Properties

Label 1710.4.f.a.341.1
Level $1710$
Weight $4$
Character 1710.341
Analytic conductor $100.893$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(341,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.341"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 341.1
Character \(\chi\) \(=\) 1710.341
Dual form 1710.4.f.a.341.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -5.00000i q^{5} -27.0790 q^{7} -8.00000 q^{8} +10.0000i q^{10} +56.8780i q^{11} +83.3882i q^{13} +54.1581 q^{14} +16.0000 q^{16} -16.3398i q^{17} +(-80.2268 + 20.5587i) q^{19} -20.0000i q^{20} -113.756i q^{22} +200.235i q^{23} -25.0000 q^{25} -166.776i q^{26} -108.316 q^{28} -200.451 q^{29} +102.512i q^{31} -32.0000 q^{32} +32.6795i q^{34} +135.395i q^{35} +54.1715i q^{37} +(160.454 - 41.1173i) q^{38} +40.0000i q^{40} +31.9092 q^{41} +254.378 q^{43} +227.512i q^{44} -400.470i q^{46} +110.831i q^{47} +390.274 q^{49} +50.0000 q^{50} +333.553i q^{52} +191.250 q^{53} +284.390 q^{55} +216.632 q^{56} +400.902 q^{58} -42.7800 q^{59} +84.0413 q^{61} -205.024i q^{62} +64.0000 q^{64} +416.941 q^{65} -923.661i q^{67} -65.3591i q^{68} -270.790i q^{70} -985.746 q^{71} +928.660 q^{73} -108.343i q^{74} +(-320.907 + 82.2346i) q^{76} -1540.20i q^{77} +1000.19i q^{79} -80.0000i q^{80} -63.8184 q^{82} +652.200i q^{83} -81.6988 q^{85} -508.756 q^{86} -455.024i q^{88} -56.9916 q^{89} -2258.07i q^{91} +800.940i q^{92} -221.662i q^{94} +(102.793 + 401.134i) q^{95} -803.288i q^{97} -780.548 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 80 q^{2} + 160 q^{4} - 56 q^{7} - 320 q^{8} + 112 q^{14} + 640 q^{16} - 76 q^{19} - 1000 q^{25} - 224 q^{28} - 120 q^{29} - 1280 q^{32} + 152 q^{38} - 312 q^{41} + 56 q^{43} + 2112 q^{49} + 2000 q^{50}+ \cdots - 4224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) −27.0790 −1.46213 −0.731065 0.682308i \(-0.760976\pi\)
−0.731065 + 0.682308i \(0.760976\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000i 0.316228i
\(11\) 56.8780i 1.55903i 0.626382 + 0.779516i \(0.284535\pi\)
−0.626382 + 0.779516i \(0.715465\pi\)
\(12\) 0 0
\(13\) 83.3882i 1.77906i 0.456881 + 0.889528i \(0.348967\pi\)
−0.456881 + 0.889528i \(0.651033\pi\)
\(14\) 54.1581 1.03388
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 16.3398i 0.233116i −0.993184 0.116558i \(-0.962814\pi\)
0.993184 0.116558i \(-0.0371861\pi\)
\(18\) 0 0
\(19\) −80.2268 + 20.5587i −0.968700 + 0.248236i
\(20\) 20.0000i 0.223607i
\(21\) 0 0
\(22\) 113.756i 1.10240i
\(23\) 200.235i 1.81530i 0.419728 + 0.907650i \(0.362125\pi\)
−0.419728 + 0.907650i \(0.637875\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 166.776i 1.25798i
\(27\) 0 0
\(28\) −108.316 −0.731065
\(29\) −200.451 −1.28355 −0.641773 0.766895i \(-0.721801\pi\)
−0.641773 + 0.766895i \(0.721801\pi\)
\(30\) 0 0
\(31\) 102.512i 0.593925i 0.954889 + 0.296963i \(0.0959737\pi\)
−0.954889 + 0.296963i \(0.904026\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 32.6795i 0.164838i
\(35\) 135.395i 0.653884i
\(36\) 0 0
\(37\) 54.1715i 0.240696i 0.992732 + 0.120348i \(0.0384010\pi\)
−0.992732 + 0.120348i \(0.961599\pi\)
\(38\) 160.454 41.1173i 0.684974 0.175529i
\(39\) 0 0
\(40\) 40.0000i 0.158114i
\(41\) 31.9092 0.121546 0.0607729 0.998152i \(-0.480643\pi\)
0.0607729 + 0.998152i \(0.480643\pi\)
\(42\) 0 0
\(43\) 254.378 0.902147 0.451073 0.892487i \(-0.351041\pi\)
0.451073 + 0.892487i \(0.351041\pi\)
\(44\) 227.512i 0.779516i
\(45\) 0 0
\(46\) 400.470i 1.28361i
\(47\) 110.831i 0.343966i 0.985100 + 0.171983i \(0.0550174\pi\)
−0.985100 + 0.171983i \(0.944983\pi\)
\(48\) 0 0
\(49\) 390.274 1.13782
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 333.553i 0.889528i
\(53\) 191.250 0.495664 0.247832 0.968803i \(-0.420282\pi\)
0.247832 + 0.968803i \(0.420282\pi\)
\(54\) 0 0
\(55\) 284.390 0.697220
\(56\) 216.632 0.516941
\(57\) 0 0
\(58\) 400.902 0.907604
\(59\) −42.7800 −0.0943981 −0.0471990 0.998886i \(-0.515030\pi\)
−0.0471990 + 0.998886i \(0.515030\pi\)
\(60\) 0 0
\(61\) 84.0413 0.176400 0.0881999 0.996103i \(-0.471889\pi\)
0.0881999 + 0.996103i \(0.471889\pi\)
\(62\) 205.024i 0.419969i
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 416.941 0.795618
\(66\) 0 0
\(67\) 923.661i 1.68423i −0.539302 0.842113i \(-0.681312\pi\)
0.539302 0.842113i \(-0.318688\pi\)
\(68\) 65.3591i 0.116558i
\(69\) 0 0
\(70\) 270.790i 0.462366i
\(71\) −985.746 −1.64770 −0.823849 0.566810i \(-0.808177\pi\)
−0.823849 + 0.566810i \(0.808177\pi\)
\(72\) 0 0
\(73\) 928.660 1.48892 0.744462 0.667665i \(-0.232706\pi\)
0.744462 + 0.667665i \(0.232706\pi\)
\(74\) 108.343i 0.170198i
\(75\) 0 0
