Properties

Label 1690.2.l.j.361.3
Level $1690$
Weight $2$
Character 1690.361
Analytic conductor $13.495$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(361,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,4,0,6,0,0,-4,4,6,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.3
Root \(1.20036 + 0.747754i\) of defining polynomial
Character \(\chi\) \(=\) 1690.361
Dual form 1690.2.l.j.1161.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.547394 - 0.948114i) q^{3} +(0.500000 - 0.866025i) q^{4} +1.00000i q^{5} +(-0.948114 - 0.547394i) q^{6} +(3.45632 + 1.99551i) q^{7} -1.00000i q^{8} +(0.900720 - 1.56009i) q^{9} +(0.500000 + 0.866025i) q^{10} +(-0.142181 + 0.0820885i) q^{11} -1.09479 q^{12} +3.99102 q^{14} +(0.948114 - 0.547394i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.783937 - 1.35782i) q^{17} -1.80144i q^{18} +(0.716063 + 0.413419i) q^{19} +(0.866025 + 0.500000i) q^{20} -4.36931i q^{21} +(-0.0820885 + 0.142181i) q^{22} +(3.49551 + 6.05440i) q^{23} +(-0.948114 + 0.547394i) q^{24} -1.00000 q^{25} -5.25656 q^{27} +(3.45632 - 1.99551i) q^{28} +(2.92163 + 5.06040i) q^{29} +(0.547394 - 0.948114i) q^{30} -0.0858029i q^{31} +(-0.866025 - 0.500000i) q^{32} +(0.155658 + 0.0898694i) q^{33} -1.56787i q^{34} +(-1.99551 + 3.45632i) q^{35} +(-0.900720 - 1.56009i) q^{36} +(7.24026 - 4.18016i) q^{37} +0.826838 q^{38} +1.00000 q^{40} +(-7.48652 + 4.32235i) q^{41} +(-2.18466 - 3.78394i) q^{42} +(5.62828 - 9.74846i) q^{43} +0.164177i q^{44} +(1.56009 + 0.900720i) q^{45} +(6.05440 + 3.49551i) q^{46} -5.31634i q^{47} +(-0.547394 + 0.948114i) q^{48} +(4.46410 + 7.73205i) q^{49} +(-0.866025 + 0.500000i) q^{50} -1.71649 q^{51} +10.3538 q^{53} +(-4.55231 + 2.62828i) q^{54} +(-0.0820885 - 0.142181i) q^{55} +(1.99551 - 3.45632i) q^{56} -0.905212i q^{57} +(5.06040 + 2.92163i) q^{58} +(3.00000 + 1.73205i) q^{59} -1.09479i q^{60} +(3.21606 - 5.57038i) q^{61} +(-0.0429015 - 0.0743075i) q^{62} +(6.22635 - 3.59479i) q^{63} -1.00000 q^{64} +0.179739 q^{66} +(-13.2566 + 7.65368i) q^{67} +(-0.783937 - 1.35782i) q^{68} +(3.82684 - 6.62828i) q^{69} +3.99102i q^{70} +(5.19615 + 3.00000i) q^{71} +(-1.56009 - 0.900720i) q^{72} -0.179739i q^{73} +(4.18016 - 7.24026i) q^{74} +(0.547394 + 0.948114i) q^{75} +(0.716063 - 0.413419i) q^{76} -0.655233 q^{77} -6.21257 q^{79} +(0.866025 - 0.500000i) q^{80} +(0.175247 + 0.303536i) q^{81} +(-4.32235 + 7.48652i) q^{82} -1.23952i q^{83} +(-3.78394 - 2.18466i) q^{84} +(1.35782 + 0.783937i) q^{85} -11.2566i q^{86} +(3.19856 - 5.54007i) q^{87} +(0.0820885 + 0.142181i) q^{88} +(8.98652 - 5.18837i) q^{89} +1.80144 q^{90} +6.99102 q^{92} +(-0.0813509 + 0.0469680i) q^{93} +(-2.65817 - 4.60408i) q^{94} +(-0.413419 + 0.716063i) q^{95} +1.09479i q^{96} +(-16.3853 - 9.46004i) q^{97} +(7.73205 + 4.46410i) q^{98} +0.295755i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 4 q^{4} + 6 q^{6} - 4 q^{9} + 4 q^{10} + 6 q^{11} - 4 q^{12} - 6 q^{15} - 4 q^{16} + 6 q^{17} + 6 q^{19} + 6 q^{22} + 12 q^{23} + 6 q^{24} - 8 q^{25} + 40 q^{27} + 2 q^{30} + 42 q^{33} + 4 q^{36}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.547394 0.948114i −0.316038 0.547394i 0.663620 0.748070i \(-0.269019\pi\)
−0.979658 + 0.200676i \(0.935686\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000i 0.447214i
\(6\) −0.948114 0.547394i −0.387066 0.223473i
\(7\) 3.45632 + 1.99551i 1.30637 + 0.754231i 0.981488 0.191525i \(-0.0613432\pi\)
0.324879 + 0.945756i \(0.394677\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.900720 1.56009i 0.300240 0.520031i
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) −0.142181 + 0.0820885i −0.0428693 + 0.0247506i −0.521281 0.853385i \(-0.674546\pi\)
0.478412 + 0.878135i \(0.341212\pi\)
\(12\) −1.09479 −0.316038
\(13\) 0 0
\(14\) 3.99102 1.06664
\(15\) 0.948114 0.547394i 0.244802 0.141336i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.783937 1.35782i 0.190133 0.329319i −0.755161 0.655539i \(-0.772442\pi\)
0.945294 + 0.326220i \(0.105775\pi\)
\(18\) 1.80144i 0.424604i
\(19\) 0.716063 + 0.413419i 0.164276 + 0.0948449i 0.579884 0.814699i \(-0.303098\pi\)
−0.415608 + 0.909544i \(0.636431\pi\)
\(20\) 0.866025 + 0.500000i 0.193649 + 0.111803i
\(21\) 4.36931i 0.953462i
\(22\) −0.0820885 + 0.142181i −0.0175013 + 0.0303132i
\(23\) 3.49551 + 6.05440i 0.728864 + 1.26243i 0.957364 + 0.288885i \(0.0932846\pi\)
−0.228500 + 0.973544i \(0.573382\pi\)
\(24\) −0.948114 + 0.547394i −0.193533 + 0.111736i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.25656 −1.01162
\(28\) 3.45632 1.99551i 0.653183 0.377115i
\(29\) 2.92163 + 5.06040i 0.542532 + 0.939694i 0.998758 + 0.0498293i \(0.0158677\pi\)
−0.456225 + 0.889864i \(0.650799\pi\)
\(30\) 0.547394 0.948114i 0.0999400 0.173101i
\(31\) 0.0858029i 0.0154107i −0.999970 0.00770533i \(-0.997547\pi\)
0.999970 0.00770533i \(-0.00245271\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0.155658 + 0.0898694i 0.0270967 + 0.0156443i
\(34\) 1.56787i 0.268888i
\(35\) −1.99551 + 3.45632i −0.337302 + 0.584225i
\(36\) −0.900720 1.56009i −0.150120 0.260015i
\(37\) 7.24026 4.18016i 1.19029 0.687215i 0.231918 0.972735i \(-0.425500\pi\)
0.958373 + 0.285520i \(0.0921664\pi\)
\(38\) 0.826838 0.134131
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −7.48652 + 4.32235i −1.16920 + 0.675037i −0.953491 0.301421i \(-0.902539\pi\)
−0.215707 + 0.976458i \(0.569206\pi\)
\(42\) −2.18466 3.78394i −0.337100 0.583874i
\(43\) 5.62828 9.74846i 0.858304 1.48663i −0.0152408 0.999884i \(-0.504851\pi\)
0.873545 0.486743i \(-0.161815\pi\)
\(44\) 0.164177i 0.0247506i
\(45\) 1.56009 + 0.900720i 0.232565 + 0.134271i
\(46\) 6.05440 + 3.49551i 0.892672 + 0.515384i
\(47\) 5.31634i 0.775468i −0.921771 0.387734i \(-0.873258\pi\)
0.921771 0.387734i \(-0.126742\pi\)
\(48\) −0.547394 + 0.948114i −0.0790095 + 0.136848i
\(49\) 4.46410 + 7.73205i 0.637729 + 1.10458i
\(50\) −0.866025 + 0.500000i −0.122474 + 0.0707107i
\(51\) −1.71649 −0.240357
\(52\) 0 0
\(53\) 10.3538 1.42220 0.711099 0.703092i \(-0.248198\pi\)
0.711099 + 0.703092i \(0.248198\pi\)
\(54\) −4.55231 + 2.62828i −0.619491 + 0.357663i
\(55\) −0.0820885 0.142181i −0.0110688 0.0191717i
\(56\) 1.99551 3.45632i 0.266661 0.461870i
\(57\) 0.905212i 0.119898i
\(58\) 5.06040 + 2.92163i 0.664464 + 0.383628i
\(59\) 3.00000 + 1.73205i 0.390567 + 0.225494i 0.682406 0.730974i \(-0.260934\pi\)
−0.291839 + 0.956467i \(0.594267\pi\)
\(60\) 1.09479i 0.141336i
\(61\) 3.21606 5.57038i 0.411775 0.713215i −0.583309 0.812250i \(-0.698242\pi\)
0.995084 + 0.0990355i \(0.0315757\pi\)
\(62\) −0.0429015 0.0743075i −0.00544849 0.00943706i
\(63\) 6.22635 3.59479i 0.784447 0.452901i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0.179739 0.0221243
\(67\) −13.2566 + 7.65368i −1.61955 + 0.935045i −0.632509 + 0.774553i \(0.717975\pi\)
