137\) 744.656i 0.464382i −0.972670 0.232191i \(-0.925411\pi\)
0.972670 0.232191i \(-0.0745894\pi\)
\(138\) 0 0
\(139\) −2687.71 −1.64006 −0.820030 0.572321i \(-0.806043\pi\)
−0.820030 + 0.572321i \(0.806043\pi\)
\(140\) 533.639i 0.322148i
\(141\) 0 0
\(142\) 684.466 0.404501
\(143\) −81.3032 −0.0475448
\(144\) 0 0
\(145\) 878.420i 0.503095i
\(146\) 836.425 0.474130
\(147\) 0 0
\(148\) 791.817i 0.439777i
\(149\) 208.033i 0.114381i −0.998363 0.0571903i \(-0.981786\pi\)
0.998363 0.0571903i \(-0.0182142\pi\)
\(150\) 0 0
\(151\) 642.170i 0.346087i −0.984914 0.173043i \(-0.944640\pi\)
0.984914 0.173043i \(-0.0553600\pi\)
\(152\) −625.170 219.405i −0.333605 0.117079i
\(153\) 0 0
\(154\) 215.108i 0.112558i
\(155\) 1412.23 0.731828
\(156\) 0 0
\(157\) 1889.60 0.960551 0.480275 0.877118i \(-0.340537\pi\)
0.480275 + 0.877118i \(0.340537\pi\)
\(158\) 1720.56i 0.866333i
\(159\) 0 0
\(160\) 160.000i 0.0790569i
\(161\) 1689.19i 0.826876i
\(162\) 0 0
\(163\) −2279.93 −1.09557 −0.547784 0.836619i \(-0.684529\pi\)
−0.547784 + 0.836619i \(0.684529\pi\)
\(164\) −823.504 −0.392103
\(165\) 0 0
\(166\) 1190.19i 0.556484i
\(167\) 653.334 0.302734 0.151367 0.988478i \(-0.451633\pi\)
0.151367 + 0.988478i \(0.451633\pi\)
\(168\) 0 0
\(169\) 1790.18 0.814831
\(170\) −616.549 −0.278159
\(171\) 0 0
\(172\) −812.905 −0.360369
\(173\) −3562.25 −1.56551 −0.782754 0.622331i \(-0.786186\pi\)
−0.782754 + 0.622331i \(0.786186\pi\)
\(174\) 0 0
\(175\) −667.049 −0.288138
\(176\) 64.4954i 0.0276223i
\(177\) 0 0
\(178\) −51.4282 −0.0216557
\(179\) −3680.25 −1.53673 −0.768365 0.640011i \(-0.778930\pi\)
−0.768365 + 0.640011i \(0.778930\pi\)
\(180\) 0 0
\(181\) 3018.01i 1.23938i 0.784848 + 0.619688i \(0.212741\pi\)
−0.784848 + 0.619688i \(0.787259\pi\)
\(182\) 1076.33i 0.438369i
\(183\) 0 0
\(184\) 506.467i 0.202920i
\(185\) −989.772 −0.393348
\(186\) 0 0
\(187\) −248.528 −0.0971882
\(188\) 2017.30i 0.782587i
\(189\) 0 0
\(190\) −274.256 + 781.463i −0.104719 + 0.298386i
\(191\) 1060.96i 0.401929i 0.979599 + 0.200965i \(0.0644076\pi\)
−0.979599 + 0.200965i \(0.935592\pi\)
\(192\) 0 0
\(193\) 343.242i 0.128016i −0.997949 0.0640081i \(-0.979612\pi\)
0.997949 0.0640081i \(-0.0203883\pi\)
\(194\) 621.193i 0.229892i
\(195\) 0 0
\(196\) 1475.71 0.537796
\(197\) 1413.46i 0.511194i −0.966783 0.255597i \(-0.917728\pi\)
0.966783 0.255597i \(-0.0822720\pi\)
\(198\) 0 0
\(199\) 4623.97 1.64716 0.823580 0.567201i \(-0.191974\pi\)
0.823580 + 0.567201i \(0.191974\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) 2826.92i 0.984659i
\(203\) −4687.60 −1.62071
\(204\) 0 0
\(205\) 1029.38i 0.350707i
\(206\) 2078.56i 0.703010i
\(207\) 0 0
\(208\) 322.715i 0.107578i
\(209\) −110.551 + 315.005i −0.0365885 + 0.104255i
\(210\) 0 0
\(211\) 1734.58i 0.565939i −0.959129 0.282970i \(-0.908680\pi\)
0.959129 0.282970i \(-0.0913196\pi\)
\(212\) −662.048 −0.214480
\(213\) 0 0
\(214\) −31.4367 −0.0100419
\(215\) 1016.13i 0.322324i
\(216\) 0 0
\(217\) 7536.23i 2.35757i
\(218\) 3622.52i 1.12545i
\(219\) 0 0
\(220\) 80.6192 0.0247061
\(221\) −1243.56 −0.378510
\(222\) 0 0
\(223\) 3856.25i 1.15800i 0.815329 + 0.578999i \(0.196556\pi\)
−0.815329 + 0.578999i \(0.803444\pi\)
\(224\) −853.823 −0.254681
\(225\) 0 0
\(226\) 506.448 0.149064
\(227\) 2197.61 0.642556 0.321278 0.946985i \(-0.395888\pi\)
0.321278 + 0.946985i \(0.395888\pi\)
\(228\) 0 0
\(229\) 1376.60 0.397242 0.198621 0.980076i \(-0.436354\pi\)
0.198621 + 0.980076i \(0.436354\pi\)
\(230\) −633.084 −0.181497
\(231\) 0 0
\(232\) 1405.47 0.397732
\(233\) 2531.43i 0.711758i −0.934532 0.355879i \(-0.884181\pi\)
0.934532 0.355879i \(-0.115819\pi\)
\(234\) 0 0
\(235\) 2521.62 0.699967
\(236\) −2308.43 −0.636720
\(237\) 0 0
\(238\) 3290.15i 0.896086i
\(239\) 1936.19i 0.524025i 0.965065 + 0.262012i \(0.0843861\pi\)