\(76\) −320.907 + 82.2346i −0.484350 + 0.124118i
\(77\) 1540.20i 2.27951i
\(78\) 0 0
\(79\) 1000.19i 1.42443i 0.701959 + 0.712217i \(0.252309\pi\)
−0.701959 + 0.712217i \(0.747691\pi\)
\(80\) 80.0000i 0.111803i
\(81\) 0 0
\(82\) −63.8184 −0.0859459
\(83\) 652.200i 0.862509i 0.902230 + 0.431254i \(0.141929\pi\)
−0.902230 + 0.431254i \(0.858071\pi\)
\(84\) 0 0
\(85\) −81.6988 −0.104253
\(86\) −508.756 −0.637914
\(87\) 0 0
\(88\) 455.024i 0.551201i
\(89\) −56.9916 −0.0678775 −0.0339388 0.999424i \(-0.510805\pi\)
−0.0339388 + 0.999424i \(0.510805\pi\)
\(90\) 0 0
\(91\) 2258.07i 2.60121i
\(92\) 800.940i 0.907650i
\(93\) 0 0
\(94\) 221.662i 0.243221i
\(95\) 102.793 + 401.134i 0.111014 + 0.433216i
\(96\) 0 0
\(97\) 803.288i 0.840840i −0.907330 0.420420i \(-0.861883\pi\)
0.907330 0.420420i \(-0.138117\pi\)
\(98\) −780.548 −0.804564
\(99\) 0 0
\(100\) −100.000 −0.100000
\(101\) 430.479i 0.424101i 0.977259 + 0.212051i \(0.0680142\pi\)
−0.977259 + 0.212051i \(0.931986\pi\)
\(102\) 0 0
\(103\) 186.426i 0.178341i 0.996016 + 0.0891705i \(0.0284216\pi\)
−0.996016 + 0.0891705i \(0.971578\pi\)
\(104\) 667.106i 0.628991i
\(105\) 0 0
\(106\) −382.500 −0.350488
\(107\) −894.683 −0.808339 −0.404170 0.914684i \(-0.632439\pi\)
−0.404170 + 0.914684i \(0.632439\pi\)
\(108\) 0 0
\(109\) 1022.64i 0.898635i 0.893372 + 0.449317i \(0.148333\pi\)
−0.893372 + 0.449317i \(0.851667\pi\)
\(110\) −568.780 −0.493009
\(111\) 0 0
\(112\) −433.264 −0.365533
\(113\) −1924.24 −1.60192 −0.800960 0.598719i \(-0.795677\pi\)
−0.800960 + 0.598719i \(0.795677\pi\)
\(114\) 0 0
\(115\) 1001.18 0.811827
\(116\) −801.805 −0.641773
\(117\) 0 0
\(118\) 85.5601 0.0667495
\(119\) 442.465i 0.340846i
\(120\) 0 0
\(121\) −1904.10 −1.43058
\(122\) −168.083 −0.124733
\(123\) 0 0
\(124\) 410.048i 0.296963i
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 2611.90i 1.82495i −0.409134 0.912474i \(-0.634169\pi\)
0.409134 0.912474i \(-0.365831\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −833.882 −0.562587
\(131\) 2605.88i 1.73799i 0.494817 + 0.868997i \(0.335235\pi\)
−0.494817 + 0.868997i \(0.664765\pi\)
\(132\) 0 0
\(133\) 2172.46 556.709i 1.41636 0.362953i
\(134\) 1847.32i 1.19093i
\(135\) 0 0
\(136\) 130.718i 0.0824190i
\(137\) 803.705i 0.501205i −0.968090 0.250603i \(-0.919371\pi\)
0.968090 0.250603i \(-0.0806288\pi\)
\(138\) 0 0
\(139\) 121.716 0.0742721 0.0371361 0.999310i \(-0.488177\pi\)
0.0371361 + 0.999310i \(0.488177\pi\)
\(140\) 541.581i 0.326942i
\(141\) 0 0
\(142\) 1971.49 1.16510
\(143\) −4742.95 −2.77361
\(144\) 0 0
\(145\) 1002.26i 0.574019i
\(146\) −1857.32 −1.05283
\(147\) 0 0
\(148\) 216.686i 0.120348i
\(149\) 2055.65i 1.13024i −0.825009 0.565119i \(-0.808830\pi\)
0.825009 0.565119i \(-0.191170\pi\)
\(150\) 0 0
\(151\) 2421.41i 1.30498i 0.757798 + 0.652490i \(0.226275\pi\)
−0.757798 + 0.652490i \(0.773725\pi\)
\(152\) 641.815 164.469i 0.342487 0.0877646i
\(153\) 0 0
\(154\) 3080.40i 1.61186i
\(155\) 512.560 0.265611
\(156\) 0 0
\(157\) 3511.18 1.78486 0.892428 0.451190i \(-0.149000\pi\)
0.892428 + 0.451190i \(0.149000\pi\)
\(158\) 2000.38i 1.00723i
\(159\) 0 0
\(160\) 160.000i 0.0790569i
\(161\) 5422.17i 2.65420i
\(162\) 0 0
\(163\) 1447.68 0.695651 0.347825 0.937559i \(-0.386920\pi\)
0.347825 + 0.937559i \(0.386920\pi\)
\(164\) 127.637 0.0607729
\(165\) 0 0
\(166\) 1304.40i 0.609886i
\(167\) 4273.75 1.98032 0.990159 0.139950i \(-0.0446942\pi\)
0.990159 + 0.139950i \(0.0446942\pi\)
\(168\) 0 0
\(169\) −4756.59 −2.16504
\(170\) 163.398 0.0737178
\(171\) 0 0
\(172\) 1017.51 0.451073
\(173\) −3913.88 −1.72004 −0.860019 0.510261i \(-0.829549\pi\)
−0.860019 + 0.510261i \(0.829549\pi\)
\(174\) 0 0
\(175\) 676.976 0.292426
\(176\) 910.047i 0.389758i
\(177\) 0 0
\(178\) 113.983 0.0479966
\(179\) −1410.39 −0.588924 −0.294462 0.955663i \(-0.595140\pi\)
−0.294462 + 0.955663i \(0.595140\pi\)
\(180\) 0 0
\(181\) 4189.31i 1.72038i 0.509973 + 0.860191i \(0.329655\pi\)
−0.509973 + 0.860191i \(0.670345\pi\)
\(182\) 4516.14i 1.83933i
\(183\) 0 0
\(184\) 1601.88i 0.641805i
\(185\) 270.858 0.107642
\(186\) 0 0
\(187\) 929.373 0.363436
\(188\) 443.325i 0.171983i
\(189\) 0 0
\(190\) −205.587 802.268i −0.0784991 0.306330i
\(191\) 3846.69i 1.45726i 0.684907 + 0.728630i \(0.259843\pi\)
−0.684907 + 0.728630i \(0.740157\pi\)
\(192\) 0 0
\(193\) 3875.90i 1.44556i −0.691078 0.722780i \(-0.742864\pi\)
0.691078 0.722780i \(-0.257136\pi\)
\(194\) 1606.58i 0.594564i
\(195\) 0 0
\(196\) 1561.10 0.568912
\(197\) 219.930i 0.0795401i −0.999209 0.0397700i \(-0.987337\pi\)
0.999209 0.0397700i \(-0.0126625\pi\)
\(198\) 0 0
\(199\) 607.112 0.216267 0.108133 0.994136i \(-0.465513\pi\)
