Properties

Label 1710.4.a.n
Level $1710$
Weight $4$
Character orbit 1710.a
Self dual yes
Analytic conductor $100.893$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(1,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,0,8,10,0,44,-16,0,-20,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.893266110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{26}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 570)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{26}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + 5 q^{5} + (\beta + 22) q^{7} - 8 q^{8} - 10 q^{10} + (3 \beta - 4) q^{11} + ( - 9 \beta + 28) q^{13} + ( - 2 \beta - 44) q^{14} + 16 q^{16} + ( - 10 \beta - 16) q^{17} - 19 q^{19}+ \cdots + ( - 88 \beta - 334) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} + 10 q^{5} + 44 q^{7} - 16 q^{8} - 20 q^{10} - 8 q^{11} + 56 q^{13} - 88 q^{14} + 32 q^{16} - 32 q^{17} - 38 q^{19} + 40 q^{20} + 16 q^{22} + 12 q^{23} + 50 q^{25} - 112 q^{26} + 176 q^{28}+ \cdots - 668 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.09902
5.09902
−2.00000 0 4.00000 5.00000 0 16.9010 −8.00000 0 −10.0000
1.2 −2.00000 0 4.00000 5.00000 0 27.0990 −8.00000 0 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.4.a.n 2
3.b odd 2 1 570.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.4.a.o 2 3.b odd 2 1
1710.4.a.n 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1710))\):

\( T_{7}^{2} - 44T_{7} + 458 \) Copy content Toggle raw display
\( T_{11}^{2} + 8T_{11} - 218 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 44T + 458 \) Copy content Toggle raw display
$11$ \( T^{2} + 8T - 218 \) Copy content Toggle raw display
$13$ \( T^{2} - 56T - 1322 \) Copy content Toggle raw display
$17$ \( T^{2} + 32T - 2344 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 12T - 45828 \) Copy content Toggle raw display
$29$ \( T^{2} + 4T - 28310 \) Copy content Toggle raw display
$31$ \( T^{2} - 76T - 16132 \) Copy content Toggle raw display
$37$ \( T^{2} - 216T - 16650 \) Copy content Toggle raw display
$41$ \( T^{2} + 20T - 35494 \) Copy content Toggle raw display
$43$ \( T^{2} - 868T + 174602 \) Copy content Toggle raw display
$47$ \( T^{2} - 244T - 72580 \) Copy content Toggle raw display
$53$ \( T^{2} + 520T - 19864 \) Copy content Toggle raw display
$59$ \( T^{2} - 560T - 49000 \) Copy content Toggle raw display
$61$ \( T^{2} - 32T - 81280 \) Copy content Toggle raw display
$67$ \( T^{2} - 1088T + 94592 \) Copy content Toggle raw display
$71$ \( T^{2} + 544T - 240616 \) Copy content Toggle raw display
$73$ \( T^{2} - 708T + 121572 \) Copy content Toggle raw display
$79$ \( T^{2} - 592T + 87200 \) Copy content Toggle raw display
$83$ \( T^{2} + 188T - 192508 \) Copy content Toggle raw display
$89$ \( T^{2} - 1556 T + 249370 \) Copy content Toggle raw display
$97$ \( T^{2} - 312 T - 1666314 \) Copy content Toggle raw display
show more
show less