−0.965065 + 0.262012i \(0.915614\pi\)
\(240\) 0 0
\(241\) 1723.16i 0.460574i −0.973123 0.230287i \(-0.926033\pi\)
0.973123 0.230287i \(-0.0739666\pi\)
\(242\) −2629.50 −0.698475
\(243\) 0 0
\(244\) −1980.71 −0.519680
\(245\) 1844.64i 0.481019i
\(246\) 0 0
\(247\) −553.165 + 1576.18i −0.142498 + 0.406033i
\(248\) 2259.57i 0.578561i
\(249\) 0 0
\(250\) 250.000i 0.0632456i
\(251\) 281.572i 0.0708074i 0.999373 + 0.0354037i \(0.0112717\pi\)
−0.999373 + 0.0354037i \(0.988728\pi\)
\(252\) 0 0
\(253\) −255.194 −0.0634146
\(254\) 2483.73i 0.613556i
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −7841.48 −1.90326 −0.951631 0.307244i \(-0.900593\pi\)
−0.951631 + 0.307244i \(0.900593\pi\)
\(258\) 0 0
\(259\) 5281.81i 1.26717i
\(260\) 403.393 0.0962207
\(261\) 0 0
\(262\) 348.425i 0.0821595i
\(263\) 4722.12i 1.10714i 0.832802 + 0.553572i \(0.186735\pi\)
−0.832802 + 0.553572i \(0.813265\pi\)
\(264\) 0 0
\(265\) 827.560i 0.191836i
\(266\) −4170.19 1463.54i −0.961244 0.337351i
\(267\) 0 0
\(268\) 555.931i 0.126712i
\(269\) 1607.37 0.364323 0.182161 0.983269i \(-0.441691\pi\)
0.182161 + 0.983269i \(0.441691\pi\)
\(270\) 0 0
\(271\) −924.365 −0.207200 −0.103600 0.994619i \(-0.533036\pi\)
−0.103600 + 0.994619i \(0.533036\pi\)
\(272\) 986.478i 0.219904i
\(273\) 0 0
\(274\) 1489.31i 0.328367i
\(275\) 100.774i 0.0220978i
\(276\) 0 0
\(277\) −116.985 −0.0253753 −0.0126876 0.999920i \(-0.504039\pi\)
−0.0126876 + 0.999920i \(0.504039\pi\)
\(278\) 5375.41 1.15970
\(279\) 0 0
\(280\) 1067.28i 0.227793i
\(281\) −62.8583 −0.0133445 −0.00667226 0.999978i \(-0.502124\pi\)
−0.00667226 + 0.999978i \(0.502124\pi\)
\(282\) 0 0
\(283\) −1626.02 −0.341544 −0.170772 0.985311i \(-0.554626\pi\)
−0.170772 + 0.985311i \(0.554626\pi\)
\(284\) −1368.93 −0.286025
\(285\) 0 0
\(286\) 162.606 0.0336193
\(287\) −5493.18 −1.12980
\(288\) 0 0
\(289\) 1111.68 0.226273
\(290\) 1756.84i 0.355742i
\(291\) 0 0
\(292\) −1672.85 −0.335261
\(293\) 3273.01 0.652599 0.326300 0.945266i \(-0.394198\pi\)
0.326300 + 0.945266i \(0.394198\pi\)
\(294\) 0 0
\(295\) 2885.54i 0.569500i
\(296\) 1583.63i 0.310969i
\(297\) 0 0
\(298\) 416.065i 0.0808793i
\(299\) −1276.91 −0.246975
\(300\) 0 0
\(301\) −5422.48 −1.03836
\(302\) 1284.34i 0.244720i
\(303\) 0 0
\(304\) 1250.34 + 438.809i 0.235894 + 0.0827876i
\(305\) 2475.89i 0.464816i
\(306\) 0 0
\(307\) 3005.62i 0.558762i 0.960180 + 0.279381i \(0.0901292\pi\)
−0.960180 + 0.279381i \(0.909871\pi\)
\(308\) 430.216i 0.0795904i
\(309\) 0 0
\(310\) −2824.47 −0.517480
\(311\) 3280.50i 0.598135i 0.954232 + 0.299067i \(0.0966755\pi\)
−0.954232 + 0.299067i \(0.903324\pi\)
\(312\) 0 0
\(313\) −8508.09 −1.53644 −0.768220 0.640186i \(-0.778857\pi\)
−0.768220 + 0.640186i \(0.778857\pi\)
\(314\) −3779.20 −0.679212
\(315\) 0 0
\(316\) 3441.12i 0.612590i
\(317\) 494.452 0.0876063 0.0438032 0.999040i \(-0.486053\pi\)
0.0438032 + 0.999040i \(0.486053\pi\)
\(318\) 0 0
\(319\) 708.176i 0.124295i
\(320\) 320.000i 0.0559017i
\(321\) 0 0
\(322\) 3378.39i 0.584690i
\(323\) −1690.92 + 4818.10i −0.291286 + 0.829988i
\(324\) 0 0
\(325\) 504.242i 0.0860624i
\(326\) 4559.86 0.774684
\(327\) 0 0
\(328\) 1647.01 0.277259
\(329\) 13456.4i 2.25493i
\(330\) 0 0
\(331\) 5575.70i 0.925886i 0.886388 + 0.462943i \(0.153207\pi\)
−0.886388 + 0.462943i \(0.846793\pi\)
\(332\) 2380.37i 0.393494i
\(333\) 0 0
\(334\) −1306.67 −0.214065
\(335\) 694.914 0.113335
\(336\) 0 0
\(337\) 7583.38i 1.22580i −0.790162 0.612898i \(-0.790004\pi\)
0.790162 0.612898i \(-0.209996\pi\)
\(338\) −3580.37 −0.576173
\(339\) 0 0
\(340\) 1233.10 0.196688
\(341\) −1138.53 −0.180806
\(342\) 0 0
\(343\) 691.803 0.108903
\(344\) 1625.81 0.254819
\(345\) 0 0
\(346\) 7124.51 1.10698
\(347\) 1079.04i 0.166934i 0.996511 + 0.0834671i \(0.0265993\pi\)