0.108133 + 0.994136i \(0.465513\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) 860.958i 0.299885i
\(203\) 5428.02 1.87671
\(204\) 0 0
\(205\) 159.546i 0.0543569i
\(206\) 372.853i 0.126106i
\(207\) 0 0
\(208\) 1334.21i 0.444764i
\(209\) −1169.33 4563.14i −0.387008 1.51023i
\(210\) 0 0
\(211\) 657.718i 0.214593i −0.994227 0.107297i \(-0.965781\pi\)
0.994227 0.107297i \(-0.0342194\pi\)
\(212\) 765.000 0.247832
\(213\) 0 0
\(214\) 1789.37 0.571582
\(215\) 1271.89i 0.403452i
\(216\) 0 0
\(217\) 2775.92i 0.868396i
\(218\) 2045.28i 0.635431i
\(219\) 0 0
\(220\) 1137.56 0.348610
\(221\) 1362.54 0.414727
\(222\) 0 0
\(223\) 692.879i 0.208066i 0.994574 + 0.104033i \(0.0331747\pi\)
−0.994574 + 0.104033i \(0.966825\pi\)
\(224\) 866.529 0.258471
\(225\) 0 0
\(226\) 3848.47 1.13273
\(227\) −920.861 −0.269250 −0.134625 0.990897i \(-0.542983\pi\)
−0.134625 + 0.990897i \(0.542983\pi\)
\(228\) 0 0
\(229\) 843.230 0.243328 0.121664 0.992571i \(-0.461177\pi\)
0.121664 + 0.992571i \(0.461177\pi\)
\(230\) −2002.35 −0.574048
\(231\) 0 0
\(232\) 1603.61 0.453802
\(233\) 4162.66i 1.17041i 0.810887 + 0.585203i \(0.198985\pi\)
−0.810887 + 0.585203i \(0.801015\pi\)
\(234\) 0 0
\(235\) 554.156 0.153826
\(236\) −171.120 −0.0471990
\(237\) 0 0
\(238\) 884.930i 0.241015i
\(239\) 4444.70i 1.20294i 0.798894 + 0.601472i \(0.205419\pi\)
−0.798894 + 0.601472i \(0.794581\pi\)
\(240\) 0 0
\(241\) 169.996i 0.0454373i 0.999742 + 0.0227187i \(0.00723219\pi\)
−0.999742 + 0.0227187i \(0.992768\pi\)
\(242\) 3808.20 1.01157
\(243\) 0 0
\(244\) 336.165 0.0881999
\(245\) 1951.37i 0.508851i
\(246\) 0 0
\(247\) −1714.35 6689.97i −0.441625 1.72337i
\(248\) 820.095i 0.209984i
\(249\) 0 0
\(250\) 250.000i 0.0632456i
\(251\) 5866.46i 1.47525i −0.675211 0.737624i \(-0.735948\pi\)
0.675211 0.737624i \(-0.264052\pi\)
\(252\) 0 0
\(253\) −11389.0 −2.83011
\(254\) 5223.79i 1.29043i
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −3825.17 −0.928433 −0.464216 0.885722i \(-0.653664\pi\)
−0.464216 + 0.885722i \(0.653664\pi\)
\(258\) 0 0
\(259\) 1466.91i 0.351928i
\(260\) 1667.76 0.397809
\(261\) 0 0
\(262\) 5211.77i 1.22895i
\(263\) 2873.38i 0.673689i −0.941560 0.336844i \(-0.890640\pi\)
0.941560 0.336844i \(-0.109360\pi\)
\(264\) 0 0
\(265\) 956.250i 0.221668i
\(266\) −4344.93 + 1113.42i −1.00152 + 0.256647i
\(267\) 0 0
\(268\) 3694.64i 0.842113i
\(269\) −1348.54 −0.305657 −0.152828 0.988253i \(-0.548838\pi\)
−0.152828 + 0.988253i \(0.548838\pi\)
\(270\) 0 0
\(271\) −4961.24 −1.11208 −0.556040 0.831156i \(-0.687680\pi\)
−0.556040 + 0.831156i \(0.687680\pi\)
\(272\) 261.436i 0.0582791i
\(273\) 0 0
\(274\) 1607.41i 0.354406i
\(275\) 1421.95i 0.311806i
\(276\) 0 0
\(277\) −8357.14 −1.81275 −0.906376 0.422473i \(-0.861162\pi\)
−0.906376 + 0.422473i \(0.861162\pi\)
\(278\) −243.432 −0.0525183
\(279\) 0 0
\(280\) 1083.16i 0.231183i
\(281\) −3470.02 −0.736669 −0.368334 0.929693i \(-0.620072\pi\)
−0.368334 + 0.929693i \(0.620072\pi\)
\(282\) 0 0
\(283\) −5646.98 −1.18614 −0.593071 0.805150i \(-0.702085\pi\)
−0.593071 + 0.805150i \(0.702085\pi\)
\(284\) −3942.98 −0.823849
\(285\) 0 0
\(286\) 9485.90 1.96123
\(287\) −864.070 −0.177716
\(288\) 0 0
\(289\) 4646.01 0.945657
\(290\) 2004.51i 0.405893i
\(291\) 0 0
\(292\) 3714.64 0.744462
\(293\) 5662.14 1.12896 0.564481 0.825446i \(-0.309076\pi\)
0.564481 + 0.825446i \(0.309076\pi\)
\(294\) 0 0
\(295\) 213.900i 0.0422161i
\(296\) 433.372i 0.0850988i
\(297\) 0 0
\(298\) 4111.30i 0.799199i
\(299\) −16697.2 −3.22952
\(300\) 0 0
\(301\) −6888.31 −1.31906
\(302\) 4842.83i 0.922760i
\(303\) 0 0
\(304\) −1283.63 + 328.939i −0.242175 + 0.0620590i
\(305\) 420.206i 0.0788884i
\(306\) 0 0
\(307\) 3219.65i 0.598550i 0.954167 + 0.299275i \(0.0967449\pi\)
−0.954167 + 0.299275i \(0.903255\pi\)
\(308\) 6160.80i 1.13975i
\(309\) 0 0
\(310\) −1025.12 −0.187816
\(311\) 3117.56i 0.568426i −0.958761 0.284213i \(-0.908268\pi\)
0.958761 0.284213i \(-0.0917323\pi\)
\(312\) 0 0
\(313\) 4974.77 0.898373 0.449187 0.893438i \(-0.351714\pi\)
0.449187 + 0.893438i \(0.351714\pi\)
\(314\) −7022.35 −1.26208
\(315\) 0 0
\(316\) 4000.77i 0.712217i
\(317\) −2624.18 −0.464948 −0.232474 0.972603i \(-0.574682\pi\)
−0.232474 + 0.972603i \(0.574682\pi\)
\(318\) 0 0
\(319\) 11401.3i 2.00109i
\(320\) 320.000i 0.0559017i
\(321\) 0 0
\(322\) 10844.3i 1.87681i
\(323\) 335.924 + 1310.89i 0.0578678 + 0.225820i
\(324\) 0 0
\(325\) 2084.71i 0.355811i
\(326\) −2895.36 −0.491900
\(327\) 0 0
\(328\) −255.273 −0.0429729
\(329\) 3001.20i 0.502923i
\(330\) 0 0
\(331\) 4553.13i 0.756081i −0.925789 0.378041i \(-0.876598\pi\)