−0.987037 + 0.160493i \(0.948692\pi\)
\(68\) −0.783937 1.35782i −0.0950663 0.164660i
\(69\) 3.82684 6.62828i 0.460697 0.797951i
\(70\) 3.99102i 0.477018i
\(71\) 5.19615 + 3.00000i 0.616670 + 0.356034i 0.775571 0.631260i \(-0.217462\pi\)
−0.158901 + 0.987294i \(0.550795\pi\)
\(72\) −1.56009 0.900720i −0.183859 0.106151i
\(73\) 0.179739i 0.0210368i −0.999945 0.0105184i \(-0.996652\pi\)
0.999945 0.0105184i \(-0.00334818\pi\)
\(74\) 4.18016 7.24026i 0.485934 0.841663i
\(75\) 0.547394 + 0.948114i 0.0632076 + 0.109479i
\(76\) 0.716063 0.413419i 0.0821381 0.0474224i
\(77\) −0.655233 −0.0746707
\(78\) 0 0
\(79\) −6.21257 −0.698968 −0.349484 0.936942i \(-0.613643\pi\)
−0.349484 + 0.936942i \(0.613643\pi\)
\(80\) 0.866025 0.500000i 0.0968246 0.0559017i
\(81\) 0.175247 + 0.303536i 0.0194718 + 0.0337262i
\(82\) −4.32235 + 7.48652i −0.477323 + 0.826748i
\(83\) 1.23952i 0.136055i −0.997683 0.0680275i \(-0.978329\pi\)
0.997683 0.0680275i \(-0.0216706\pi\)
\(84\) −3.78394 2.18466i −0.412861 0.238366i
\(85\) 1.35782 + 0.783937i 0.147276 + 0.0850299i
\(86\) 11.2566i 1.21383i
\(87\) 3.19856 5.54007i 0.342922 0.593958i
\(88\) 0.0820885 + 0.142181i 0.00875066 + 0.0151566i
\(89\) 8.98652 5.18837i 0.952570 0.549966i 0.0586913 0.998276i \(-0.481307\pi\)
0.893878 + 0.448310i \(0.147974\pi\)
\(90\) 1.80144 0.189888
\(91\) 0 0
\(92\) 6.99102 0.728864
\(93\) −0.0813509 + 0.0469680i −0.00843570 + 0.00487035i
\(94\) −2.65817 4.60408i −0.274169 0.474875i
\(95\) −0.413419 + 0.716063i −0.0424159 + 0.0734665i
\(96\) 1.09479i 0.111736i
\(97\) −16.3853 9.46004i −1.66367 0.960521i −0.970939 0.239326i \(-0.923074\pi\)
−0.692732 0.721195i \(-0.743593\pi\)
\(98\) 7.73205 + 4.46410i 0.781055 + 0.450942i
\(99\) 0.295755i 0.0297245i
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −7.33384 12.7026i −0.729745 1.26395i −0.956991 0.290117i \(-0.906306\pi\)
0.227247 0.973837i \(-0.427028\pi\)
\(102\) −1.48652 + 0.858244i −0.147188 + 0.0849789i
\(103\) −2.26795 −0.223468 −0.111734 0.993738i \(-0.535640\pi\)
−0.111734 + 0.993738i \(0.535640\pi\)
\(104\) 0 0
\(105\) 4.36931 0.426401
\(106\) 8.96661 5.17688i 0.870914 0.502823i
\(107\) −2.34883 4.06830i −0.227070 0.393297i 0.729868 0.683588i \(-0.239581\pi\)
−0.956939 + 0.290290i \(0.906248\pi\)
\(108\) −2.62828 + 4.55231i −0.252906 + 0.438046i
\(109\) 6.17161i 0.591133i −0.955322 0.295566i \(-0.904492\pi\)
0.955322 0.295566i \(-0.0955083\pi\)
\(110\) −0.142181 0.0820885i −0.0135565 0.00782683i
\(111\) −7.92654 4.57639i −0.752354 0.434372i
\(112\) 3.99102i 0.377115i
\(113\) −5.63726 + 9.76403i −0.530309 + 0.918522i 0.469066 + 0.883163i \(0.344591\pi\)
−0.999375 + 0.0353590i \(0.988743\pi\)
\(114\) −0.452606 0.783937i −0.0423905 0.0734224i
\(115\) −6.05440 + 3.49551i −0.564575 + 0.325958i
\(116\) 5.84325 0.542532
\(117\) 0 0
\(118\) 3.46410 0.318896
\(119\) 5.41907 3.12870i 0.496766 0.286808i
\(120\) −0.547394 0.948114i −0.0499700 0.0865506i
\(121\) −5.48652 + 9.50294i −0.498775 + 0.863903i
\(122\) 6.43213i 0.582337i
\(123\) 8.19615 + 4.73205i 0.739022 + 0.426675i
\(124\) −0.0743075 0.0429015i −0.00667301 0.00385266i
\(125\) 1.00000i 0.0894427i
\(126\) 3.59479 6.22635i 0.320249 0.554688i
\(127\) 4.06218 + 7.03590i 0.360460 + 0.624335i 0.988037 0.154220i \(-0.0492864\pi\)
−0.627577 + 0.778555i \(0.715953\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −12.3235 −1.08503
\(130\) 0 0
\(131\) 20.8034 1.81760 0.908802 0.417227i \(-0.136998\pi\)
0.908802 + 0.417227i \(0.136998\pi\)
\(132\) 0.155658 0.0898694i 0.0135483 0.00782213i
\(133\) 1.64996 + 2.85782i 0.143070 + 0.247804i
\(134\) −7.65368 + 13.2566i −0.661177 + 1.14519i
\(135\) 5.25656i 0.452412i
\(136\) −1.35782 0.783937i −0.116432 0.0672220i
\(137\) −4.54796 2.62577i −0.388559 0.224334i 0.292977 0.956120i \(-0.405354\pi\)
−0.681535 + 0.731785i \(0.738687\pi\)
\(138\) 7.65368i 0.651524i
\(139\) 8.36076 14.4813i 0.709150 1.22828i −0.256023 0.966671i \(-0.582412\pi\)
0.965173 0.261613i \(-0.0842544\pi\)
\(140\) 1.99551 + 3.45632i 0.168651 + 0.292112i
\(141\) −5.04049 + 2.91013i −0.424486 + 0.245077i
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) −1.80144 −0.150120
\(145\) −5.06040 + 2.92163i −0.420244 + 0.242628i
\(146\) −0.0898694 0.155658i −0.00743765 0.0128824i
\(147\) 4.88724 8.46495i 0.403093 0.698178i
\(148\) 8.36033i 0.687215i
\(149\) 8.68868 + 5.01641i 0.711805 + 0.410961i 0.811729 0.584034i \(-0.198527\pi\)
−0.0999242 + 0.994995i \(0.531860\pi\)
\(150\) 0.948114 + 0.547394i 0.0774132 + 0.0446945i
\(151\) 10.8752i 0.885013i −0.896765 0.442507i \(-0.854089\pi\)
0.896765 0.442507i \(-0.145911\pi\)
\(152\) 0.413419 0.716063i 0.0335327 0.0580804i
\(153\) −1.41222 2.44603i −0.114171 0.197750i
\(154\) −0.567448 + 0.327616i −0.0457263 + 0.0264001i
\(155\) 0.0858029 0.00689185
\(156\) 0 0
\(157\) −17.6922 −1.41199 −0.705997 0.708215i \(-0.749501\pi\)
−0.705997 + 0.708215i \(0.749501\pi\)
\(158\) −5.38024 + 3.10628i −0.428029 + 0.247123i
\(159\) −5.66758 9.81654i −0.449468 0.778502i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 27.9012i 2.19893i
\(162\) 0.303536 + 0.175247i 0.0238480 + 0.0137687i
\(163\) 1.22207 + 0.705563i 0.0957200 + 0.0552640i 0.547096 0.837070i \(-0.315733\pi\)
−0.451376 + 0.892334i \(0.649067\pi\)
\(164\) 8.64469i 0.675037i
\(165\) −0.0898694 + 0.155658i −0.00699633 + 0.0121180i
\(166\) −0.619760 1.07346i −0.0481027 0.0833163i
\(167\) −0.610092 + 0.352237i −0.0472103 + 0.0272569i −0.523419 0.852075i \(-0.675344\pi\)
0.476209 + 0.879332i \(0.342011\pi\)
\(168\) −4.36931 −0.337100
\(169\) 0 0
\(170\) 1.56787 0.120250
\(171\) 1.28994 0.744750i 0.0986445 0.0569525i
\(172\) −5.62828 9.74846i −0.429152 0.743313i
\(173\) 0.327616 0.567448i 0.0249082 0.0431423i −0.853303 0.521416i \(-0.825404\pi\)
0.878211 + 0.478274i \(0.158737\pi\)
\(174\) 6.39712i 0.484964i
\(175\) −3.45632 1.99551i −0.261273 0.150846i
\(176\) 0.142181 + 0.0820885i 0.0107173 + 0.00618765i
\(177\) 3.79246i 0.285058i
\(178\) 5.18837 8.98652i 0.388885 0.673568i
\(179\) 3.70665 + 6.42011i 0.277048 + 0.479862i 0.970650 0.240497i \(-0.0773105\pi\)
−0.693602 + 0.720359i \(0.743977\pi\)
\(180\) 1.56009 0.900720i 0.116282 0.0671357i
\(181\) −0.496077 −0.0368731 −0.0184366 0.999830i \(-0.505869\pi\)
−0.0184366 + 0.999830i \(0.505869\pi\)
\(182\) 0 0
\(183\) −7.04181 −0.520546
\(184\) 6.05440 3.49551i 0.446336 0.257692i
\(185\) 4.18016 + 7.24026i 0.307332 + 0.532314i
\(186\) −0.0469680 + 0.0813509i −0.00344386 + 0.00596494i
\(187\) 0.257409i 0.0188236i
\(188\) −4.60408 2.65817i −0.335787 0.193867i
\(189\) −18.1683 10.4895i −1.32155 0.762999i
\(190\) 0.826838i 0.0599852i
\(191\) −12.3972 + 21.4726i −0.897032 + 1.55370i −0.0657616 + 0.997835i \(0.520948\pi\)
−0.831270 + 0.555869i \(0.812386\pi\)