−0.996511 + 0.0834671i \(0.973401\pi\)
\(348\) 0 0
\(349\) −5777.05 −0.886071 −0.443035 0.896504i \(-0.646098\pi\)
−0.443035 + 0.896504i \(0.646098\pi\)
\(350\) 1334.10 0.203744
\(351\) 0 0
\(352\) 128.991i 0.0195319i
\(353\) 632.906i 0.0954283i 0.998861 + 0.0477141i \(0.0151936\pi\)
−0.998861 + 0.0477141i \(0.984806\pi\)
\(354\) 0 0
\(355\) 1711.17i 0.255829i
\(356\) 102.856 0.0153129
\(357\) 0 0
\(358\) 7360.50 1.08663
\(359\) 4168.76i 0.612866i 0.951892 + 0.306433i \(0.0991355\pi\)
−0.951892 + 0.306433i \(0.900864\pi\)
\(360\) 0 0
\(361\) 5354.67 + 4286.41i 0.780679 + 0.624933i
\(362\) 6036.03i 0.876372i
\(363\) 0 0
\(364\) 2152.67i 0.309973i
\(365\) 2091.06i 0.299866i
\(366\) 0 0
\(367\) −8361.04 −1.18922 −0.594609 0.804015i \(-0.702693\pi\)
−0.594609 + 0.804015i \(0.702693\pi\)
\(368\) 1012.93i 0.143486i
\(369\) 0 0
\(370\) 1979.54 0.278139
\(371\) −4416.19 −0.617997
\(372\) 0 0
\(373\) 3633.75i 0.504419i −0.967673 0.252210i \(-0.918843\pi\)
0.967673 0.252210i \(-0.0811572\pi\)
\(374\) 497.057 0.0687224
\(375\) 0 0
\(376\) 4034.59i 0.553373i
\(377\) 3543.49i 0.484082i
\(378\) 0 0
\(379\) 12979.0i 1.75907i 0.475836 + 0.879534i \(0.342146\pi\)
−0.475836 + 0.879534i \(0.657854\pi\)
\(380\) 548.512 1562.93i 0.0740475 0.210990i
\(381\) 0 0
\(382\) 2121.92i 0.284207i
\(383\) 5083.40 0.678197 0.339098 0.940751i \(-0.389878\pi\)
0.339098 + 0.940751i \(0.389878\pi\)
\(384\) 0 0
\(385\) 537.770 0.0711878
\(386\) 686.485i 0.0905211i
\(387\) 0 0
\(388\) 1242.39i 0.162558i
\(389\) 5187.19i 0.676095i 0.941129 + 0.338048i \(0.109766\pi\)
−0.941129 + 0.338048i \(0.890234\pi\)
\(390\) 0 0
\(391\) −3903.27 −0.504851
\(392\) −2951.42 −0.380279
\(393\) 0 0
\(394\) 2826.93i 0.361469i
\(395\) 4301.41 0.547917
\(396\) 0 0
\(397\) −14120.3 −1.78508 −0.892538 0.450972i \(-0.851078\pi\)
−0.892538 + 0.450972i \(0.851078\pi\)
\(398\) −9247.94 −1.16472
\(399\) 0 0
\(400\) −400.000 −0.0500000
\(401\) 956.546 0.119121 0.0595607 0.998225i \(-0.481030\pi\)
0.0595607 + 0.998225i \(0.481030\pi\)
\(402\) 0 0
\(403\) −5696.85 −0.704170
\(404\) 5653.83i 0.696259i
\(405\) 0 0
\(406\) 9375.19 1.14602
\(407\) 797.946 0.0971812
\(408\) 0 0
\(409\) 4640.46i 0.561017i 0.959852 + 0.280508i \(0.0905031\pi\)
−0.959852 + 0.280508i \(0.909497\pi\)
\(410\) 2058.76i 0.247988i
\(411\) 0 0
\(412\) 4157.12i 0.497103i
\(413\) −15398.4 −1.83463
\(414\) 0 0
\(415\) −2975.47 −0.351951
\(416\) 645.429i 0.0760692i
\(417\) 0 0
\(418\) 221.103 630.009i 0.0258720 0.0737195i
\(419\) 10115.3i 1.17939i 0.807627 + 0.589694i \(0.200752\pi\)
−0.807627 + 0.589694i \(0.799248\pi\)
\(420\) 0 0
\(421\) 15180.7i 1.75739i 0.477387 + 0.878693i \(0.341584\pi\)
−0.477387 + 0.878693i \(0.658416\pi\)
\(422\) 3469.15i 0.400180i
\(423\) 0 0
\(424\) 1324.10 0.151660
\(425\) 1541.37i 0.175924i
\(426\) 0 0
\(427\) −13212.3 −1.49740
\(428\) 62.8733 0.00710069
\(429\) 0 0
\(430\) 2032.26i 0.227917i
\(431\) 14107.0 1.57659 0.788295 0.615297i \(-0.210964\pi\)
0.788295 + 0.615297i \(0.210964\pi\)
\(432\) 0 0
\(433\) 7215.50i 0.800820i −0.916336 0.400410i \(-0.868868\pi\)
0.916336 0.400410i \(-0.131132\pi\)
\(434\) 15072.5i 1.66705i
\(435\) 0 0
\(436\) 7245.05i 0.795814i
\(437\) −1736.27 + 4947.31i −0.190062 + 0.541561i
\(438\) 0 0
\(439\) 13614.9i 1.48019i 0.672500 + 0.740097i \(0.265220\pi\)
−0.672500 + 0.740097i \(0.734780\pi\)
\(440\) −161.238 −0.0174699
\(441\) 0 0
\(442\) 2487.12 0.267647
\(443\) 12246.5i 1.31342i 0.754142 + 0.656712i \(0.228053\pi\)
−0.754142 + 0.656712i \(0.771947\pi\)
\(444\) 0 0
\(445\) 128.571i 0.0136962i
\(446\) 7712.49i 0.818828i
\(447\) 0 0
\(448\) 1707.65 0.180086
\(449\) 11066.6 1.16318 0.581589 0.813483i \(-0.302431\pi\)
0.581589 + 0.813483i \(0.302431\pi\)
\(450\) 0 0
\(451\) 829.879i 0.0866462i