0.925789 0.378041i \(-0.123402\pi\)
\(332\) 2608.80i 0.431254i
\(333\) 0 0
\(334\) −8547.51 −1.40030
\(335\) −4618.30 −0.753208
\(336\) 0 0
\(337\) 9507.76i 1.53686i −0.639936 0.768428i \(-0.721039\pi\)
0.639936 0.768428i \(-0.278961\pi\)
\(338\) 9513.19 1.53091
\(339\) 0 0
\(340\) −326.795 −0.0521264
\(341\) −5830.67 −0.925948
\(342\) 0 0
\(343\) −1280.13 −0.201518
\(344\) −2035.03 −0.318957
\(345\) 0 0
\(346\) 7827.76 1.21625
\(347\) 11673.7i 1.80599i 0.429649 + 0.902996i \(0.358637\pi\)
−0.429649 + 0.902996i \(0.641363\pi\)
\(348\) 0 0
\(349\) −2788.79 −0.427738 −0.213869 0.976862i \(-0.568607\pi\)
−0.213869 + 0.976862i \(0.568607\pi\)
\(350\) −1353.95 −0.206776
\(351\) 0 0
\(352\) 1820.09i 0.275600i
\(353\) 4315.08i 0.650619i 0.945608 + 0.325310i \(0.105468\pi\)
−0.945608 + 0.325310i \(0.894532\pi\)
\(354\) 0 0
\(355\) 4928.73i 0.736873i
\(356\) −227.966 −0.0339388
\(357\) 0 0
\(358\) 2820.78 0.416432
\(359\) 55.5904i 0.00817257i −0.999992 0.00408628i \(-0.998699\pi\)
0.999992 0.00408628i \(-0.00130071\pi\)
\(360\) 0 0
\(361\) 6013.68 3298.71i 0.876758 0.480932i
\(362\) 8378.62i 1.21649i
\(363\) 0 0
\(364\) 9032.29i 1.30061i
\(365\) 4643.30i 0.665867i
\(366\) 0 0
\(367\) 11390.7 1.62013 0.810065 0.586340i \(-0.199432\pi\)
0.810065 + 0.586340i \(0.199432\pi\)
\(368\) 3203.76i 0.453825i
\(369\) 0 0
\(370\) −541.715 −0.0761147
\(371\) −5178.86 −0.724726
\(372\) 0 0
\(373\) 9200.18i 1.27712i −0.769570 0.638562i \(-0.779529\pi\)
0.769570 0.638562i \(-0.220471\pi\)
\(374\) −1858.75 −0.256988
\(375\) 0 0
\(376\) 886.650i 0.121610i
\(377\) 16715.3i 2.28350i
\(378\) 0 0
\(379\) 4476.53i 0.606713i 0.952877 + 0.303356i \(0.0981072\pi\)
−0.952877 + 0.303356i \(0.901893\pi\)
\(380\) 411.173 + 1604.54i 0.0555072 + 0.216608i
\(381\) 0 0
\(382\) 7693.38i 1.03044i
\(383\) −3244.22 −0.432825 −0.216413 0.976302i \(-0.569436\pi\)
−0.216413 + 0.976302i \(0.569436\pi\)
\(384\) 0 0
\(385\) −7701.00 −1.01943
\(386\) 7751.79i 1.02217i
\(387\) 0 0
\(388\) 3213.15i 0.420420i
\(389\) 5641.19i 0.735270i −0.929970 0.367635i \(-0.880168\pi\)
0.929970 0.367635i \(-0.119832\pi\)
\(390\) 0 0
\(391\) 3271.79 0.423176
\(392\) −3122.19 −0.402282
\(393\) 0 0
\(394\) 439.861i 0.0562433i
\(395\) 5000.96 0.637027
\(396\) 0 0
\(397\) 3463.04 0.437796 0.218898 0.975748i \(-0.429754\pi\)
0.218898 + 0.975748i \(0.429754\pi\)
\(398\) −1214.22 −0.152924
\(399\) 0 0
\(400\) −400.000 −0.0500000
\(401\) 8233.62 1.02536 0.512678 0.858581i \(-0.328654\pi\)
0.512678 + 0.858581i \(0.328654\pi\)
\(402\) 0 0
\(403\) −8548.29 −1.05663
\(404\) 1721.92i 0.212051i
\(405\) 0 0
\(406\) −10856.0 −1.32704
\(407\) −3081.16 −0.375252
\(408\) 0 0
\(409\) 3217.85i 0.389028i −0.980900 0.194514i \(-0.937687\pi\)
0.980900 0.194514i \(-0.0623130\pi\)
\(410\) 319.092i 0.0384362i
\(411\) 0 0
\(412\) 745.705i 0.0891705i
\(413\) 1158.44 0.138022
\(414\) 0 0
\(415\) 3261.00 0.385726
\(416\) 2668.42i 0.314496i
\(417\) 0 0
\(418\) 2338.67 + 9126.27i 0.273656 + 1.06790i
\(419\) 9258.09i 1.07944i −0.841843 0.539722i \(-0.818529\pi\)
0.841843 0.539722i \(-0.181471\pi\)
\(420\) 0 0
\(421\) 11343.0i 1.31312i −0.754273 0.656561i \(-0.772010\pi\)
0.754273 0.656561i \(-0.227990\pi\)
\(422\) 1315.44i 0.151740i
\(423\) 0 0
\(424\) −1530.00 −0.175244
\(425\) 408.494i 0.0466232i
\(426\) 0 0
\(427\) −2275.76 −0.257919
\(428\) −3578.73 −0.404170
\(429\) 0 0
\(430\) 2543.78i 0.285284i
\(431\) 8713.64 0.973831 0.486916 0.873449i \(-0.338122\pi\)
0.486916 + 0.873449i \(0.338122\pi\)
\(432\) 0 0
\(433\) 1889.61i 0.209720i −0.994487 0.104860i \(-0.966561\pi\)
0.994487 0.104860i \(-0.0334394\pi\)
\(434\) 5551.85i 0.614049i
\(435\) 0 0
\(436\) 4090.56i 0.449317i
\(437\) −4116.56 16064.2i −0.450622 1.75848i
\(438\) 0 0
\(439\) 10212.2i 1.11025i −0.831766 0.555126i \(-0.812670\pi\)
0.831766 0.555126i \(-0.187330\pi\)
\(440\) −2275.12 −0.246505
\(441\) 0 0
\(442\) −2725.09 −0.293256
\(443\) 5486.33i 0.588405i −0.955743 0.294202i \(-0.904946\pi\)
0.955743 0.294202i \(-0.0950540\pi\)
\(444\) 0 0
\(445\) 284.958i 0.0303557i
\(446\) 1385.76i 0.147125i
\(447\) 0 0
\(448\) −1733.06 −0.182766
\(449\) 7105.19 0.746803 0.373402 0.927670i \(-0.378191\pi\)
0.373402 + 0.927670i \(0.378191\pi\)
\(450\) 0 0
\(451\) 1814.93i 0.189494i
\(452\) −7696.94 −0.800960
\(453\) 0 0
\(454\) 1841.72 0.190388
\(455\) −11290.4 −1.16330
\(456\) 0 0
\(457\) −3358.09 −0.343731 −0.171865 0.985120i \(-0.554979\pi\)
−0.171865 + 0.985120i \(0.554979\pi\)
\(458\) −1686.46 −0.172059
\(459\) 0 0
\(460\) 4004.70 0.405913
\(461\) 8590.73i 0.867918i 0.900933 + 0.433959i \(0.142884\pi\)
−0.900933 + 0.433959i \(0.857116\pi\)