\(192\) 0.547394 + 0.948114i 0.0395047 + 0.0684242i
\(193\) −3.34392 + 1.93061i −0.240700 + 0.138968i −0.615499 0.788138i \(-0.711045\pi\)
0.374798 + 0.927106i \(0.377712\pi\)
\(194\) −18.9201 −1.35838
\(195\) 0 0
\(196\) 8.92820 0.637729
\(197\) −4.94989 + 2.85782i −0.352665 + 0.203611i −0.665858 0.746078i \(-0.731934\pi\)
0.313193 + 0.949689i \(0.398601\pi\)
\(198\) 0.147877 + 0.256131i 0.0105092 + 0.0182025i
\(199\) −0.567874 + 0.983586i −0.0402555 + 0.0697246i −0.885451 0.464732i \(-0.846151\pi\)
0.845196 + 0.534457i \(0.179484\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 14.5131 + 8.37915i 1.02368 + 0.591020i
\(202\) −12.7026 7.33384i −0.893751 0.516007i
\(203\) 23.3205i 1.63678i
\(204\) −0.858244 + 1.48652i −0.0600891 + 0.104077i
\(205\) −4.32235 7.48652i −0.301886 0.522881i
\(206\) −1.96410 + 1.13397i −0.136845 + 0.0790078i
\(207\) 12.5939 0.875336
\(208\) 0 0
\(209\) −0.135748 −0.00938987
\(210\) 3.78394 2.18466i 0.261116 0.150756i
\(211\) 8.35475 + 14.4708i 0.575165 + 0.996214i 0.996024 + 0.0890882i \(0.0283953\pi\)
−0.420859 + 0.907126i \(0.638271\pi\)
\(212\) 5.17688 8.96661i 0.355549 0.615829i
\(213\) 6.56873i 0.450082i
\(214\) −4.06830 2.34883i −0.278103 0.160563i
\(215\) 9.74846 + 5.62828i 0.664840 + 0.383845i
\(216\) 5.25656i 0.357663i
\(217\) 0.171220 0.296562i 0.0116232 0.0201320i
\(218\) −3.08580 5.34477i −0.208997 0.361993i
\(219\) −0.170413 + 0.0983879i −0.0115154 + 0.00664844i
\(220\) −0.164177 −0.0110688
\(221\) 0 0
\(222\) −9.15278 −0.614295
\(223\) −19.7621 + 11.4097i −1.32337 + 0.764048i −0.984265 0.176701i \(-0.943457\pi\)
−0.339105 + 0.940749i \(0.610124\pi\)
\(224\) −1.99551 3.45632i −0.133330 0.230935i
\(225\) −0.900720 + 1.56009i −0.0600480 + 0.104006i
\(226\) 11.2745i 0.749970i
\(227\) 3.28436 + 1.89623i 0.217991 + 0.125857i 0.605020 0.796211i \(-0.293165\pi\)
−0.387029 + 0.922068i \(0.626499\pi\)
\(228\) −0.783937 0.452606i −0.0519175 0.0299746i
\(229\) 4.69767i 0.310431i 0.987881 + 0.155215i \(0.0496071\pi\)
−0.987881 + 0.155215i \(0.950393\pi\)
\(230\) −3.49551 + 6.05440i −0.230487 + 0.399215i
\(231\) 0.358670 + 0.621235i 0.0235988 + 0.0408743i
\(232\) 5.06040 2.92163i 0.332232 0.191814i
\(233\) −29.3752 −1.92443 −0.962216 0.272286i \(-0.912220\pi\)
−0.962216 + 0.272286i \(0.912220\pi\)
\(234\) 0 0
\(235\) 5.31634 0.346800
\(236\) 3.00000 1.73205i 0.195283 0.112747i
\(237\) 3.40072 + 5.89022i 0.220901 + 0.382611i
\(238\) 3.12870 5.41907i 0.202804 0.351266i
\(239\) 4.19175i 0.271142i −0.990768 0.135571i \(-0.956713\pi\)
0.990768 0.135571i \(-0.0432869\pi\)
\(240\) −0.948114 0.547394i −0.0612005 0.0353341i
\(241\) −16.1343 9.31513i −1.03930 0.600041i −0.119666 0.992814i \(-0.538182\pi\)
−0.919635 + 0.392774i \(0.871516\pi\)
\(242\) 10.9730i 0.705374i
\(243\) −7.69298 + 13.3246i −0.493505 + 0.854775i
\(244\) −3.21606 5.57038i −0.205887 0.356607i
\(245\) −7.73205 + 4.46410i −0.493983 + 0.285201i
\(246\) 9.46410 0.603409
\(247\) 0 0
\(248\) −0.0858029 −0.00544849
\(249\) −1.17521 + 0.678506i −0.0744757 + 0.0429985i
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −2.28394 + 3.95589i −0.144161 + 0.249694i −0.929060 0.369930i \(-0.879382\pi\)
0.784899 + 0.619624i \(0.212715\pi\)
\(252\) 7.18958i 0.452901i
\(253\) −0.993992 0.573882i −0.0624918 0.0360796i
\(254\) 7.03590 + 4.06218i 0.441472 + 0.254884i
\(255\) 1.71649i 0.107491i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.785027 1.35971i −0.0489686 0.0848161i 0.840502 0.541808i \(-0.182260\pi\)
−0.889471 + 0.456992i \(0.848927\pi\)
\(258\) −10.6725 + 6.16177i −0.664441 + 0.383615i
\(259\) 33.3662 2.07327
\(260\) 0 0
\(261\) 10.5263 0.651560
\(262\) 18.0163 10.4017i 1.11305 0.642620i
\(263\) 11.5167 + 19.9476i 0.710152 + 1.23002i 0.964800 + 0.262985i \(0.0847070\pi\)
−0.254648 + 0.967034i \(0.581960\pi\)
\(264\) 0.0898694 0.155658i 0.00553108 0.00958011i
\(265\) 10.3538i 0.636026i
\(266\) 2.85782 + 1.64996i 0.175224 + 0.101166i
\(267\) −9.83833 5.68016i −0.602096 0.347620i
\(268\) 15.3074i 0.935045i
\(269\) −9.20708 + 15.9471i −0.561365 + 0.972314i 0.436012 + 0.899941i \(0.356390\pi\)
−0.997378 + 0.0723728i \(0.976943\pi\)
\(270\) −2.62828 4.55231i −0.159952 0.277045i
\(271\) 7.86510 4.54092i 0.477771 0.275841i −0.241716 0.970347i \(-0.577710\pi\)
0.719487 + 0.694506i \(0.244377\pi\)
\(272\) −1.56787 −0.0950663
\(273\) 0 0
\(274\) −5.25154 −0.317257
\(275\) 0.142181 0.0820885i 0.00857386 0.00495012i
\(276\) −3.82684 6.62828i −0.230349 0.398975i
\(277\) −8.44843 + 14.6331i −0.507617 + 0.879218i 0.492344 + 0.870400i \(0.336140\pi\)
−0.999961 + 0.00881745i \(0.997193\pi\)
\(278\) 16.7215i 1.00289i
\(279\) −0.133860 0.0772844i −0.00801402 0.00462690i
\(280\) 3.45632 + 1.99551i 0.206555 + 0.119254i
\(281\) 10.5011i 0.626443i 0.949680 + 0.313222i \(0.101408\pi\)
−0.949680 + 0.313222i \(0.898592\pi\)
\(282\) −2.91013 + 5.04049i −0.173296 + 0.300157i
\(283\) 2.86780 + 4.96717i 0.170473 + 0.295268i 0.938585 0.345047i \(-0.112137\pi\)
−0.768112 + 0.640315i \(0.778804\pi\)
\(284\) 5.19615 3.00000i 0.308335 0.178017i
\(285\) 0.905212 0.0536202
\(286\) 0 0
\(287\) −34.5011 −2.03654
\(288\) −1.56009 + 0.900720i −0.0919294 + 0.0530754i
\(289\) 7.27089 + 12.5935i 0.427699 + 0.740797i
\(290\) −2.92163 + 5.06040i −0.171564 + 0.297157i
\(291\) 20.7135i 1.21424i
\(292\) −0.155658 0.0898694i −0.00910922 0.00525921i
\(293\) 15.5306 + 8.96661i 0.907309 + 0.523835i 0.879564 0.475780i \(-0.157834\pi\)
0.0277446 + 0.999615i \(0.491167\pi\)
\(294\) 9.77449i 0.570060i
\(295\) −1.73205 + 3.00000i −0.100844 + 0.174667i
\(296\) −4.18016 7.24026i −0.242967 0.420831i
\(297\) 0.747385 0.431503i 0.0433676 0.0250383i
\(298\) 10.0328 0.581186
\(299\) 0 0
\(300\) 1.09479 0.0632076
\(301\) 38.9063 22.4625i 2.24252 1.29472i
\(302\) −5.43761 9.41822i −0.312900 0.541958i
\(303\) −8.02900 + 13.9066i −0.461254 + 0.798915i
\(304\) 0.826838i 0.0474224i
\(305\) 5.57038 + 3.21606i 0.318959 + 0.184151i
\(306\) −2.44603 1.41222i −0.139830 0.0807310i
\(307\) 26.7386i 1.52605i 0.646367 + 0.763027i \(0.276288\pi\)
−0.646367 + 0.763027i \(0.723712\pi\)
\(308\) −0.327616 + 0.567448i −0.0186677 + 0.0323334i
\(309\) 1.24146 + 2.15027i 0.0706243 + 0.122325i
\(310\) 0.0743075 0.0429015i 0.00422038 0.00243664i
\(311\) 25.4823 1.44497 0.722484 0.691388i \(-0.243000\pi\)
0.722484 + 0.691388i \(0.243000\pi\)
\(312\) 0 0
\(313\) −8.68783 −0.491065 −0.245533 0.969388i \(-0.578963\pi\)
−0.245533 + 0.969388i \(0.578963\pi\)
\(314\) −15.3219 + 8.84611i −0.864666 + 0.499215i
\(315\) 3.59479 + 6.22635i 0.202543 + 0.350815i
\(316\) −3.10628 + 5.38024i −0.174742 + 0.302662i
\(317\) 35.4422i 1.99063i −0.0966826 0.995315i \(-0.530823\pi\)
0.0966826 0.995315i \(-0.469177\pi\)
\(318\) −9.81654 5.66758i −0.550484 0.317822i
\(319\) −0.830802 0.479664i −0.0465160 0.0268560i
