Properties

Label 1710.4.a.l
Level $1710$
Weight $4$
Character orbit 1710.a
Self dual yes
Analytic conductor $100.893$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1710,4,Mod(1,1710)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1710.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1710, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1710.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,0,8,10,0,24,-16,0,-20,-52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(100.893266110\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{34}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{34}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + 5 q^{5} + (2 \beta + 12) q^{7} - 8 q^{8} - 10 q^{10} + (2 \beta - 26) q^{11} + ( - 5 \beta + 22) q^{13} + ( - 4 \beta - 24) q^{14} + 16 q^{16} + (2 \beta - 50) q^{17} + 19 q^{19}+ \cdots + ( - 96 \beta + 126) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} + 10 q^{5} + 24 q^{7} - 16 q^{8} - 20 q^{10} - 52 q^{11} + 44 q^{13} - 48 q^{14} + 32 q^{16} - 100 q^{17} + 38 q^{19} + 40 q^{20} + 104 q^{22} - 16 q^{23} + 50 q^{25} - 88 q^{26}+ \cdots + 252 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.83095
5.83095
−2.00000 0 4.00000 5.00000 0 0.338096 −8.00000 0 −10.0000
1.2 −2.00000 0 4.00000 5.00000 0 23.6619 −8.00000 0 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.4.a.l 2
3.b odd 2 1 190.4.a.f 2
12.b even 2 1 1520.4.a.l 2
15.d odd 2 1 950.4.a.f 2
15.e even 4 2 950.4.b.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.4.a.f 2 3.b odd 2 1
950.4.a.f 2 15.d odd 2 1
950.4.b.h 4 15.e even 4 2
1520.4.a.l 2 12.b even 2 1
1710.4.a.l 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1710))\):

\( T_{7}^{2} - 24T_{7} + 8 \) Copy content Toggle raw display
\( T_{11}^{2} + 52T_{11} + 540 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 24T + 8 \) Copy content Toggle raw display
$11$ \( T^{2} + 52T + 540 \) Copy content Toggle raw display
$13$ \( T^{2} - 44T - 366 \) Copy content Toggle raw display
$17$ \( T^{2} + 100T + 2364 \) Copy content Toggle raw display
$19$ \( (T - 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 16T - 2112 \) Copy content Toggle raw display
$29$ \( T^{2} - 12T - 10980 \) Copy content Toggle raw display
$31$ \( T^{2} + 16T - 13536 \) Copy content Toggle raw display
$37$ \( T^{2} - 36T - 32350 \) Copy content Toggle raw display
$41$ \( T^{2} + 148T - 17508 \) Copy content Toggle raw display
$43$ \( T^{2} + 472T + 32712 \) Copy content Toggle raw display
$47$ \( T^{2} + 376T + 12360 \) Copy content Toggle raw display
$53$ \( T^{2} + 116T - 71742 \) Copy content Toggle raw display
$59$ \( T^{2} + 112T - 225480 \) Copy content Toggle raw display
$61$ \( T^{2} + 680T + 71536 \) Copy content Toggle raw display
$67$ \( T^{2} + 208T - 296034 \) Copy content Toggle raw display
$71$ \( T^{2} - 616T + 81264 \) Copy content Toggle raw display
$73$ \( T^{2} + 1332 T + 436892 \) Copy content Toggle raw display
$79$ \( T^{2} - 216T - 288760 \) Copy content Toggle raw display
$83$ \( T^{2} - 40T - 1150704 \) Copy content Toggle raw display
$89$ \( T^{2} + 484T + 35580 \) Copy content Toggle raw display
$97$ \( T^{2} - 556T + 25570 \) Copy content Toggle raw display
show more
show less