\(462\) 0 0
\(463\) 1904.75 0.191191 0.0955953 0.995420i \(-0.469525\pi\)
0.0955953 + 0.995420i \(0.469525\pi\)
\(464\) −3207.22 −0.320887
\(465\) 0 0
\(466\) 8325.31i 0.827602i
\(467\) 14715.2i 1.45812i −0.684452 0.729058i \(-0.739958\pi\)
0.684452 0.729058i \(-0.260042\pi\)
\(468\) 0 0
\(469\) 25011.8i 2.46256i
\(470\) −1108.31 −0.108772
\(471\) 0 0
\(472\) 342.240 0.0333748
\(473\) 14468.5i 1.40648i
\(474\) 0 0
\(475\) 2005.67 513.967i 0.193740 0.0496472i
\(476\) 1769.86i 0.170423i
\(477\) 0 0
\(478\) 8889.40i 0.850610i
\(479\) 10323.7i 0.984765i −0.870379 0.492382i \(-0.836126\pi\)
0.870379 0.492382i \(-0.163874\pi\)
\(480\) 0 0
\(481\) −4517.27 −0.428211
\(482\) 339.992i 0.0321290i
\(483\) 0 0
\(484\) −7616.41 −0.715290
\(485\) −4016.44 −0.376035
\(486\) 0 0
\(487\) 19238.4i 1.79010i 0.445969 + 0.895048i \(0.352859\pi\)
−0.445969 + 0.895048i \(0.647141\pi\)
\(488\) −672.330 −0.0623667
\(489\) 0 0
\(490\) 3902.74i 0.359812i
\(491\) 734.667i 0.0675256i −0.999430 0.0337628i \(-0.989251\pi\)
0.999430 0.0337628i \(-0.0107491\pi\)
\(492\) 0 0
\(493\) 3275.33i 0.299215i
\(494\) 3428.70 + 13379.9i 0.312276 + 1.21861i
\(495\) 0 0
\(496\) 1640.19i 0.148481i
\(497\) 26693.0 2.40915
\(498\) 0 0
\(499\) 10038.6 0.900579 0.450290 0.892883i \(-0.351321\pi\)
0.450290 + 0.892883i \(0.351321\pi\)
\(500\) 500.000i 0.0447214i
\(501\) 0 0
\(502\) 11732.9i 1.04316i
\(503\) 8304.30i 0.736124i 0.929801 + 0.368062i \(0.119979\pi\)
−0.929801 + 0.368062i \(0.880021\pi\)
\(504\) 0 0
\(505\) 2152.39 0.189664
\(506\) 22777.9 2.00119
\(507\) 0 0
\(508\) 10447.6i 0.912474i
\(509\) 8973.94 0.781459 0.390730 0.920506i \(-0.372223\pi\)
0.390730 + 0.920506i \(0.372223\pi\)
\(510\) 0 0
\(511\) −25147.2 −2.17700
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 7650.33 0.656501
\(515\) 932.131 0.0797565
\(516\) 0 0
\(517\) −6303.85 −0.536254
\(518\) 2933.82i 0.248851i
\(519\) 0 0
\(520\) −3335.53 −0.281293
\(521\) −15105.6 −1.27023 −0.635113 0.772419i \(-0.719047\pi\)
−0.635113 + 0.772419i \(0.719047\pi\)
\(522\) 0 0
\(523\) 10254.9i 0.857390i −0.903449 0.428695i \(-0.858973\pi\)
0.903449 0.428695i \(-0.141027\pi\)
\(524\) 10423.5i 0.868997i
\(525\) 0 0
\(526\) 5746.76i 0.476370i
\(527\) 1675.02 0.138454
\(528\) 0 0
\(529\) −27927.1 −2.29531
\(530\) 1912.50i 0.156743i
\(531\) 0 0
\(532\) 8689.86 2226.83i 0.708182 0.181477i
\(533\) 2660.85i 0.216237i
\(534\) 0 0
\(535\) 4473.42i 0.361500i
\(536\) 7389.28i 0.595464i
\(537\) 0 0
\(538\) 2697.07 0.216132
\(539\) 22198.0i 1.77390i
\(540\) 0 0
\(541\) −4979.41 −0.395715 −0.197857 0.980231i \(-0.563398\pi\)
−0.197857 + 0.980231i \(0.563398\pi\)
\(542\) 9922.47 0.786359
\(543\) 0 0
\(544\) 522.873i 0.0412095i
\(545\) 5113.20 0.401882
\(546\) 0 0
\(547\) 20579.8i 1.60864i 0.594194 + 0.804322i \(0.297471\pi\)
−0.594194 + 0.804322i \(0.702529\pi\)
\(548\) 3214.82i 0.250603i
\(549\) 0 0
\(550\) 2843.90i 0.220480i
\(551\) 16081.6 4121.01i 1.24337 0.318622i
\(552\) 0 0
\(553\) 27084.2i 2.08271i
\(554\) 16714.3 1.28181
\(555\) 0 0
\(556\) 486.864 0.0371361
\(557\) 650.447i 0.0494799i −0.999694 0.0247400i \(-0.992124\pi\)
0.999694 0.0247400i \(-0.00787578\pi\)
\(558\) 0 0
\(559\) 21212.1i 1.60497i
\(560\) 2166.32i 0.163471i
\(561\) 0 0
\(562\) 6940.04 0.520904
\(563\) 17206.2 1.28802 0.644008 0.765019i \(-0.277270\pi\)
0.644008 + 0.765019i \(0.277270\pi\)
\(564\) 0 0
\(565\) 9621.18i 0.716400i
\(566\) 11294.0 0.838729
\(567\) 0 0
\(568\) 7885.97 0.582549
\(569\) 15474.3 1.14010 0.570050 0.821610i \(-0.306924\pi\)
0.570050 + 0.821610i \(0.306924\pi\)
\(570\) 0 0
\(571\) 6229.57 0.456566 0.228283 0.973595i \(-0.426689\pi\)
0.228283 + 0.973595i \(0.426689\pi\)
\(572\) −18971.8 −1.38680
\(573\) 0 0
\(574\) 1728.14 0.125664
\(575\) 5005.88i 0.363060i
\(576\) 0 0
\(577\) 9682.04 0.698559 0.349280 0.937019i \(-0.386426\pi\)
0.349280 + 0.937019i \(0.386426\pi\)
\(578\) −9292.02 −0.668680
\(579\) 0 0
\(580\) 4009.02i 0.287010i
\(581\) 17660.9i 1.26110i
\(582\) 0 0
\(583\) 10877.9i 0.772756i
\(584\) −7429.28 −0.526414
\(585\) 0 0
\(586\) −11324.3 −0.798296
\(587\) 16716.3i 1.17540i 0.809080 + 0.587698i \(0.199966\pi\)
−0.809080 + 0.587698i \(0.800034\pi\)
\(588\) 0 0
\(589\) −2107.51 8224.20i −0.147434 0.575335i
\(590\) 427.800i 0.0298513i
\(591\) 0 0
\(592\) 866.744i 0.0601739i
\(593\) 6332.50i 0.438524i 0.975666 + 0.219262i \(0.0703649\pi\)
−0.975666 + 0.219262i \(0.929635\pi\)
\(594\) 0 0
\(595\) 2212.33 0.152431
\(596\) 8222.60i 0.565119i
\(597\) 0 0
\(598\) 33394.5 2.28362
\(599\) −21933.9 −1.49615 −0.748077 0.663612i \(-0.769023\pi\)
−0.748077 + 0.663612i \(0.769023\pi\)