\(320\) 1.00000i 0.0559017i
\(321\) −2.57147 + 4.45392i −0.143526 + 0.248594i
\(322\) 13.9506 + 24.1632i 0.777438 + 1.34656i
\(323\) 1.12270 0.648189i 0.0624685 0.0360662i
\(324\) 0.350493 0.0194718
\(325\) 0 0
\(326\) 1.41113 0.0781550
\(327\) −5.85139 + 3.37830i −0.323582 + 0.186820i
\(328\) 4.32235 + 7.48652i 0.238662 + 0.413374i
\(329\) 10.6088 18.3750i 0.584882 1.01304i
\(330\) 0.179739i 0.00989430i
\(331\) 1.70362 + 0.983586i 0.0936395 + 0.0540628i 0.546089 0.837727i \(-0.316116\pi\)
−0.452449 + 0.891790i \(0.649450\pi\)
\(332\) −1.07346 0.619760i −0.0589135 0.0340138i
\(333\) 15.0606i 0.825318i
\(334\) −0.352237 + 0.610092i −0.0192735 + 0.0333827i
\(335\) −7.65368 13.2566i −0.418165 0.724283i
\(336\) −3.78394 + 2.18466i −0.206431 + 0.119183i
\(337\) −32.4750 −1.76903 −0.884513 0.466516i \(-0.845509\pi\)
−0.884513 + 0.466516i \(0.845509\pi\)
\(338\) 0 0
\(339\) 12.3432 0.670391
\(340\) 1.35782 0.783937i 0.0736381 0.0425150i
\(341\) 0.00704343 + 0.0121996i 0.000381423 + 0.000660644i
\(342\) 0.744750 1.28994i 0.0402715 0.0697522i
\(343\) 7.69549i 0.415517i
\(344\) −9.74846 5.62828i −0.525602 0.303456i
\(345\) 6.62828 + 3.82684i 0.356855 + 0.206030i
\(346\) 0.655233i 0.0352255i
\(347\) 5.19209 8.99296i 0.278726 0.482767i −0.692343 0.721569i \(-0.743421\pi\)
0.971068 + 0.238802i \(0.0767546\pi\)
\(348\) −3.19856 5.54007i −0.171461 0.296979i
\(349\) −24.5943 + 14.1995i −1.31650 + 0.760083i −0.983164 0.182725i \(-0.941508\pi\)
−0.333338 + 0.942808i \(0.608175\pi\)
\(350\) −3.99102 −0.213329
\(351\) 0 0
\(352\) 0.164177 0.00875066
\(353\) 8.14364 4.70173i 0.433442 0.250248i −0.267370 0.963594i \(-0.586154\pi\)
0.700812 + 0.713346i \(0.252821\pi\)
\(354\) −1.89623 3.28436i −0.100783 0.174562i
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 10.3767i 0.549966i
\(357\) −5.93274 3.42527i −0.313994 0.181284i
\(358\) 6.42011 + 3.70665i 0.339313 + 0.195903i
\(359\) 24.2487i 1.27980i 0.768459 + 0.639899i \(0.221024\pi\)
−0.768459 + 0.639899i \(0.778976\pi\)
\(360\) 0.900720 1.56009i 0.0474721 0.0822241i
\(361\) −9.15817 15.8624i −0.482009 0.834864i
\(362\) −0.429615 + 0.248039i −0.0225801 + 0.0130366i
\(363\) 12.0132 0.630527
\(364\) 0 0
\(365\) 0.179739 0.00940796
\(366\) −6.09839 + 3.52091i −0.318768 + 0.184041i
\(367\) −15.3049 26.5089i −0.798912 1.38376i −0.920325 0.391154i \(-0.872076\pi\)
0.121414 0.992602i \(-0.461257\pi\)
\(368\) 3.49551 6.05440i 0.182216 0.315607i
\(369\) 15.5729i 0.810693i
\(370\) 7.24026 + 4.18016i 0.376403 + 0.217316i
\(371\) 35.7859 + 20.6610i 1.85791 + 1.07267i
\(372\) 0.0939360i 0.00487035i
\(373\) 11.6767 20.2246i 0.604595 1.04719i −0.387520 0.921861i \(-0.626668\pi\)
0.992115 0.125328i \(-0.0399983\pi\)
\(374\) 0.128704 + 0.222922i 0.00665514 + 0.0115270i
\(375\) −0.948114 + 0.547394i −0.0489604 + 0.0282673i
\(376\) −5.31634 −0.274169
\(377\) 0 0
\(378\) −20.9790 −1.07904
\(379\) 15.0064 8.66397i 0.770829 0.445038i −0.0623414 0.998055i \(-0.519857\pi\)
0.833170 + 0.553017i \(0.186523\pi\)
\(380\) 0.413419 + 0.716063i 0.0212080 + 0.0367333i
\(381\) 4.44722 7.70281i 0.227838 0.394627i
\(382\) 24.7944i 1.26859i
\(383\) −16.2514 9.38275i −0.830408 0.479436i 0.0235845 0.999722i \(-0.492492\pi\)
−0.853992 + 0.520286i \(0.825825\pi\)
\(384\) 0.948114 + 0.547394i 0.0483832 + 0.0279341i
\(385\) 0.655233i 0.0333937i
\(386\) −1.93061 + 3.34392i −0.0982655 + 0.170201i
\(387\) −10.1390 17.5613i −0.515395 0.892690i
\(388\) −16.3853 + 9.46004i −0.831836 + 0.480261i
\(389\) 7.13963 0.361994 0.180997 0.983484i \(-0.442068\pi\)
0.180997 + 0.983484i \(0.442068\pi\)
\(390\) 0 0
\(391\) 10.9610 0.554323
\(392\) 7.73205 4.46410i 0.390528 0.225471i
\(393\) −11.3877 19.7240i −0.574432 0.994945i
\(394\) −2.85782 + 4.94989i −0.143975 + 0.249372i
\(395\) 6.21257i 0.312588i
\(396\) 0.256131 + 0.147877i 0.0128711 + 0.00743112i
\(397\) −1.81414 1.04739i −0.0910490 0.0525672i 0.453784 0.891112i \(-0.350074\pi\)
−0.544833 + 0.838544i \(0.683407\pi\)
\(398\) 1.13575i 0.0569299i
\(399\) 1.80636 3.12870i 0.0904310 0.156631i
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) −21.8101 + 12.5921i −1.08914 + 0.628818i −0.933349 0.358971i \(-0.883128\pi\)
−0.155796 + 0.987789i \(0.549794\pi\)
\(402\) 16.7583 0.835828
\(403\) 0 0
\(404\) −14.6677 −0.729745
\(405\) −0.303536 + 0.175247i −0.0150828 + 0.00870807i
\(406\) 11.6603 + 20.1962i 0.578689 + 1.00232i
\(407\) −0.686287 + 1.18868i −0.0340180 + 0.0589208i
\(408\) 1.71649i 0.0849789i
\(409\) −8.37798 4.83703i −0.414264 0.239176i 0.278356 0.960478i \(-0.410210\pi\)
−0.692620 + 0.721302i \(0.743544\pi\)
\(410\) −7.48652 4.32235i −0.369733 0.213465i
\(411\) 5.74932i 0.283593i
\(412\) −1.13397 + 1.96410i −0.0558669 + 0.0967643i
\(413\) 6.91264 + 11.9730i 0.340149 + 0.589155i
\(414\) 10.9066 6.29695i 0.536032 0.309478i
\(415\) 1.23952 0.0608456
\(416\) 0 0
\(417\) −18.3065 −0.896473
\(418\) −0.117561 + 0.0678739i −0.00575010 + 0.00331982i
\(419\) −4.67369 8.09507i −0.228325 0.395470i 0.728987 0.684528i \(-0.239991\pi\)
−0.957312 + 0.289057i \(0.906658\pi\)
\(420\) 2.18466 3.78394i 0.106600 0.184637i
\(421\) 25.5243i 1.24398i 0.783026 + 0.621989i \(0.213675\pi\)
−0.783026 + 0.621989i \(0.786325\pi\)
\(422\) 14.4708 + 8.35475i 0.704430 + 0.406703i
\(423\) −8.29398 4.78853i −0.403267 0.232826i
\(424\) 10.3538i 0.502823i
\(425\) −0.783937 + 1.35782i −0.0380265 + 0.0658639i
\(426\) −3.28436 5.68868i −0.159128 0.275618i
\(427\) 22.2315 12.8354i 1.07586 0.621146i
\(428\) −4.69767 −0.227070
\(429\) 0 0
\(430\) 11.2566 0.542839
\(431\) 3.55397 2.05189i 0.171189 0.0988359i −0.411957 0.911203i \(-0.635155\pi\)
0.583146 + 0.812367i \(0.301821\pi\)
\(432\) 2.62828 + 4.55231i 0.126453 + 0.219023i
\(433\) 1.34392 2.32773i 0.0645845 0.111864i −0.831925 0.554888i \(-0.812761\pi\)
0.896510 + 0.443024i \(0.146094\pi\)
\(434\) 0.342441i 0.0164377i
\(435\) 5.54007 + 3.19856i 0.265626 + 0.153359i
\(436\) −5.34477 3.08580i −0.255968 0.147783i
\(437\) 5.78044i 0.276516i
\(438\) −0.0983879 + 0.170413i −0.00470116 + 0.00814264i
\(439\) −1.23848 2.14512i −0.0591096 0.102381i 0.834956 0.550316i \(-0.185493\pi\)
−0.894066 + 0.447935i \(0.852159\pi\)
\(440\) −0.142181 + 0.0820885i −0.00677823 + 0.00391341i
\(441\) 16.0836 0.765887
\(442\) 0 0
\(443\) −17.3774 −0.825624 −0.412812 0.910816i \(-0.635453\pi\)
−0.412812 + 0.910816i \(0.635453\pi\)
\(444\) −7.92654 + 4.57639i −0.376177 + 0.217186i
\(445\) 5.18837 + 8.98652i 0.245952 + 0.426002i
\(446\) −11.4097 + 19.7621i −0.540263 + 0.935763i
\(447\) 10.9838i 0.519517i
\(448\) −3.45632 1.99551i −0.163296 0.0942789i
\(449\) −25.9206 14.9653i −1.22327 0.706255i −0.257655 0.966237i \(-0.582950\pi\)
−0.965613 + 0.259982i \(0.916283\pi\)
\(450\) 1.80144i 0.0849207i
\(451\) 0.709629 1.22911i 0.0334151 0.0578767i