\(452\) −1012.90 −0.105404
\(453\) 0 0
\(454\) −4395.21 −0.454356
\(455\) 2690.83 0.277249
\(456\) 0 0
\(457\) 1096.54 0.112241 0.0561206 0.998424i \(-0.482127\pi\)
0.0561206 + 0.998424i \(0.482127\pi\)
\(458\) −2753.20 −0.280892
\(459\) 0 0
\(460\) 1266.17 0.128338
\(461\) 10189.5i 1.02944i −0.857359 0.514719i \(-0.827896\pi\)
0.857359 0.514719i \(-0.172104\pi\)
\(462\) 0 0
\(463\) 11492.8 1.15359 0.576797 0.816888i \(-0.304303\pi\)
0.576797 + 0.816888i \(0.304303\pi\)
\(464\) −2810.94 −0.281239
\(465\) 0 0
\(466\) 5062.87i 0.503289i
\(467\) 14018.0i 1.38903i −0.719477 0.694516i \(-0.755619\pi\)
0.719477 0.694516i \(-0.244381\pi\)
\(468\) 0 0
\(469\) 3708.34i 0.365107i
\(470\) −5043.24 −0.494952
\(471\) 0 0
\(472\) 4616.86 0.450229
\(473\) 819.197i 0.0796337i
\(474\) 0 0
\(475\) −1953.66 685.640i −0.188716 0.0662301i
\(476\) 6580.29i 0.633629i
\(477\) 0 0
\(478\) 3872.39i 0.370541i
\(479\) 7395.19i 0.705417i 0.935733 + 0.352709i \(0.114739\pi\)
−0.935733 + 0.352709i \(0.885261\pi\)
\(480\) 0 0
\(481\) 3992.67 0.378483
\(482\) 3446.32i 0.325675i
\(483\) 0 0
\(484\) 5259.01 0.493896
\(485\) 1552.98 0.145397
\(486\) 0 0
\(487\) 7380.20i 0.686712i −0.939205 0.343356i \(-0.888436\pi\)
0.939205 0.343356i \(-0.111564\pi\)
\(488\) 3961.42 0.367469
\(489\) 0 0
\(490\) 3689.28i 0.340132i
\(491\) 16979.1i 1.56061i 0.625402 + 0.780303i \(0.284935\pi\)
−0.625402 + 0.780303i \(0.715065\pi\)
\(492\) 0 0
\(493\) 10831.8i 0.989530i
\(494\) 1106.33 3152.37i 0.100761 0.287109i
\(495\) 0 0
\(496\) 4519.15i 0.409104i
\(497\) −9131.46 −0.824148
\(498\) 0 0
\(499\) 14389.7 1.29092 0.645461 0.763793i \(-0.276665\pi\)
0.645461 + 0.763793i \(0.276665\pi\)
\(500\) 500.000i 0.0447214i
\(501\) 0 0
\(502\) 563.143i 0.0500684i
\(503\) 1467.64i 0.130097i −0.997882 0.0650486i \(-0.979280\pi\)
0.997882 0.0650486i \(-0.0207202\pi\)
\(504\) 0 0
\(505\) −7067.29 −0.622753
\(506\) 510.387 0.0448409
\(507\) 0 0
\(508\) 4967.47i 0.433850i
\(509\) 13699.0 1.19293 0.596463 0.802640i \(-0.296572\pi\)
0.596463 + 0.802640i \(0.296572\pi\)
\(510\) 0 0
\(511\) −11158.7 −0.966015
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 15683.0 1.34581
\(515\) −5196.40 −0.444623
\(516\) 0 0
\(517\) −2032.91 −0.172935
\(518\) 10563.6i 0.896021i
\(519\) 0 0
\(520\) −806.787 −0.0680383
\(521\) −12407.9 −1.04338 −0.521690 0.853135i \(-0.674698\pi\)
−0.521690 + 0.853135i \(0.674698\pi\)
\(522\) 0 0
\(523\) 983.734i 0.0822479i 0.999154 + 0.0411240i \(0.0130939\pi\)
−0.999154 + 0.0411240i \(0.986906\pi\)
\(524\) 696.851i 0.0580956i
\(525\) 0 0
\(526\) 9444.25i 0.782868i
\(527\) −17414.2 −1.43942
\(528\) 0 0
\(529\) 8159.05 0.670588
\(530\) 1655.12i 0.135649i
\(531\) 0 0
\(532\) 8340.39 + 2927.07i 0.679702 + 0.238543i
\(533\) 4152.45i 0.337453i
\(534\) 0 0
\(535\) 78.5916i 0.00635105i
\(536\) 1111.86i 0.0895992i
\(537\) 0 0
\(538\) −3214.73 −0.257615
\(539\) 1487.13i 0.118841i
\(540\) 0 0
\(541\) −9038.28 −0.718273 −0.359137 0.933285i \(-0.616929\pi\)
−0.359137 + 0.933285i \(0.616929\pi\)
\(542\) 1848.73 0.146513
\(543\) 0 0
\(544\) 1972.96i 0.155496i
\(545\) −9056.31 −0.711798
\(546\) 0 0
\(547\) 5904.92i 0.461565i −0.973005 0.230782i \(-0.925871\pi\)
0.973005 0.230782i \(-0.0741286\pi\)
\(548\) 2978.62i 0.232191i
\(549\) 0 0
\(550\) 201.548i 0.0156255i
\(551\) −13729.0 4818.24i −1.06148 0.372530i
\(552\) 0 0
\(553\) 22954.0i 1.76511i
\(554\) 233.970 0.0179430
\(555\) 0 0
\(556\) −10750.8 −0.820030
\(557\) 7436.51i 0.565701i 0.959164 + 0.282850i \(0.0912800\pi\)
−0.959164 + 0.282850i \(0.908720\pi\)
\(558\) 0 0
\(559\) 4099.01i 0.310142i
\(560\) 2134.56i 0.161074i
\(561\) 0 0
\(562\) 125.717 0.00943601
\(563\) 24313.8 1.82008 0.910041 0.414518i \(-0.136050\pi\)
0.910041 + 0.414518i \(0.136050\pi\)
\(564\) 0 0