\(600\) 0 0
\(601\) 5773.08i 0.391828i 0.980621 + 0.195914i \(0.0627674\pi\)
−0.980621 + 0.195914i \(0.937233\pi\)
\(602\) 13776.6 0.932713
\(603\) 0 0
\(604\) 9685.65i 0.652490i
\(605\) 9520.51i 0.639775i
\(606\) 0 0
\(607\) 4900.06i 0.327656i 0.986489 + 0.163828i \(0.0523842\pi\)
−0.986489 + 0.163828i \(0.947616\pi\)
\(608\) 2567.26 657.877i 0.171244 0.0438823i
\(609\) 0 0
\(610\) 840.413i 0.0557825i
\(611\) −9242.02 −0.611935
\(612\) 0 0
\(613\) −16217.1 −1.06852 −0.534261 0.845319i \(-0.679410\pi\)
−0.534261 + 0.845319i \(0.679410\pi\)
\(614\) 6439.29i 0.423239i
\(615\) 0 0
\(616\) 12321.6i 0.805928i
\(617\) 14489.8i 0.945438i −0.881213 0.472719i \(-0.843273\pi\)
0.881213 0.472719i \(-0.156727\pi\)
\(618\) 0 0
\(619\) −28205.2 −1.83144 −0.915720 0.401816i \(-0.868379\pi\)
−0.915720 + 0.401816i \(0.868379\pi\)
\(620\) 2050.24 0.132806
\(621\) 0 0
\(622\) 6235.12i 0.401938i
\(623\) 1543.28 0.0992457
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −9949.54 −0.635246
\(627\) 0 0
\(628\) 14044.7 0.892428
\(629\) 885.150 0.0561101
\(630\) 0 0
\(631\) 16999.2 1.07247 0.536233 0.844070i \(-0.319847\pi\)
0.536233 + 0.844070i \(0.319847\pi\)
\(632\) 8001.53i 0.503614i
\(633\) 0 0
\(634\) 5248.35 0.328768
\(635\) −13059.5 −0.816142
\(636\) 0 0
\(637\) 32544.2i 2.02425i
\(638\) 22802.5i 1.41498i
\(639\) 0 0
\(640\) 640.000i 0.0395285i
\(641\) −4806.18 −0.296151 −0.148075 0.988976i \(-0.547308\pi\)
−0.148075 + 0.988976i \(0.547308\pi\)
\(642\) 0 0
\(643\) −21763.2 −1.33477 −0.667386 0.744712i \(-0.732587\pi\)
−0.667386 + 0.744712i \(0.732587\pi\)
\(644\) 21688.7i 1.32710i
\(645\) 0 0
\(646\) −671.848 2621.78i −0.0409187 0.159679i
\(647\) 13185.6i 0.801204i −0.916252 0.400602i \(-0.868801\pi\)
0.916252 0.400602i \(-0.131199\pi\)
\(648\) 0 0
\(649\) 2433.24i 0.147170i
\(650\) 4169.41i 0.251597i
\(651\) 0 0
\(652\) 5790.72 0.347825
\(653\) 7286.29i 0.436653i −0.975876 0.218327i \(-0.929940\pi\)
0.975876 0.218327i \(-0.0700598\pi\)
\(654\) 0 0
\(655\) 13029.4 0.777254
\(656\) 510.547 0.0303864
\(657\) 0 0
\(658\) 6002.40i 0.355620i
\(659\) 23207.0 1.37180 0.685900 0.727696i \(-0.259409\pi\)
0.685900 + 0.727696i \(0.259409\pi\)
\(660\) 0 0
\(661\) 14215.2i 0.836472i 0.908338 + 0.418236i \(0.137352\pi\)
−0.908338 + 0.418236i \(0.862648\pi\)
\(662\) 9106.27i 0.534630i
\(663\) 0 0
\(664\) 5217.60i 0.304943i
\(665\) −2783.54 10862.3i −0.162318 0.633418i
\(666\) 0 0
\(667\) 40137.3i 2.33002i
\(668\) 17095.0 0.990159
\(669\) 0 0
\(670\) 9236.61 0.532599
\(671\) 4780.10i 0.275013i
\(672\) 0 0
\(673\) 18676.1i 1.06970i −0.844946 0.534852i \(-0.820367\pi\)
0.844946 0.534852i \(-0.179633\pi\)
\(674\) 19015.5i 1.08672i
\(675\) 0 0
\(676\) −19026.4 −1.08252
\(677\) −8198.69 −0.465438 −0.232719 0.972544i \(-0.574762\pi\)
−0.232719 + 0.972544i \(0.574762\pi\)
\(678\) 0 0
\(679\) 21752.3i 1.22942i
\(680\) 653.591 0.0368589
\(681\) 0 0
\(682\) 11661.3 0.654744
\(683\) 18171.9 1.01805 0.509026 0.860751i \(-0.330006\pi\)
0.509026 + 0.860751i \(0.330006\pi\)
\(684\) 0 0
\(685\) −4018.52 −0.224146
\(686\) 2560.26 0.142494
\(687\) 0 0
\(688\) 4070.05 0.225537
\(689\) 15948.0i 0.881814i
\(690\) 0 0
\(691\) 12977.8 0.714472 0.357236 0.934014i \(-0.383719\pi\)
0.357236 + 0.934014i \(0.383719\pi\)
\(692\) −15655.5 −0.860019
\(693\) 0 0
\(694\) 23347.5i 1.27703i
\(695\) 608.580i 0.0332155i
\(696\) 0 0
\(697\) 521.389i 0.0283343i
\(698\) 5577.58 0.302456
\(699\) 0 0
\(700\) 2707.90 0.146213
\(701\) 4673.25i 0.251792i −0.992043 0.125896i \(-0.959819\pi\)
0.992043 0.125896i \(-0.0401805\pi\)
\(702\) 0 0
\(703\) −1113.69 4346.01i −0.0597493 0.233162i
\(704\) 3640.19i 0.194879i
\(705\) 0 0
\(706\) 8630.16i 0.460057i
\(707\) 11656.9i 0.620091i
\(708\) 0 0
\(709\) 16493.4 0.873658 0.436829 0.899544i \(-0.356101\pi\)
0.436829 + 0.899544i \(0.356101\pi\)
\(710\) 9857.46i 0.521048i
\(711\) 0 0
\(712\) 455.933 0.0239983
\(713\) −20526.5 −1.07815
\(714\) 0 0
\(715\) 23714.8i 1.24039i
\(716\) −5641.56 −0.294462
\(717\) 0 0
\(718\) 111.181i 0.00577888i
\(719\) 1898.96i 0.0984970i −0.998787 0.0492485i \(-0.984317\pi\)
0.998787 0.0492485i \(-0.0156826\pi\)
\(720\) 0 0
\(721\) 5048.24i 0.260758i
\(722\) −12027.4 + 6597.42i −0.619962 + 0.340070i
\(723\) 0 0
\(724\) 16757.2i 0.860191i
\(725\) 5011.28 0.256709
\(726\) 0 0
\(727\) −5044.44 −0.257342 −0.128671 0.991687i \(-0.541071\pi\)
−0.128671 + 0.991687i \(0.541071\pi\)
\(728\) 18064.6i 0.919667i
\(729\) 0 0
\(730\) 9286.60i 0.470839i
\(731\) 4156.48i 0.210305i
\(732\) 0 0
\(733\) 31602.7 1.59246 0.796230 0.604994i \(-0.206825\pi\)
0.796230 + 0.604994i \(0.206825\pi\)