\(452\) 5.63726 + 9.76403i 0.265155 + 0.459261i
\(453\) −10.3110 + 5.95303i −0.484451 + 0.279698i
\(454\) 3.79246 0.177989
\(455\) 0 0
\(456\) −0.905212 −0.0423905
\(457\) −9.93255 + 5.73456i −0.464625 + 0.268251i −0.713987 0.700159i \(-0.753112\pi\)
0.249362 + 0.968410i \(0.419779\pi\)
\(458\) 2.34883 + 4.06830i 0.109754 + 0.190099i
\(459\) −4.12081 + 7.13745i −0.192343 + 0.333148i
\(460\) 6.99102i 0.325958i
\(461\) −20.7904 12.0034i −0.968307 0.559052i −0.0695873 0.997576i \(-0.522168\pi\)
−0.898720 + 0.438524i \(0.855502\pi\)
\(462\) 0.621235 + 0.358670i 0.0289025 + 0.0166869i
\(463\) 26.3163i 1.22302i 0.791235 + 0.611512i \(0.209438\pi\)
−0.791235 + 0.611512i \(0.790562\pi\)
\(464\) 2.92163 5.06040i 0.135633 0.234923i
\(465\) −0.0469680 0.0813509i −0.00217809 0.00377256i
\(466\) −25.4397 + 14.6876i −1.17847 + 0.680390i
\(467\) −16.2776 −0.753236 −0.376618 0.926369i \(-0.622913\pi\)
−0.376618 + 0.926369i \(0.622913\pi\)
\(468\) 0 0
\(469\) −61.0919 −2.82096
\(470\) 4.60408 2.65817i 0.212371 0.122612i
\(471\) 9.68462 + 16.7742i 0.446244 + 0.772917i
\(472\) 1.73205 3.00000i 0.0797241 0.138086i
\(473\) 1.84807i 0.0849742i
\(474\) 5.89022 + 3.40072i 0.270547 + 0.156200i
\(475\) −0.716063 0.413419i −0.0328552 0.0189690i
\(476\) 6.25741i 0.286808i
\(477\) 9.32583 16.1528i 0.427001 0.739587i
\(478\) −2.09588 3.63017i −0.0958632 0.166040i
\(479\) 24.0075 13.8608i 1.09693 0.633314i 0.161519 0.986870i \(-0.448361\pi\)
0.935414 + 0.353556i \(0.115027\pi\)
\(480\) −1.09479 −0.0499700
\(481\) 0 0
\(482\) −18.6303 −0.848586
\(483\) 26.4536 15.2730i 1.20368 0.694944i
\(484\) 5.48652 + 9.50294i 0.249387 + 0.431952i
\(485\) 9.46004 16.3853i 0.429558 0.744016i
\(486\) 15.3860i 0.697921i
\(487\) −21.0182 12.1349i −0.952425 0.549883i −0.0585916 0.998282i \(-0.518661\pi\)
−0.893833 + 0.448399i \(0.851994\pi\)
\(488\) −5.57038 3.21606i −0.252159 0.145584i
\(489\) 1.54488i 0.0698620i
\(490\) −4.46410 + 7.73205i −0.201668 + 0.349298i
\(491\) 5.15117 + 8.92208i 0.232469 + 0.402648i 0.958534 0.284978i \(-0.0919863\pi\)
−0.726065 + 0.687626i \(0.758653\pi\)
\(492\) 8.19615 4.73205i 0.369511 0.213337i
\(493\) 9.16148 0.412612
\(494\) 0 0
\(495\) −0.295755 −0.0132932
\(496\) −0.0743075 + 0.0429015i −0.00333650 + 0.00192633i
\(497\) 11.9730 + 20.7379i 0.537065 + 0.930223i
\(498\) −0.678506 + 1.17521i −0.0304046 + 0.0526622i
\(499\) 28.2672i 1.26542i −0.774391 0.632708i \(-0.781943\pi\)
0.774391 0.632708i \(-0.218057\pi\)
\(500\) −0.866025 0.500000i −0.0387298 0.0223607i
\(501\) 0.667921 + 0.385624i 0.0298405 + 0.0172284i
\(502\) 4.56787i 0.203874i
\(503\) −15.3561 + 26.5976i −0.684697 + 1.18593i 0.288835 + 0.957379i \(0.406732\pi\)
−0.973532 + 0.228551i \(0.926601\pi\)
\(504\) −3.59479 6.22635i −0.160125 0.277344i
\(505\) 12.7026 7.33384i 0.565258 0.326352i
\(506\) −1.14776 −0.0510243
\(507\) 0 0
\(508\) 8.12436 0.360460
\(509\) 1.86255 1.07534i 0.0825560 0.0476637i −0.458154 0.888873i \(-0.651489\pi\)
0.540710 + 0.841209i \(0.318156\pi\)
\(510\) −0.858244 1.48652i −0.0380037 0.0658243i
\(511\) 0.358670 0.621235i 0.0158666 0.0274818i
\(512\) 1.00000i 0.0441942i
\(513\) −3.76403 2.17316i −0.166186 0.0959474i
\(514\) −1.35971 0.785027i −0.0599741 0.0346260i
\(515\) 2.26795i 0.0999378i
\(516\) −6.16177 + 10.6725i −0.271257 + 0.469831i
\(517\) 0.436410 + 0.755884i 0.0191933 + 0.0332438i
\(518\) 28.8960 16.6831i 1.26962 0.733013i
\(519\) −0.717341 −0.0314878
\(520\) 0 0
\(521\) 10.6848 0.468110 0.234055 0.972223i \(-0.424800\pi\)
0.234055 + 0.972223i \(0.424800\pi\)
\(522\) 9.11602 5.26313i 0.398997 0.230361i
\(523\) −3.95601 6.85201i −0.172984 0.299617i 0.766478 0.642271i \(-0.222008\pi\)
−0.939462 + 0.342654i \(0.888674\pi\)
\(524\) 10.4017 18.0163i 0.454401 0.787046i
\(525\) 4.36931i 0.190692i
\(526\) 19.9476 + 11.5167i 0.869755 + 0.502153i
\(527\) −0.116505 0.0672641i −0.00507503 0.00293007i
\(528\) 0.179739i 0.00782213i
\(529\) −12.9371 + 22.4078i −0.562485 + 0.974252i
\(530\) 5.17688 + 8.96661i 0.224869 + 0.389485i
\(531\) 5.40432 3.12019i 0.234528 0.135405i
\(532\) 3.29992 0.143070
\(533\) 0 0
\(534\) −11.3603 −0.491610
\(535\) 4.06830 2.34883i 0.175888 0.101549i
\(536\) 7.65368 + 13.2566i 0.330588 + 0.572596i
\(537\) 4.05800 7.02866i 0.175116 0.303309i
\(538\) 18.4142i 0.793891i
\(539\) −1.26942 0.732902i −0.0546780 0.0315683i
\(540\) −4.55231 2.62828i −0.195900 0.113103i
\(541\) 34.7694i 1.49485i −0.664345 0.747426i \(-0.731289\pi\)
0.664345 0.747426i \(-0.268711\pi\)
\(542\) 4.54092 7.86510i 0.195049 0.337835i
\(543\) 0.271550 + 0.470338i 0.0116533 + 0.0201841i
\(544\) −1.35782 + 0.783937i −0.0582160 + 0.0336110i
\(545\) 6.17161 0.264363
\(546\) 0 0
\(547\) 8.98506 0.384173 0.192087 0.981378i \(-0.438475\pi\)
0.192087 + 0.981378i \(0.438475\pi\)
\(548\) −4.54796 + 2.62577i −0.194279 + 0.112167i
\(549\) −5.79355 10.0347i −0.247262 0.428271i
\(550\) 0.0820885 0.142181i 0.00350026 0.00606263i
\(551\) 4.83143i 0.205826i
\(552\) −6.62828 3.82684i −0.282118 0.162881i
\(553\) −21.4726 12.3972i −0.913109 0.527184i
\(554\) 16.8969i 0.717878i
\(555\) 4.57639 7.92654i 0.194257 0.336463i
\(556\) −8.36076 14.4813i −0.354575 0.614142i
\(557\) −26.2342 + 15.1464i −1.11158 + 0.641771i −0.939238 0.343266i \(-0.888467\pi\)
−0.172342 + 0.985037i \(0.555134\pi\)
\(558\) −0.154569 −0.00654342
\(559\) 0 0
\(560\) 3.99102 0.168651
\(561\) 0.244053 0.140904i 0.0103039 0.00594897i
\(562\) 5.25055 + 9.09422i 0.221481 + 0.383616i
\(563\) −1.20514 + 2.08736i −0.0507905 + 0.0879717i −0.890303 0.455369i \(-0.849507\pi\)
0.839512 + 0.543341i \(0.182841\pi\)
\(564\) 5.82026i 0.245077i
\(565\) −9.76403 5.63726i −0.410776 0.237161i
\(566\) 4.96717 + 2.86780i 0.208786 + 0.120543i
\(567\) 1.39882i 0.0587450i
\(568\) 3.00000 5.19615i 0.125877 0.218026i
\(569\) −2.18565 3.78566i −0.0916273 0.158703i 0.816569 0.577248i \(-0.195874\pi\)
−0.908196 + 0.418545i \(0.862540\pi\)
\(570\) 0.783937 0.452606i 0.0328355 0.0189576i
\(571\) −19.0050 −0.795335 −0.397668 0.917530i \(-0.630180\pi\)
−0.397668 + 0.917530i \(0.630180\pi\)
\(572\) 0 0
\(573\) 27.1447 1.13398
\(574\) −29.8788 + 17.2505i −1.24712 + 0.720024i
\(575\) −3.49551 6.05440i −0.145773 0.252486i
\(576\) −0.900720 + 1.56009i −0.0375300 + 0.0650039i
\(577\) 13.0620i 0.543777i −0.962329 0.271888i \(-0.912352\pi\)
0.962329 0.271888i \(-0.0876481\pi\)
\(578\) 12.5935 + 7.27089i 0.523822 + 0.302429i
\(579\) 3.66088 + 2.11361i 0.152141 + 0.0878386i
\(580\) 5.84325i 0.242628i
\(581\) 2.47347 4.28418i 0.102617 0.177738i
\(582\) 10.3567 + 17.9384i 0.429300 + 0.743570i
\(583\) −1.47211 + 0.849924i −0.0609686 + 0.0352002i
\(584\) −0.179739 −0.00743765
\(585\) 0 0
\(586\) 17.9332 0.740815
\(587\) −24.2844 + 14.0206i −1.00232 + 0.578691i −0.908935 0.416938i \(-0.863103\pi\)