\(565\) 1266.12i 0.0942762i
\(566\) 3252.05 0.241508
\(567\) 0 0
\(568\) 2737.87 0.202250
\(569\) 19127.1 1.40922 0.704612 0.709593i \(-0.251121\pi\)
0.704612 + 0.709593i \(0.251121\pi\)
\(570\) 0 0
\(571\) −20402.5 −1.49530 −0.747650 0.664093i \(-0.768818\pi\)
−0.747650 + 0.664093i \(0.768818\pi\)
\(572\) −325.213 −0.0237724
\(573\) 0 0
\(574\) 10986.4 0.798888
\(575\) 1582.71i 0.114789i
\(576\) 0 0
\(577\) −17950.0 −1.29509 −0.647547 0.762025i \(-0.724205\pi\)
−0.647547 + 0.762025i \(0.724205\pi\)
\(578\) −2223.36 −0.159999
\(579\) 0 0
\(580\) 3513.68i 0.251548i
\(581\) 15878.3i 1.13381i
\(582\) 0 0
\(583\) 667.173i 0.0473953i
\(584\) 3345.70 0.237065
\(585\) 0 0
\(586\) −6546.03 −0.461457
\(587\) 6463.47i 0.454474i −0.973840 0.227237i \(-0.927031\pi\)
0.973840 0.227237i \(-0.0729692\pi\)
\(588\) 0 0
\(589\) −7746.26 + 22072.1i −0.541900 + 1.54409i
\(590\) 5771.07i 0.402697i
\(591\) 0 0
\(592\) 3167.27i 0.219888i
\(593\) 4805.94i 0.332810i 0.986057 + 0.166405i \(0.0532159\pi\)
−0.986057 + 0.166405i \(0.946784\pi\)
\(594\) 0 0
\(595\) 8225.37 0.566735
\(596\) 832.131i 0.0571903i
\(597\) 0 0
\(598\) 2553.82 0.174638
\(599\) 14593.4 0.995441 0.497721 0.867337i \(-0.334170\pi\)
0.497721 + 0.867337i \(0.334170\pi\)
\(600\) 0 0
\(601\) 15730.3i 1.06764i −0.845598 0.533821i \(-0.820756\pi\)
0.845598 0.533821i \(-0.179244\pi\)
\(602\) 10845.0 0.734232
\(603\) 0 0
\(604\) 2568.68i 0.173043i
\(605\) 6573.76i 0.441754i
\(606\) 0 0
\(607\) 18717.6i 1.25161i −0.779981 0.625803i \(-0.784771\pi\)
0.779981 0.625803i \(-0.215229\pi\)
\(608\) −2500.68 877.619i −0.166803 0.0585397i
\(609\) 0 0
\(610\) 4951.77i 0.328674i
\(611\) −10172.0 −0.673514
\(612\) 0 0
\(613\) −21059.5 −1.38758 −0.693788 0.720180i \(-0.744059\pi\)
−0.693788 + 0.720180i \(0.744059\pi\)
\(614\) 6011.24i 0.395104i
\(615\) 0 0
\(616\) 860.432i 0.0562789i
\(617\) 23163.4i 1.51138i 0.654928 + 0.755691i \(0.272699\pi\)
−0.654928 + 0.755691i \(0.727301\pi\)
\(618\) 0 0
\(619\) 15131.7 0.982545 0.491273 0.871006i \(-0.336532\pi\)
0.491273 + 0.871006i \(0.336532\pi\)
\(620\) 5648.93 0.365914
\(621\) 0 0
\(622\) 6560.99i 0.422945i
\(623\) 686.103 0.0441222
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 17016.2 1.08643
\(627\) 0 0
\(628\) 7558.40 0.480275
\(629\) 12204.8 0.773671
\(630\) 0 0
\(631\) −12268.2 −0.773989 −0.386995 0.922082i \(-0.626487\pi\)
−0.386995 + 0.922082i \(0.626487\pi\)
\(632\) 6882.25i 0.433166i
\(633\) 0 0
\(634\) −988.904 −0.0619470
\(635\) 6209.34 0.388047
\(636\) 0 0
\(637\) 7441.15i 0.462840i
\(638\) 1416.35i 0.0878901i
\(639\) 0 0
\(640\) 640.000i 0.0395285i
\(641\) 24506.9 1.51009 0.755043 0.655675i \(-0.227616\pi\)
0.755043 + 0.655675i \(0.227616\pi\)
\(642\) 0 0
\(643\) 11464.3 0.703123 0.351562 0.936165i \(-0.385651\pi\)
0.351562 + 0.936165i \(0.385651\pi\)
\(644\) 6756.77i 0.413438i
\(645\) 0 0
\(646\) 3381.84 9636.19i 0.205970 0.586890i
\(647\) 17774.5i 1.08005i −0.841650 0.540023i \(-0.818416\pi\)
0.841650 0.540023i \(-0.181584\pi\)
\(648\) 0 0
\(649\) 2326.30i 0.140701i
\(650\) 1008.48i 0.0608553i
\(651\) 0 0
\(652\) −9119.71 −0.547784
\(653\) 6125.96i 0.367117i 0.983009 + 0.183559i \(0.0587617\pi\)
−0.983009 + 0.183559i \(0.941238\pi\)
\(654\) 0 0
\(655\) 871.064 0.0519622
\(656\) −3294.02 −0.196051
\(657\) 0 0
\(658\) 26912.7i 1.59448i
\(659\) 32207.3 1.90382 0.951912 0.306372i \(-0.0991152\pi\)
0.951912 + 0.306372i \(0.0991152\pi\)
\(660\) 0 0
\(661\) 12144.7i 0.714635i −0.933983 0.357318i \(-0.883691\pi\)
0.933983 0.357318i \(-0.116309\pi\)
\(662\) 11151.4i 0.654700i
\(663\) 0 0
\(664\) 4760.74i 0.278242i
\(665\) 3658.84 10425.5i 0.213359 0.607944i
\(666\) 0 0
\(667\) 11122.3i 0.645661i
\(668\) 2613.34 0.151367
\(669\) 0 0
\(670\) −1389.83 −0.0801400
\(671\) 1996.04i 0.114838i