\(734\) −22781.3 −1.14560
\(735\) 0 0
\(736\) 6407.52i 0.320903i
\(737\) 52535.9 2.62576
\(738\) 0 0
\(739\) 4635.15 0.230727 0.115363 0.993323i \(-0.463197\pi\)
0.115363 + 0.993323i \(0.463197\pi\)
\(740\) 1083.43 0.0538212
\(741\) 0 0
\(742\) 10357.7 0.512458
\(743\) 32892.0 1.62408 0.812040 0.583602i \(-0.198357\pi\)
0.812040 + 0.583602i \(0.198357\pi\)
\(744\) 0 0
\(745\) −10278.3 −0.505458
\(746\) 18400.4i 0.903063i
\(747\) 0 0
\(748\) 3717.49 0.181718
\(749\) 24227.1 1.18190
\(750\) 0 0
\(751\) 23364.6i 1.13527i −0.823280 0.567635i \(-0.807859\pi\)
0.823280 0.567635i \(-0.192141\pi\)
\(752\) 1773.30i 0.0859915i
\(753\) 0 0
\(754\) 33430.5i 1.61468i
\(755\) 12107.1 0.583604
\(756\) 0 0
\(757\) −14191.6 −0.681379 −0.340689 0.940176i \(-0.610660\pi\)
−0.340689 + 0.940176i \(0.610660\pi\)
\(758\) 8953.07i 0.429011i
\(759\) 0 0
\(760\) −822.346 3209.07i −0.0392495 0.153165i
\(761\) 14367.5i 0.684390i 0.939629 + 0.342195i \(0.111170\pi\)
−0.939629 + 0.342195i \(0.888830\pi\)
\(762\) 0 0
\(763\) 27692.1i 1.31392i
\(764\) 15386.8i 0.728630i
\(765\) 0 0
\(766\) 6488.44 0.306054
\(767\) 3567.35i 0.167939i
\(768\) 0 0
\(769\) −20326.6 −0.953181 −0.476590 0.879126i \(-0.658127\pi\)
−0.476590 + 0.879126i \(0.658127\pi\)
\(770\) 15402.0 0.720844
\(771\) 0 0
\(772\) 15503.6i 0.722780i
\(773\) −10857.4 −0.505191 −0.252595 0.967572i \(-0.581284\pi\)
−0.252595 + 0.967572i \(0.581284\pi\)
\(774\) 0 0
\(775\) 2562.80i 0.118785i
\(776\) 6426.30i 0.297282i
\(777\) 0 0
\(778\) 11282.4i 0.519914i
\(779\) −2559.97 + 656.010i −0.117741 + 0.0301720i
\(780\) 0 0
\(781\) 56067.2i 2.56881i
\(782\) −6543.59 −0.299230
\(783\) 0 0
\(784\) 6244.38 0.284456
\(785\) 17555.9i 0.798212i
\(786\) 0 0
\(787\) 1366.48i 0.0618931i 0.999521 + 0.0309465i \(0.00985216\pi\)
−0.999521 + 0.0309465i \(0.990148\pi\)
\(788\) 879.722i 0.0397700i
\(789\) 0 0
\(790\) −10001.9 −0.450446
\(791\) 52106.4 2.34221
\(792\) 0 0
\(793\) 7008.05i 0.313825i
\(794\) −6926.09 −0.309569
\(795\) 0 0
\(796\) 2428.45 0.108133
\(797\) 15168.3 0.674137 0.337068 0.941480i \(-0.390565\pi\)
0.337068 + 0.941480i \(0.390565\pi\)
\(798\) 0 0
\(799\) 1810.96 0.0801840
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) −16467.2 −0.725036
\(803\) 52820.3i 2.32128i
\(804\) 0 0
\(805\) −27110.9 −1.18700
\(806\) 17096.6 0.747148
\(807\) 0 0
\(808\) 3443.83i 0.149942i
\(809\) 33431.8i 1.45290i 0.687217 + 0.726452i \(0.258832\pi\)
−0.687217 + 0.726452i \(0.741168\pi\)
\(810\) 0 0
\(811\) 21252.7i 0.920201i 0.887867 + 0.460101i \(0.152187\pi\)
−0.887867 + 0.460101i \(0.847813\pi\)
\(812\) 21712.1 0.938356
\(813\) 0 0
\(814\) 6162.33 0.265343
\(815\) 7238.40i 0.311105i
\(816\) 0 0
\(817\) −20407.9 + 5229.67i −0.873909 + 0.223945i
\(818\) 6435.70i 0.275084i
\(819\) 0 0
\(820\) 638.184i 0.0271785i
\(821\) 32993.3i 1.40253i 0.712902 + 0.701264i \(0.247380\pi\)
−0.712902 + 0.701264i \(0.752620\pi\)
\(822\) 0 0
\(823\) −13462.5 −0.570196 −0.285098 0.958498i \(-0.592026\pi\)
−0.285098 + 0.958498i \(0.592026\pi\)
\(824\) 1491.41i 0.0630531i
\(825\) 0 0
\(826\) −2316.88 −0.0975965
\(827\) −11252.2 −0.473127 −0.236563 0.971616i \(-0.576021\pi\)
−0.236563 + 0.971616i \(0.576021\pi\)
\(828\) 0 0
\(829\) 3441.74i 0.144194i 0.997398 + 0.0720968i \(0.0229691\pi\)
−0.997398 + 0.0720968i \(0.977031\pi\)
\(830\) −6522.00 −0.272749
\(831\) 0 0
\(832\) 5336.85i 0.222382i
\(833\) 6376.98i 0.265245i
\(834\) 0 0
\(835\) 21368.8i 0.885625i
\(836\) −4677.34 18252.5i −0.193504 0.755117i
\(837\) 0 0
\(838\) 18516.2i 0.763282i
\(839\) −23999.6 −0.987555 −0.493777 0.869588i \(-0.664384\pi\)
−0.493777 + 0.869588i \(0.664384\pi\)
\(840\) 0 0
\(841\) 15791.7 0.647491
\(842\) 22686.0i 0.928517i
\(843\) 0 0
\(844\) 2630.87i 0.107297i
\(845\) 23783.0i 0.968236i
\(846\) 0 0
\(847\) 51561.2 2.09169
\(848\) 3060.00 0.123916
\(849\) 0 0
\(850\) 816.988i 0.0329676i
\(851\) −10847.0 −0.436935
\(852\) 0 0
\(853\) 27198.9 1.09176 0.545881 0.837862i \(-0.316195\pi\)
0.545881 + 0.837862i \(0.316195\pi\)
\(854\) 4551.51 0.182377
\(855\) 0 0
\(856\) 7157.46 0.285791
\(857\) −44102.3 −1.75788 −0.878942 0.476928i \(-0.841750\pi\)
−0.878942 + 0.476928i \(0.841750\pi\)
\(858\) 0 0
\(859\) −33712.9 −1.33908 −0.669540 0.742776i \(-0.733509\pi\)
−0.669540 + 0.742776i \(0.733509\pi\)
\(860\) 5087.56i 0.201726i
\(861\) 0 0
\(862\) −17427.3 −0.688603
\(863\) 46554.1 1.83629 0.918146 0.396242i \(-0.129686\pi\)
0.918146 + 0.396242i \(0.129686\pi\)
\(864\) 0 0
\(865\) 19569.4i 0.769225i
\(866\) 3779.21i 0.148294i
\(867\) 0 0
\(868\) 11103.7i 0.434198i
\(869\) −56888.9 −2.22074
\(870\) 0 0
\(871\) 77022.4 2.99633