−0.0933882 + 0.995630i \(0.529770\pi\)
\(588\) −4.88724 8.46495i −0.201547 0.349089i
\(589\) 0.0354726 0.0614403i 0.00146162 0.00253160i
\(590\) 3.46410i 0.142615i
\(591\) 5.41907 + 3.12870i 0.222911 + 0.128698i
\(592\) −7.24026 4.18016i −0.297573 0.171804i
\(593\) 32.1848i 1.32167i −0.750531 0.660835i \(-0.770202\pi\)
0.750531 0.660835i \(-0.229798\pi\)
\(594\) 0.431503 0.747385i 0.0177048 0.0306656i
\(595\) 3.12870 + 5.41907i 0.128264 + 0.222160i
\(596\) 8.68868 5.01641i 0.355902 0.205480i
\(597\) 1.24340 0.0508891
\(598\) 0 0
\(599\) 13.8415 0.565550 0.282775 0.959186i \(-0.408745\pi\)
0.282775 + 0.959186i \(0.408745\pi\)
\(600\) 0.948114 0.547394i 0.0387066 0.0223473i
\(601\) −4.06873 7.04724i −0.165967 0.287463i 0.771031 0.636797i \(-0.219741\pi\)
−0.936998 + 0.349334i \(0.886408\pi\)
\(602\) 22.4625 38.9063i 0.915505 1.58570i
\(603\) 27.5753i 1.12295i
\(604\) −9.41822 5.43761i −0.383222 0.221253i
\(605\) −9.50294 5.48652i −0.386349 0.223059i
\(606\) 16.0580i 0.652312i
\(607\) 22.8555 39.5869i 0.927676 1.60678i 0.140475 0.990084i \(-0.455137\pi\)
0.787201 0.616697i \(-0.211530\pi\)
\(608\) −0.413419 0.716063i −0.0167664 0.0290402i
\(609\) 22.1105 12.7655i 0.895963 0.517284i
\(610\) 6.43213 0.260429
\(611\) 0 0
\(612\) −2.82443 −0.114171
\(613\) 33.1743 19.1532i 1.33990 0.773591i 0.353107 0.935583i \(-0.385125\pi\)
0.986792 + 0.161992i \(0.0517919\pi\)
\(614\) 13.3693 + 23.1563i 0.539542 + 0.934513i
\(615\) −4.73205 + 8.19615i −0.190815 + 0.330501i
\(616\) 0.655233i 0.0264001i
\(617\) −4.67667 2.70008i −0.188276 0.108701i 0.402899 0.915244i \(-0.368002\pi\)
−0.591175 + 0.806543i \(0.701336\pi\)
\(618\) 2.15027 + 1.24146i 0.0864967 + 0.0499389i
\(619\) 20.2758i 0.814954i −0.913216 0.407477i \(-0.866409\pi\)
0.913216 0.407477i \(-0.133591\pi\)
\(620\) 0.0429015 0.0743075i 0.00172296 0.00298426i
\(621\) −18.3743 31.8253i −0.737337 1.27710i
\(622\) 22.0683 12.7411i 0.884858 0.510873i
\(623\) 41.4137 1.65921
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −7.52388 + 4.34392i −0.300715 + 0.173618i
\(627\) 0.0743075 + 0.128704i 0.00296756 + 0.00513996i
\(628\) −8.84611 + 15.3219i −0.352998 + 0.611411i
\(629\) 13.1079i 0.522648i
\(630\) 6.22635 + 3.59479i 0.248064 + 0.143220i
\(631\) 22.1700 + 12.7999i 0.882576 + 0.509555i 0.871507 0.490383i \(-0.163143\pi\)
0.0110689 + 0.999939i \(0.496477\pi\)
\(632\) 6.21257i 0.247123i
\(633\) 9.14667 15.8425i 0.363548 0.629683i
\(634\) −17.7211 30.6938i −0.703794 1.21901i
\(635\) −7.03590 + 4.06218i −0.279211 + 0.161203i
\(636\) −11.3352 −0.449468
\(637\) 0 0
\(638\) −0.959327 −0.0379801
\(639\) 9.36056 5.40432i 0.370298 0.213792i
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) 0.738951 1.27990i 0.0291868 0.0505530i −0.851063 0.525063i \(-0.824042\pi\)
0.880250 + 0.474510i \(0.157375\pi\)
\(642\) 5.14295i 0.202976i
\(643\) 35.7724 + 20.6532i 1.41073 + 0.814483i 0.995457 0.0952153i \(-0.0303540\pi\)
0.415269 + 0.909698i \(0.363687\pi\)
\(644\) 24.1632 + 13.9506i 0.952163 + 0.549732i
\(645\) 12.3235i 0.485239i
\(646\) 0.648189 1.12270i 0.0255027 0.0441719i
\(647\) 8.96379 + 15.5257i 0.352403 + 0.610380i 0.986670 0.162734i \(-0.0520313\pi\)
−0.634267 + 0.773114i \(0.718698\pi\)
\(648\) 0.303536 0.175247i 0.0119240 0.00688433i
\(649\) −0.568726 −0.0223244
\(650\) 0 0
\(651\) −0.374900 −0.0146935
\(652\) 1.22207 0.705563i 0.0478600 0.0276320i
\(653\) −13.9229 24.1152i −0.544846 0.943702i −0.998617 0.0525830i \(-0.983255\pi\)
0.453770 0.891119i \(-0.350079\pi\)
\(654\) −3.37830 + 5.85139i −0.132102 + 0.228807i
\(655\) 20.8034i 0.812857i
\(656\) 7.48652 + 4.32235i 0.292300 + 0.168759i
\(657\) −0.280409 0.161894i −0.0109398 0.00631610i
\(658\) 21.2176i 0.827148i
\(659\) −7.42915 + 12.8677i −0.289399 + 0.501253i −0.973666 0.227978i \(-0.926789\pi\)
0.684268 + 0.729231i \(0.260122\pi\)
\(660\) 0.0898694 + 0.155658i 0.00349816 + 0.00605900i
\(661\) −19.5210 + 11.2705i −0.759279 + 0.438370i −0.829037 0.559194i \(-0.811111\pi\)
0.0697577 + 0.997564i \(0.477777\pi\)
\(662\) 1.96717 0.0764563
\(663\) 0 0
\(664\) −1.23952 −0.0481027
\(665\) −2.85782 + 1.64996i −0.110821 + 0.0639828i
\(666\) −7.53032 13.0429i −0.291794 0.505402i
\(667\) −20.4251 + 35.3774i −0.790864 + 1.36982i
\(668\) 0.704473i 0.0272569i
\(669\) 21.6353 + 12.4912i 0.836470 + 0.482936i
\(670\) −13.2566 7.65368i −0.512145 0.295687i
\(671\) 1.05601i 0.0407667i
\(672\) −2.18466 + 3.78394i −0.0842750 + 0.145969i
\(673\) 13.1200 + 22.7244i 0.505737 + 0.875963i 0.999978 + 0.00663747i \(0.00211279\pi\)
−0.494241 + 0.869325i \(0.664554\pi\)
\(674\) −28.1242 + 16.2375i −1.08330 + 0.625445i
\(675\) 5.25656 0.202325
\(676\) 0 0
\(677\) 13.6685 0.525324 0.262662 0.964888i \(-0.415400\pi\)
0.262662 + 0.964888i \(0.415400\pi\)
\(678\) 10.6895 6.17161i 0.410529 0.237019i
\(679\) −37.7551 65.3938i −1.44891 2.50958i
\(680\) 0.783937 1.35782i 0.0300626 0.0520700i
\(681\) 4.15193i 0.159102i
\(682\) 0.0121996 + 0.00704343i 0.000467146 + 0.000269707i
\(683\) −3.98506 2.30078i −0.152484 0.0880368i 0.421817 0.906681i \(-0.361393\pi\)
−0.574301 + 0.818644i \(0.694726\pi\)
\(684\) 1.48950i 0.0569525i
\(685\) 2.62577 4.54796i 0.100325 0.173769i
\(686\) 3.84774 + 6.66449i 0.146908 + 0.254451i
\(687\) 4.45392 2.57147i 0.169928 0.0981079i
\(688\) −11.2566 −0.429152
\(689\) 0 0
\(690\) 7.65368 0.291370
\(691\) −26.1212 + 15.0811i −0.993699 + 0.573712i −0.906378 0.422468i \(-0.861164\pi\)
−0.0873208 + 0.996180i \(0.527831\pi\)
\(692\) −0.327616 0.567448i −0.0124541 0.0215711i
\(693\) −0.590181 + 1.02222i −0.0224191 + 0.0388311i
\(694\) 10.3842i 0.394178i
\(695\) 14.4813 + 8.36076i 0.549305 + 0.317142i
\(696\) −5.54007 3.19856i −0.209996 0.121241i
\(697\) 13.5538i 0.513386i
\(698\) −14.1995 + 24.5943i −0.537460 + 0.930907i
\(699\) 16.0798 + 27.8510i 0.608194 + 1.05342i
\(700\) −3.45632 + 1.99551i −0.130637 + 0.0754231i
\(701\) −29.3752 −1.10949 −0.554743 0.832022i \(-0.687183\pi\)
−0.554743 + 0.832022i \(0.687183\pi\)
\(702\) 0 0
\(703\) 6.91264 0.260715
\(704\) 0.142181 0.0820885i 0.00535866 0.00309383i
\(705\) −2.91013 5.04049i −0.109602 0.189836i
\(706\) 4.70173 8.14364i 0.176952 0.306490i
\(707\) 58.5389i 2.20158i
\(708\) −3.28436 1.89623i −0.123434 0.0712646i
\(709\) 13.9540 + 8.05634i 0.524053 + 0.302562i 0.738591 0.674153i \(-0.235491\pi\)
−0.214538 + 0.976716i \(0.568825\pi\)
\(710\) 6.00000i 0.225176i
\(711\) −5.59578 + 9.69218i −0.209858 + 0.363485i
\(712\) −5.18837 8.98652i −0.194442 0.336784i
\(713\) 0.519485 0.299925i 0.0194549 0.0112323i
\(714\) −6.85053 −0.256375
\(715\) 0 0
\(716\) 7.41331 0.277048
\(717\) −3.97426 + 2.29454i −0.148421 + 0.0856912i
\(718\) 12.1244 + 21.0000i 0.452477 + 0.783713i
\(719\) −11.3238 + 19.6133i −0.422305 + 0.731454i −0.996165 0.0874998i \(-0.972112\pi\)