\(672\) 0 0
\(673\) 20816.8i 1.19231i −0.802868 0.596157i \(-0.796694\pi\)
0.802868 0.596157i \(-0.203306\pi\)
\(674\) 15166.8i 0.866769i
\(675\) 0 0
\(676\) 7160.74 0.407416
\(677\) 31366.0 1.78064 0.890320 0.455336i \(-0.150481\pi\)
0.890320 + 0.455336i \(0.150481\pi\)
\(678\) 0 0
\(679\) 8287.33i 0.468393i
\(680\) −2466.19 −0.139080
\(681\) 0 0
\(682\) 2277.06 0.127849
\(683\) 3882.25 0.217497 0.108748 0.994069i \(-0.465316\pi\)
0.108748 + 0.994069i \(0.465316\pi\)
\(684\) 0 0
\(685\) −3723.28 −0.207678
\(686\) −1383.61 −0.0770063
\(687\) 0 0
\(688\) −3251.62 −0.180184
\(689\) 3338.32i 0.184586i
\(690\) 0 0
\(691\) 25246.9 1.38993 0.694963 0.719045i \(-0.255421\pi\)
0.694963 + 0.719045i \(0.255421\pi\)
\(692\) −14249.0 −0.782754
\(693\) 0 0
\(694\) 2158.09i 0.118040i
\(695\) 13438.5i 0.733457i
\(696\) 0 0
\(697\) 12693.3i 0.689801i
\(698\) 11554.1 0.626547
\(699\) 0 0
\(700\) −2668.20 −0.144069
\(701\) 11434.8i 0.616102i −0.951370 0.308051i \(-0.900323\pi\)
0.951370 0.308051i \(-0.0996767\pi\)
\(702\) 0 0
\(703\) 5429.01 15469.4i 0.291265 0.829928i
\(704\) 257.982i 0.0138111i
\(705\) 0 0
\(706\) 1265.81i 0.0674780i
\(707\) 37713.9i 2.00619i
\(708\) 0 0
\(709\) 11523.8 0.610419 0.305209 0.952285i \(-0.401274\pi\)
0.305209 + 0.952285i \(0.401274\pi\)
\(710\) 3422.33i 0.180898i
\(711\) 0 0
\(712\) −205.713 −0.0108278
\(713\) −17881.2 −0.939211
\(714\) 0 0
\(715\) 406.516i 0.0212627i
\(716\) −14721.0 −0.768365
\(717\) 0 0
\(718\) 8337.53i 0.433362i
\(719\) 27869.1i 1.44554i −0.691089 0.722770i \(-0.742869\pi\)
0.691089 0.722770i \(-0.257131\pi\)
\(720\) 0 0
\(721\) 27730.0i 1.43234i
\(722\) −10709.3 8572.83i −0.552023 0.441894i
\(723\) 0 0
\(724\) 12072.1i 0.619688i
\(725\) 4392.10 0.224991
\(726\) 0 0
\(727\) −9227.10 −0.470721 −0.235360 0.971908i \(-0.575627\pi\)
−0.235360 + 0.971908i \(0.575627\pi\)
\(728\) 4305.33i 0.219184i
\(729\) 0 0
\(730\) 4182.13i 0.212038i
\(731\) 12529.9i 0.633973i
\(732\) 0 0
\(733\) 1154.07 0.0581538 0.0290769 0.999577i \(-0.490743\pi\)
0.0290769 + 0.999577i \(0.490743\pi\)
\(734\) 16722.1 0.840904
\(735\) 0 0
\(736\) 2025.87i 0.101460i
\(737\) −560.235 −0.0280007
\(738\) 0 0
\(739\) 14139.6 0.703834 0.351917 0.936031i \(-0.385530\pi\)
0.351917 + 0.936031i \(0.385530\pi\)
\(740\) −3959.09 −0.196674
\(741\) 0 0
\(742\) 8832.38 0.436990
\(743\) 13812.8 0.682020 0.341010 0.940060i \(-0.389231\pi\)
0.341010 + 0.940060i \(0.389231\pi\)
\(744\) 0 0
\(745\) −1040.16 −0.0511525
\(746\) 7267.50i 0.356678i
\(747\) 0 0
\(748\) −994.113 −0.0485941
\(749\) 419.396 0.0204598
\(750\) 0 0
\(751\) 13002.8i 0.631794i −0.948793 0.315897i \(-0.897695\pi\)
0.948793 0.315897i \(-0.102305\pi\)
\(752\) 8069.18i 0.391294i
\(753\) 0 0
\(754\) 7086.98i 0.342298i
\(755\) −3210.85 −0.154775
\(756\) 0 0
\(757\) 2210.89 0.106151 0.0530754 0.998591i \(-0.483098\pi\)
0.0530754 + 0.998591i \(0.483098\pi\)
\(758\) 25958.0i 1.24385i
\(759\) 0 0
\(760\) −1097.02 + 3125.85i −0.0523595 + 0.149193i
\(761\) 28674.6i 1.36590i 0.730463 + 0.682952i \(0.239304\pi\)
−0.730463 + 0.682952i \(0.760696\pi\)
\(762\) 0 0
\(763\) 48328.1i 2.29304i
\(764\) 4243.84i 0.200965i
\(765\) 0 0
\(766\) −10166.8 −0.479558
\(767\) 11640.1i 0.547977i
\(768\) 0 0
\(769\) −14992.4 −0.703045 −0.351522 0.936179i \(-0.614336\pi\)
−0.351522 + 0.936179i \(0.614336\pi\)
\(770\) −1075.54 −0.0503374
\(771\) 0 0
\(772\) 1372.97i 0.0640081i
\(773\) 10268.3 0.477780 0.238890 0.971047i \(-0.423217\pi\)
0.238890 + 0.971047i \(0.423217\pi\)
\(774\) 0 0
\(775\) 7061.17i 0.327283i
\(776\) 2484.77i 0.114946i
\(777\) 0 0
\(778\) 10374.4i 0.478071i
\(779\) −16088.4 5646.27i −0.739959 0.259690i
\(780\) 0 0
\(781\) 1379.53i 0.0632054i
\(782\) 7806.54 0.356984
\(783\) 0 0
\(784\) 5902.84 0.268898
\(785\) 9448.00i 0.429571i