\(872\) 8181.12i 0.317715i
\(873\) 0 0
\(874\) 8233.13 + 32128.4i 0.318638 + 1.24343i
\(875\) 3384.88i 0.130777i
\(876\) 0 0
\(877\) 32258.8i 1.24208i 0.783780 + 0.621039i \(0.213289\pi\)
−0.783780 + 0.621039i \(0.786711\pi\)
\(878\) 20424.3i 0.785066i
\(879\) 0 0
\(880\) 4550.24 0.174305
\(881\) 13413.9i 0.512969i 0.966548 + 0.256485i \(0.0825643\pi\)
−0.966548 + 0.256485i \(0.917436\pi\)
\(882\) 0 0
\(883\) −37251.7 −1.41973 −0.709864 0.704339i \(-0.751244\pi\)
−0.709864 + 0.704339i \(0.751244\pi\)
\(884\) 5450.18 0.207363
\(885\) 0 0
\(886\) 10972.7i 0.416065i
\(887\) 37868.6 1.43349 0.716743 0.697337i \(-0.245632\pi\)
0.716743 + 0.697337i \(0.245632\pi\)
\(888\) 0 0
\(889\) 70727.6i 2.66831i
\(890\) 569.916i 0.0214648i
\(891\) 0 0
\(892\) 2771.52i 0.104033i
\(893\) −2278.54 8891.64i −0.0853847 0.333200i
\(894\) 0 0
\(895\) 7051.95i 0.263375i
\(896\) 3466.12 0.129235
\(897\) 0 0
\(898\) −14210.4 −0.528070
\(899\) 20548.6i 0.762331i
\(900\) 0 0
\(901\) 3124.98i 0.115547i
\(902\) 3629.86i 0.133992i
\(903\) 0 0
\(904\) 15393.9 0.566364
\(905\) 20946.6 0.769378
\(906\) 0 0
\(907\) 29578.0i 1.08282i 0.840757 + 0.541412i \(0.182110\pi\)
−0.840757 + 0.541412i \(0.817890\pi\)
\(908\) −3683.44 −0.134625
\(909\) 0 0
\(910\) 22580.7 0.822575
\(911\) −8597.34 −0.312670 −0.156335 0.987704i \(-0.549968\pi\)
−0.156335 + 0.987704i \(0.549968\pi\)
\(912\) 0 0
\(913\) −37095.8 −1.34468
\(914\) 6716.18 0.243054
\(915\) 0 0
\(916\) 3372.92 0.121664
\(917\) 70564.8i 2.54117i
\(918\) 0 0
\(919\) −23979.5 −0.860731 −0.430366 0.902655i \(-0.641615\pi\)
−0.430366 + 0.902655i \(0.641615\pi\)
\(920\) −8009.40 −0.287024
\(921\) 0 0
\(922\) 17181.5i 0.613711i
\(923\) 82199.6i 2.93135i
\(924\) 0 0
\(925\) 1354.29i 0.0481391i
\(926\) −3809.50 −0.135192
\(927\) 0 0
\(928\) 6414.44 0.226901
\(929\) 16310.3i 0.576022i 0.957627 + 0.288011i \(0.0929940\pi\)
−0.957627 + 0.288011i \(0.907006\pi\)
\(930\) 0 0
\(931\) −31310.4 + 8023.51i −1.10221 + 0.282449i
\(932\) 16650.6i 0.585203i
\(933\) 0 0
\(934\) 29430.5i 1.03104i
\(935\) 4646.86i 0.162533i
\(936\) 0 0
\(937\) 55020.5 1.91829 0.959147 0.282910i \(-0.0912996\pi\)
0.959147 + 0.282910i \(0.0912996\pi\)
\(938\) 50023.7i 1.74129i
\(939\) 0 0
\(940\) 2216.62 0.0769131
\(941\) 10730.5 0.371736 0.185868 0.982575i \(-0.440490\pi\)
0.185868 + 0.982575i \(0.440490\pi\)
\(942\) 0 0
\(943\) 6389.34i 0.220642i
\(944\) −684.481 −0.0235995
\(945\) 0 0
\(946\) 28937.0i 0.994528i
\(947\) 55547.3i 1.90607i 0.302864 + 0.953034i \(0.402057\pi\)
−0.302864 + 0.953034i \(0.597943\pi\)
\(948\) 0 0
\(949\) 77439.3i 2.64888i
\(950\) −4011.34 + 1027.93i −0.136995 + 0.0351058i
\(951\) 0 0
\(952\) 3539.72i 0.120507i
\(953\) 28184.3 0.958006 0.479003 0.877813i \(-0.340998\pi\)
0.479003 + 0.877813i \(0.340998\pi\)
\(954\) 0 0
\(955\) 19233.5 0.651707
\(956\) 17778.8i 0.601472i
\(957\) 0 0
\(958\) 20647.4i 0.696334i
\(959\) 21763.5i 0.732828i
\(960\) 0 0
\(961\) 19282.3 0.647253
\(962\) 9034.53 0.302791
\(963\) 0 0
\(964\) 679.983i 0.0227187i
\(965\) −19379.5 −0.646474
\(966\) 0 0
\(967\) 44740.7 1.48786 0.743931 0.668256i \(-0.232959\pi\)
0.743931 + 0.668256i \(0.232959\pi\)
\(968\) 15232.8 0.505786
\(969\) 0 0
\(970\) 8032.88 0.265897
\(971\) −38742.6 −1.28044 −0.640221 0.768191i \(-0.721157\pi\)
−0.640221 + 0.768191i \(0.721157\pi\)
\(972\) 0 0
\(973\) −3295.95 −0.108595
\(974\) 38476.9i 1.26579i
\(975\) 0 0
\(976\) 1344.66 0.0440999
\(977\) −28420.1 −0.930646 −0.465323 0.885141i \(-0.654062\pi\)
−0.465323 + 0.885141i \(0.654062\pi\)
\(978\) 0 0
\(979\) 3241.57i 0.105823i
\(980\) 7805.48i 0.254425i
\(981\) 0 0
\(982\) 1469.33i 0.0477478i
\(983\) −8407.09 −0.272782 −0.136391 0.990655i \(-0.543550\pi\)
−0.136391 + 0.990655i \(0.543550\pi\)
\(984\) 0 0
\(985\) −1099.65 −0.0355714
\(986\) 6550.65i 0.211577i
\(987\) 0 0
\(988\) −6857.40 26759.9i −0.220813 0.861686i
\(989\) 50935.4i 1.63767i
\(990\) 0 0
\(991\) 502.063i 0.0160934i 0.999968 + 0.00804670i \(0.00256137\pi\)
−0.999968 + 0.00804670i \(0.997439\pi\)
\(992\) 3280.38i 0.104992i
\(993\) 0 0
\(994\) −53386.1 −1.70352
\(995\) 3035.56i 0.0967174i
\(996\) 0 0
\(997\) 2194.17 0.0696992 0.0348496 0.999393i \(-0.488905\pi\)
0.0348496 + 0.999393i \(0.488905\pi\)
\(998\) −20077.2 −0.636806
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.4.f.a.341.1 40
3.2 odd 2 1710.4.f.b.341.2 yes 40
19.18 odd 2 1710.4.f.b.341.1 yes 40
57.56 even 2 inner 1710.4.f.a.341.2 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.4.f.a.341.1 40 1.1 even 1 trivial
1710.4.f.a.341.2 yes 40 57.56 even 2 inner
1710.4.f.b.341.1 yes 40 19.18 odd 2
1710.4.f.b.341.2 yes 40 3.2 odd 2