0.573859 + 0.818954i \(0.305446\pi\)
\(720\) 1.80144i 0.0671357i
\(721\) −7.83876 4.52571i −0.291931 0.168546i
\(722\) −15.8624 9.15817i −0.590338 0.340832i
\(723\) 20.3962i 0.758542i
\(724\) −0.248039 + 0.429615i −0.00921828 + 0.0159665i
\(725\) −2.92163 5.06040i −0.108506 0.187939i
\(726\) 10.4037 6.00658i 0.386117 0.222925i
\(727\) −4.36795 −0.161998 −0.0809991 0.996714i \(-0.525811\pi\)
−0.0809991 + 0.996714i \(0.525811\pi\)
\(728\) 0 0
\(729\) 17.8958 0.662809
\(730\) 0.155658 0.0898694i 0.00576118 0.00332622i
\(731\) −8.82443 15.2844i −0.326383 0.565313i
\(732\) −3.52091 + 6.09839i −0.130136 + 0.225403i
\(733\) 6.50392i 0.240228i −0.992760 0.120114i \(-0.961674\pi\)
0.992760 0.120114i \(-0.0383260\pi\)
\(734\) −26.5089 15.3049i −0.978463 0.564916i
\(735\) 8.46495 + 4.88724i 0.312235 + 0.180269i
\(736\) 6.99102i 0.257692i
\(737\) 1.25656 2.17642i 0.0462859 0.0801695i
\(738\) 7.78645 + 13.4865i 0.286623 + 0.496446i
\(739\) 1.89078 1.09164i 0.0695535 0.0401567i −0.464820 0.885405i \(-0.653881\pi\)
0.534373 + 0.845249i \(0.320548\pi\)
\(740\) 8.36033 0.307332
\(741\) 0 0
\(742\) 41.3220 1.51698
\(743\) −8.64371 + 4.99045i −0.317107 + 0.183082i −0.650102 0.759847i \(-0.725274\pi\)
0.332995 + 0.942928i \(0.391941\pi\)
\(744\) 0.0469680 + 0.0813509i 0.00172193 + 0.00298247i
\(745\) −5.01641 + 8.68868i −0.183787 + 0.318329i
\(746\) 23.3533i 0.855026i
\(747\) −1.93377 1.11646i −0.0707528 0.0408492i
\(748\) 0.222922 + 0.128704i 0.00815085 + 0.00470590i
\(749\) 18.7485i 0.685054i
\(750\) −0.547394 + 0.948114i −0.0199880 + 0.0346202i
\(751\) 7.82026 + 13.5451i 0.285365 + 0.494267i 0.972698 0.232076i \(-0.0745517\pi\)
−0.687332 + 0.726343i \(0.741218\pi\)
\(752\) −4.60408 + 2.65817i −0.167894 + 0.0969335i
\(753\) 5.00085 0.182241
\(754\) 0 0
\(755\) 10.8752 0.395790
\(756\) −18.1683 + 10.4895i −0.660776 + 0.381499i
\(757\) −2.76476 4.78871i −0.100487 0.174049i 0.811398 0.584494i \(-0.198707\pi\)
−0.911885 + 0.410445i \(0.865373\pi\)
\(758\) 8.66397 15.0064i 0.314690 0.545058i
\(759\) 1.25656i 0.0456101i
\(760\) 0.716063 + 0.413419i 0.0259743 + 0.0149963i
\(761\) 33.3086 + 19.2308i 1.20744 + 0.697114i 0.962199 0.272349i \(-0.0878004\pi\)
0.245239 + 0.969463i \(0.421134\pi\)
\(762\) 8.89444i 0.322212i
\(763\) 12.3155 21.3310i 0.445851 0.772236i
\(764\) 12.3972 + 21.4726i 0.448516 + 0.776852i
\(765\) 2.44603 1.41222i 0.0884364 0.0510588i
\(766\) −18.7655 −0.678025
\(767\) 0 0
\(768\) 1.09479 0.0395047
\(769\) 9.77174 5.64172i 0.352378 0.203445i −0.313354 0.949636i \(-0.601453\pi\)
0.665732 + 0.746191i \(0.268119\pi\)
\(770\) −0.327616 0.567448i −0.0118065 0.0204494i
\(771\) −0.859437 + 1.48859i −0.0309519 + 0.0536102i
\(772\) 3.86122i 0.138968i
\(773\) −7.84674 4.53032i −0.282228 0.162944i 0.352204 0.935923i \(-0.385432\pi\)
−0.634431 + 0.772979i \(0.718766\pi\)
\(774\) −17.5613 10.1390i −0.631227 0.364439i
\(775\) 0.0858029i 0.00308213i
\(776\) −9.46004 + 16.3853i −0.339595 + 0.588197i
\(777\) −18.2645 31.6350i −0.655234 1.13490i
\(778\) 6.18310 3.56982i 0.221675 0.127984i
\(779\) −7.14776 −0.256095
\(780\) 0 0
\(781\) −0.985062 −0.0352483
\(782\) 9.49253 5.48052i 0.339452 0.195983i
\(783\) −15.3577 26.6003i −0.548839 0.950617i
\(784\) 4.46410 7.73205i 0.159432 0.276145i
\(785\) 17.6922i 0.631463i
\(786\) −19.7240 11.3877i −0.703533 0.406185i
\(787\) −1.60236 0.925123i −0.0571180 0.0329771i 0.471169 0.882043i \(-0.343832\pi\)
−0.528287 + 0.849066i \(0.677165\pi\)
\(788\) 5.71564i 0.203611i
\(789\) 12.6084 21.8383i 0.448870 0.777465i
\(790\) −3.10628 5.38024i −0.110517 0.191420i
\(791\) −38.9684 + 22.4984i −1.38556 + 0.799951i
\(792\) 0.295755 0.0105092
\(793\) 0 0
\(794\) −2.09479 −0.0743412
\(795\) 9.81654 5.66758i 0.348157 0.201008i
\(796\) 0.567874 + 0.983586i 0.0201278 + 0.0348623i
\(797\) −2.32892 + 4.03381i −0.0824947 + 0.142885i −0.904321 0.426853i \(-0.859622\pi\)
0.821826 + 0.569738i \(0.192955\pi\)
\(798\) 3.61272i 0.127889i
\(799\) −7.21862 4.16767i −0.255377 0.147442i
\(800\) 0.866025 + 0.500000i 0.0306186 + 0.0176777i
\(801\) 18.6931i 0.660488i
\(802\) −12.5921 + 21.8101i −0.444641 + 0.770141i
\(803\) 0.0147545 + 0.0255555i 0.000520674 + 0.000901835i
\(804\) 14.5131 8.37915i 0.511838 0.295510i
\(805\) −27.9012 −0.983390
\(806\) 0 0
\(807\) 20.1596 0.709651
\(808\) −12.7026 + 7.33384i −0.446875 + 0.258004i
\(809\) 17.7431 + 30.7319i 0.623813 + 1.08048i 0.988769 + 0.149452i \(0.0477508\pi\)
−0.364956 + 0.931025i \(0.618916\pi\)
\(810\) −0.175247 + 0.303536i −0.00615753 + 0.0106652i
\(811\) 38.5309i 1.35300i −0.736442 0.676501i \(-0.763496\pi\)
0.736442 0.676501i \(-0.236504\pi\)
\(812\) 20.1962 + 11.6603i 0.708746 + 0.409195i
\(813\) −8.61062 4.97134i −0.301988 0.174353i
\(814\) 1.37257i 0.0481087i
\(815\) −0.705563 + 1.22207i −0.0247148 + 0.0428073i
\(816\) 0.858244 + 1.48652i 0.0300446 + 0.0520387i
\(817\) 8.06040 4.65368i 0.281998 0.162812i
\(818\) −9.67405 −0.338245
\(819\) 0 0
\(820\) −8.64469 −0.301886
\(821\) 19.7784 11.4191i 0.690272 0.398528i −0.113442 0.993545i \(-0.536188\pi\)
0.803714 + 0.595016i \(0.202854\pi\)
\(822\) 2.87466 + 4.97905i 0.100265 + 0.173664i
\(823\) −1.59722 + 2.76647i −0.0556757 + 0.0964332i −0.892520 0.451008i \(-0.851065\pi\)
0.836844 + 0.547441i \(0.184398\pi\)
\(824\) 2.26795i 0.0790078i
\(825\) −0.155658 0.0898694i −0.00541933 0.00312885i
\(826\) 11.9730 + 6.91264i 0.416596 + 0.240522i
\(827\) 17.5779i 0.611244i −0.952153 0.305622i \(-0.901136\pi\)
0.952153 0.305622i \(-0.0988644\pi\)
\(828\) 6.29695 10.9066i 0.218834 0.379032i
\(829\) 10.9566 + 18.9774i 0.380540 + 0.659114i 0.991139 0.132825i \(-0.0424050\pi\)
−0.610600 + 0.791939i \(0.709072\pi\)
\(830\) 1.07346 0.619760i 0.0372602 0.0215122i
\(831\) 18.4985 0.641705
\(832\) 0 0
\(833\) 13.9983 0.485012
\(834\) −15.8539 + 9.15325i −0.548976 + 0.316951i
\(835\) −0.352237 0.610092i −0.0121897 0.0211131i
\(836\) −0.0678739 + 0.117561i −0.00234747 + 0.00406593i
\(837\) 0.451028i 0.0155898i
\(838\) −8.09507 4.67369i −0.279640 0.161450i
\(839\) 28.9265 + 16.7007i 0.998655 + 0.576574i 0.907850 0.419295i \(-0.137723\pi\)
0.0908051 + 0.995869i \(0.471056\pi\)
\(840\) 4.36931i 0.150756i
\(841\) −2.57180 + 4.45448i −0.0886826 + 0.153603i
\(842\) 12.7621 + 22.1047i 0.439812 + 0.761777i
\(843\) 9.95624 5.74824i 0.342911 0.197980i
\(844\) 16.7095 0.575165
\(845\) 0 0
\(846\) −9.57707 −0.329266
\(847\) −37.9264 + 21.8968i −1.30317 + 0.752383i
\(848\) −5.17688 8.96661i −0.177775 0.307915i
\(849\) 3.13963 5.43800i 0.107752 0.186632i
\(850\) 1.56787i 0.0537776i
\(851\) 50.6168 + 29.2236i 1.73512 + 1.00177i
\(852\) −5.68868 3.28436i −0.194891 0.112520i
\(853\) 35.3037i 1.20877i −0.796691 0.604387i \(-0.793418\pi\)
0.796691 0.604387i \(-0.206582\pi\)
\(854\) 12.8354 22.2315i 0.439217 0.760746i