\(786\) 0 0
\(787\) 12071.0i 0.546741i 0.961909 + 0.273371i \(0.0881385\pi\)
−0.961909 + 0.273371i \(0.911861\pi\)
\(788\) 5653.86i 0.255597i
\(789\) 0 0
\(790\) −8602.81 −0.387436
\(791\) −6756.51 −0.303709
\(792\) 0 0
\(793\) 9987.56i 0.447249i
\(794\) 28240.5 1.26224
\(795\) 0 0
\(796\) 18495.9 0.823580
\(797\) −1910.48 −0.0849091 −0.0424546 0.999098i \(-0.513518\pi\)
−0.0424546 + 0.999098i \(0.513518\pi\)
\(798\) 0 0
\(799\) −31094.0 −1.37675
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) −1913.09 −0.0842315
\(803\) 1685.80i 0.0740854i
\(804\) 0 0
\(805\) 8445.96 0.369790
\(806\) 11393.7 0.497923
\(807\) 0 0
\(808\) 11307.7i 0.492330i
\(809\) 1901.61i 0.0826415i −0.999146 0.0413207i \(-0.986843\pi\)
0.999146 0.0413207i \(-0.0131565\pi\)
\(810\) 0 0
\(811\) 11256.8i 0.487399i −0.969851 0.243699i \(-0.921639\pi\)
0.969851 0.243699i \(-0.0783611\pi\)
\(812\) −18750.4 −0.810357
\(813\) 0 0
\(814\) −1595.89 −0.0687175
\(815\) 11399.6i 0.489953i
\(816\) 0 0
\(817\) −15881.4 5573.60i −0.680072 0.238673i
\(818\) 9280.92i 0.396699i
\(819\) 0 0
\(820\) 4117.52i 0.175354i
\(821\) 21475.0i 0.912888i 0.889752 + 0.456444i \(0.150877\pi\)
−0.889752 + 0.456444i \(0.849123\pi\)
\(822\) 0 0
\(823\) −19604.0 −0.830320 −0.415160 0.909748i \(-0.636274\pi\)
−0.415160 + 0.909748i \(0.636274\pi\)
\(824\) 8314.24i 0.351505i
\(825\) 0 0
\(826\) 30796.7 1.29728
\(827\) −11420.9 −0.480224 −0.240112 0.970745i \(-0.577184\pi\)
−0.240112 + 0.970745i \(0.577184\pi\)
\(828\) 0 0
\(829\) 18934.9i 0.793290i −0.917972 0.396645i \(-0.870174\pi\)
0.917972 0.396645i \(-0.129826\pi\)
\(830\) 5950.93 0.248867
\(831\) 0 0
\(832\) 1290.86i 0.0537890i
\(833\) 22746.2i 0.946109i
\(834\) 0 0
\(835\) 3266.67i 0.135387i
\(836\) −442.206 + 1260.02i −0.0182943 + 0.0521276i
\(837\) 0 0
\(838\) 20230.5i 0.833953i
\(839\) 29742.8 1.22388 0.611940 0.790904i \(-0.290390\pi\)
0.611940 + 0.790904i \(0.290390\pi\)
\(840\) 0 0
\(841\) 6475.87 0.265524
\(842\) 30361.3i 1.24266i
\(843\) 0 0
\(844\) 6938.31i 0.282970i
\(845\) 8950.92i 0.364404i
\(846\) 0 0
\(847\) 35080.2 1.42310
\(848\) −2648.19 −0.107240
\(849\) 0 0
\(850\) 3082.74i 0.124397i
\(851\) 12532.2 0.504815
\(852\) 0 0
\(853\) 32182.7 1.29181 0.645906 0.763417i \(-0.276480\pi\)
0.645906 + 0.763417i \(0.276480\pi\)
\(854\) 26424.6 1.05882
\(855\) 0 0
\(856\) −125.747 −0.00502095
\(857\) 16396.0 0.653530 0.326765 0.945106i \(-0.394041\pi\)
0.326765 + 0.945106i \(0.394041\pi\)
\(858\) 0 0
\(859\) 31217.2 1.23995 0.619976 0.784621i \(-0.287142\pi\)
0.619976 + 0.784621i \(0.287142\pi\)
\(860\) 4064.53i 0.161162i
\(861\) 0 0
\(862\) −28214.0 −1.11482
\(863\) −42965.3 −1.69474 −0.847368 0.531006i \(-0.821814\pi\)
−0.847368 + 0.531006i \(0.821814\pi\)
\(864\) 0 0
\(865\) 17811.3i 0.700117i
\(866\) 14431.0i 0.566265i
\(867\) 0 0
\(868\) 30144.9i 1.17879i
\(869\) −3467.76 −0.135369
\(870\) 0 0
\(871\) −2803.24 −0.109052
\(872\) 14490.1i 0.562725i
\(873\) 0 0
\(874\) 3472.54 9894.63i 0.134394 0.382941i
\(875\) 3335.25i 0.128859i
\(876\) 0 0
\(877\) 36973.1i 1.42359i 0.702386 + 0.711797i \(0.252118\pi\)
−0.702386 + 0.711797i \(0.747882\pi\)
\(878\) 27229.9i 1.04665i
\(879\) 0 0
\(880\) 322.477 0.0123531
\(881\) 16080.5i 0.614943i −0.951557 0.307472i \(-0.900517\pi\)
0.951557 0.307472i \(-0.0994829\pi\)
\(882\) 0 0
\(883\) 3465.26 0.132067 0.0660335 0.997817i \(-0.478966\pi\)
0.0660335 + 0.997817i \(0.478966\pi\)
\(884\) −4974.23 −0.189255
\(885\) 0 0
\(886\) 24492.9i 0.928731i
\(887\) 9025.97 0.341671 0.170836 0.985300i \(-0.445353\pi\)
0.170836 + 0.985300i \(0.445353\pi\)
\(888\) 0 0
\(889\) 33135.5i 1.25009i
\(890\) 257.141i 0.00968471i
\(891\) 0 0
\(892\) 15425.0i 0.578999i
\(893\) −13831.4 + 39411.0i −0.518308 + 1.47686i
\(894\) 0 0
\(895\) 18401.3i 0.687247i
\(896\) −3415.29 −0.127340
\(897\) 0 0
\(898\) −22133.3 −0.822491
\(899\) 49621.4i 1.84090i
\(900\) 0 0
\(901\) 10204.6i 0.377320i
\(902\) 1659.76i 0.0612681i
\(903\) 0 0
\(904\) 2025.79 0.0745319
\(905\) 15090.1 0.554266
\(906\) 0 0
\(907\) 42483.2i 1.55527i 0.628714 + 0.777636i \(0.283582\pi\)
−0.628714 + 0.777636i \(0.716418\pi\)
\(908\) 8790.42 0.321278
\(909\) 0 0
\(910\) −5381.66 −0.196044
\(911\) 25475.8 0.926509 0.463254 0.886225i \(-0.346682\pi\)
0.463254 + 0.886225i \(0.346682\pi\)
\(912\) 0 0
\(913\) 2398.80 0.0869536
\(914\) −2193.09 −0.0793664
\(915\) 0 0
\(916\) 5506.40 0.198621
\(917\) 4648.34i 0.167395i
\(918\) 0 0
\(919\) 15286.2 0.548688 0.274344 0.961632i \(-0.411539\pi\)
0.274344 + 0.961632i \(0.411539\pi\)
\(920\) −2532.34 −0.0907485
\(921\) 0 0
\(922\) 20379.0i 0.727923i
\(923\) 6902.73i 0.246160i
\(924\) 0 0
\(925\) 4948.86i 0.175911i
\(926\) −22985.5 −0.815713
\(927\) 0 0
\(928\) 5621.89 0.198866
\(929\) 37261.0i 1.31592i 0.753051 + 0.657962i \(0.228581\pi\)
−0.753051 + 0.657962i \(0.771419\pi\)
\(930\) 0 0
\(931\) 28830.3 + 10118.1i 1.01490 + 0.356183i
\(932\) 10125.7i 0.355879i
\(933\) 0 0
\(934\) 28036.1i 0.982194i
\(935\) 1242.64i 0.0434639i
\(936\) 0 0
\(937\) −32537.4 −1.13442 −0.567210 0.823573i \(-0.691977\pi\)
−0.567210 + 0.823573i \(0.691977\pi\)
\(938\) 7416.67i 0.258170i
\(939\) 0 0
\(940\) 10086.5 0.349984
\(941\) −26041.2 −0.902145 −0.451072 0.892487i \(-0.648958\pi\)
−0.451072 + 0.892487i \(0.648958\pi\)
\(942\) 0 0
\(943\) 13033.7i 0.450090i
\(944\) −9233.71 −0.318360
\(945\) 0 0
\(946\) 1638.39i 0.0563095i
\(947\) 24656.9i 0.846083i −0.906110 0.423041i \(-0.860963\pi\)
0.906110 0.423041i \(-0.139037\pi\)
\(948\) 0 0
\(949\) 8435.21i 0.288534i
\(950\) 3907.31 + 1371.28i 0.133442 + 0.0468318i
\(951\) 0 0
\(952\) 13160.6i 0.448043i
\(953\) 31283.4 1.06335 0.531673 0.846949i \(-0.321563\pi\)
0.531673 + 0.846949i \(0.321563\pi\)
\(954\) 0 0
\(955\) 5304.81 0.179748
\(956\) 7744.77i 0.262012i
\(957\) 0 0
\(958\) 14790.4i 0.498805i
\(959\) 19868.9i 0.669030i
\(960\) 0 0
\(961\) −49985.1 −1.67786
\(962\) −7985.35 −0.267628
\(963\) 0 0
\(964\) 6892.64i 0.230287i
\(965\) −1716.21 −0.0572506
\(966\) 0 0
\(967\) 1529.17 0.0508528 0.0254264 0.999677i \(-0.491906\pi\)
0.0254264 + 0.999677i \(0.491906\pi\)
\(968\) −10518.0 −0.349237
\(969\) 0 0
\(970\) −3105.97 −0.102811
\(971\) −10432.8 −0.344802 −0.172401 0.985027i \(-0.555153\pi\)
−0.172401 + 0.985027i \(0.555153\pi\)
\(972\) 0 0
\(973\) −71713.3 −2.36282
\(974\) 14760.4i 0.485579i
\(975\) 0 0
\(976\) −7922.84 −0.259840
\(977\) 40750.3 1.33441 0.667204 0.744875i \(-0.267491\pi\)
0.667204 + 0.744875i \(0.267491\pi\)
\(978\) 0 0
\(979\) 103.653i 0.00338381i
\(980\) 7378.55i 0.240509i
\(981\) 0 0
\(982\) 33958.2i 1.10351i
\(983\) −40513.4 −1.31452 −0.657262 0.753662i \(-0.728286\pi\)
−0.657262 + 0.753662i \(0.728286\pi\)
\(984\) 0 0
\(985\) −7067.32 −0.228613
\(986\) 21663.5i 0.699704i
\(987\) 0 0
\(988\) −2212.66 + 6304.74i −0.0712491 + 0.203017i
\(989\) 12865.9i 0.413663i
\(990\) 0 0
\(991\) 27563.7i 0.883541i −0.897128 0.441771i \(-0.854350\pi\)
0.897128 0.441771i \(-0.145650\pi\)
\(992\) 9038.29i 0.289280i
\(993\) 0 0
\(994\) 18262.9 0.582761
\(995\) 23119.9i 0.736632i
\(996\) 0 0
\(997\) 15712.0 0.499100 0.249550 0.968362i \(-0.419717\pi\)
0.249550 + 0.968362i \(0.419717\pi\)
\(998\) −28779.3 −0.912820
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.4.f.a.341.11 40
3.2 odd 2 1710.4.f.b.341.12 yes 40
19.18 odd 2 1710.4.f.b.341.11 yes 40
57.56 even 2 inner 1710.4.f.a.341.12 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.4.f.a.341.11 40 1.1 even 1 trivial
1710.4.f.a.341.12 yes 40 57.56 even 2 inner
1710.4.f.b.341.11 yes 40 19.18 odd 2
1710.4.f.b.341.12 yes 40 3.2 odd 2