\(855\) 0.744750 + 1.28994i 0.0254699 + 0.0441152i
\(856\) −4.06830 + 2.34883i −0.139052 + 0.0802815i
\(857\) −52.7645 −1.80240 −0.901200 0.433404i \(-0.857312\pi\)
−0.901200 + 0.433404i \(0.857312\pi\)
\(858\) 0 0
\(859\) 34.2305 1.16793 0.583964 0.811780i \(-0.301501\pi\)
0.583964 + 0.811780i \(0.301501\pi\)
\(860\) 9.74846 5.62828i 0.332420 0.191923i
\(861\) 18.8857 + 32.7110i 0.643622 + 1.11479i
\(862\) 2.05189 3.55397i 0.0698875 0.121049i
\(863\) 3.33252i 0.113440i −0.998390 0.0567202i \(-0.981936\pi\)
0.998390 0.0567202i \(-0.0180643\pi\)
\(864\) 4.55231 + 2.62828i 0.154873 + 0.0894159i
\(865\) 0.567448 + 0.327616i 0.0192938 + 0.0111393i
\(866\) 2.68783i 0.0913362i
\(867\) 7.96008 13.7873i 0.270338 0.468240i
\(868\) −0.171220 0.296562i −0.00581160 0.0100660i
\(869\) 0.883311 0.509980i 0.0299643 0.0172999i
\(870\) 6.39712 0.216883
\(871\) 0 0
\(872\) −6.17161 −0.208997
\(873\) −29.5171 + 17.0417i −0.999001 + 0.576774i
\(874\) 2.89022 + 5.00601i 0.0977631 + 0.169331i
\(875\) 1.99551 3.45632i 0.0674605 0.116845i
\(876\) 0.196776i 0.00664844i
\(877\) 14.4702 + 8.35438i 0.488624 + 0.282107i 0.724003 0.689796i \(-0.242300\pi\)
−0.235379 + 0.971904i \(0.575633\pi\)
\(878\) −2.14512 1.23848i −0.0723942 0.0417968i
\(879\) 19.6331i 0.662207i
\(880\) −0.0820885 + 0.142181i −0.00276720 + 0.00479293i
\(881\) 11.1797 + 19.3638i 0.376654 + 0.652383i 0.990573 0.136985i \(-0.0437414\pi\)
−0.613919 + 0.789369i \(0.710408\pi\)
\(882\) 13.9288 8.04181i 0.469008 0.270782i
\(883\) −13.9499 −0.469450 −0.234725 0.972062i \(-0.575419\pi\)
−0.234725 + 0.972062i \(0.575419\pi\)
\(884\) 0 0
\(885\) 3.79246 0.127482
\(886\) −15.0492 + 8.68868i −0.505589 + 0.291902i
\(887\) 1.88845 + 3.27089i 0.0634078 + 0.109826i 0.895987 0.444081i \(-0.146470\pi\)
−0.832579 + 0.553907i \(0.813136\pi\)
\(888\) −4.57639 + 7.92654i −0.153574 + 0.265997i
\(889\) 32.4244i 1.08748i
\(890\) 8.98652 + 5.18837i 0.301229 + 0.173915i
\(891\) −0.0498336 0.0287714i −0.00166949 0.000963879i
\(892\) 22.8193i 0.764048i
\(893\) 2.19788 3.80683i 0.0735491 0.127391i
\(894\) −5.49191 9.51226i −0.183677 0.318138i
\(895\) −6.42011 + 3.70665i −0.214601 + 0.123900i
\(896\) −3.99102 −0.133330
\(897\) 0 0
\(898\) −29.9305 −0.998795
\(899\) 0.434197 0.250684i 0.0144813 0.00836078i
\(900\) 0.900720 + 1.56009i 0.0300240 + 0.0520031i
\(901\) 8.11669 14.0585i 0.270406 0.468357i
\(902\) 1.41926i 0.0472562i
\(903\) −42.5941 24.5917i −1.41744 0.818361i
\(904\) 9.76403 + 5.63726i 0.324747 + 0.187493i
\(905\) 0.496077i 0.0164902i
\(906\) −5.95303 + 10.3110i −0.197776 + 0.342558i
\(907\) 1.19449 + 2.06892i 0.0396625 + 0.0686975i 0.885175 0.465258i \(-0.154038\pi\)
−0.845513 + 0.533955i \(0.820705\pi\)
\(908\) 3.28436 1.89623i 0.108995 0.0629285i
\(909\) −26.4230 −0.876394
\(910\) 0 0
\(911\) 53.5178 1.77313 0.886563 0.462608i \(-0.153086\pi\)
0.886563 + 0.462608i \(0.153086\pi\)
\(912\) −0.783937 + 0.452606i −0.0259587 + 0.0149873i
\(913\) 0.101750 + 0.176237i 0.00336744 + 0.00583258i
\(914\) −5.73456 + 9.93255i −0.189682 + 0.328540i
\(915\) 7.04181i 0.232795i
\(916\) 4.06830 + 2.34883i 0.134420 + 0.0776077i
\(917\) 71.9033 + 41.5134i 2.37446 + 1.37089i
\(918\) 8.24162i 0.272014i
\(919\) −12.8564 + 22.2679i −0.424094 + 0.734552i −0.996335 0.0855332i \(-0.972741\pi\)
0.572242 + 0.820085i \(0.306074\pi\)
\(920\) 3.49551 + 6.05440i 0.115243 + 0.199608i
\(921\) 25.3513 14.6366i 0.835353 0.482291i
\(922\) −24.0067 −0.790619
\(923\) 0 0
\(924\) 0.717341 0.0235988
\(925\) −7.24026 + 4.18016i −0.238058 + 0.137443i
\(926\) 13.1582 + 22.7906i 0.432404 + 0.748946i
\(927\) −2.04279 + 3.53821i −0.0670939 + 0.116210i
\(928\) 5.84325i 0.191814i
\(929\) −5.43127 3.13575i −0.178194 0.102881i 0.408250 0.912870i \(-0.366139\pi\)
−0.586444 + 0.809990i \(0.699473\pi\)
\(930\) −0.0813509 0.0469680i −0.00266760 0.00154014i
\(931\) 7.38218i 0.241941i
\(932\) −14.6876 + 25.4397i −0.481108 + 0.833304i
\(933\) −13.9488 24.1601i −0.456665 0.790966i
\(934\) −14.0968 + 8.13878i −0.461261 + 0.266309i
\(935\) −0.257409 −0.00841816
\(936\) 0 0
\(937\) −20.7863 −0.679059 −0.339530 0.940595i \(-0.610268\pi\)
−0.339530 + 0.940595i \(0.610268\pi\)
\(938\) −52.9071 + 30.5459i −1.72748 + 0.997360i
\(939\) 4.75567 + 8.23705i 0.155195 + 0.268806i
\(940\) 2.65817 4.60408i 0.0866999 0.150169i
\(941\) 13.2566i 0.432151i −0.976377 0.216076i \(-0.930674\pi\)
0.976377 0.216076i \(-0.0693258\pi\)
\(942\) 16.7742 + 9.68462i 0.546535 + 0.315542i
\(943\) −52.3384 30.2176i −1.70437 0.984020i
\(944\) 3.46410i 0.112747i
\(945\) 10.4895 18.1683i 0.341223 0.591016i
\(946\) 0.924033 + 1.60047i 0.0300429 + 0.0520359i
\(947\) −14.2379 + 8.22023i −0.462668 + 0.267122i −0.713166 0.700996i \(-0.752739\pi\)
0.250497 + 0.968117i \(0.419406\pi\)
\(948\) 6.80144 0.220901
\(949\) 0 0
\(950\) −0.826838 −0.0268262
\(951\) −33.6032 + 19.4008i −1.08966 + 0.629115i
\(952\) −3.12870 5.41907i −0.101402 0.175633i
\(953\) 13.9047 24.0837i 0.450419 0.780148i −0.547993 0.836483i \(-0.684608\pi\)
0.998412 + 0.0563345i \(0.0179413\pi\)
\(954\) 18.6517i 0.603870i
\(955\) −21.4726 12.3972i −0.694838 0.401165i
\(956\) −3.63017 2.09588i −0.117408 0.0677855i
\(957\) 1.05026i 0.0339501i
\(958\) 13.8608 24.0075i 0.447821 0.775648i
\(959\) −10.4795 18.1510i −0.338400 0.586126i
\(960\) −0.948114 + 0.547394i −0.0306002 + 0.0176671i
\(961\) 30.9926 0.999763
\(962\) 0 0
\(963\) −8.46257 −0.272702
\(964\) −16.1343 + 9.31513i −0.519650 + 0.300020i
\(965\) −1.93061 3.34392i −0.0621486 0.107644i
\(966\) 15.2730 26.4536i 0.491400 0.851129i
\(967\) 2.34329i 0.0753552i −0.999290 0.0376776i \(-0.988004\pi\)
0.999290 0.0376776i \(-0.0119960\pi\)
\(968\) 9.50294 + 5.48652i 0.305436 + 0.176344i
\(969\) −1.22911 0.709629i −0.0394848 0.0227966i
\(970\) 18.9201i 0.607487i
\(971\) −1.85867 + 3.21931i −0.0596476 + 0.103313i −0.894307 0.447453i \(-0.852331\pi\)
0.834660 + 0.550766i \(0.185664\pi\)
\(972\) 7.69298 + 13.3246i 0.246752 + 0.427388i
\(973\) 57.7949 33.3679i 1.85282 1.06973i
\(974\) −24.2697 −0.777652
\(975\) 0 0
\(976\) −6.43213 −0.205887
\(977\) 16.6990 9.64115i 0.534247 0.308448i −0.208497 0.978023i \(-0.566857\pi\)
0.742744 + 0.669575i \(0.233524\pi\)
\(978\) −0.772442 1.33791i −0.0247000 0.0427816i
\(979\) −0.851811 + 1.47538i −0.0272240 + 0.0471533i
\(980\) 8.92820i 0.285201i
\(981\) −9.62828 5.55889i −0.307407 0.177482i
\(982\) 8.92208 + 5.15117i 0.284715 + 0.164380i
\(983\) 12.6837i 0.404546i −0.979329 0.202273i \(-0.935167\pi\)
0.979329 0.202273i \(-0.0648328\pi\)
\(984\) 4.73205 8.19615i 0.150852 0.261284i
\(985\) −2.85782 4.94989i −0.0910577 0.157717i
\(986\) 7.93408 4.58074i 0.252672 0.145881i
\(987\) −23.2288 −0.739379
\(988\) 0 0
\(989\) 78.6948 2.50235
\(990\) −0.256131 + 0.147877i −0.00814039 + 0.00469985i
\(991\) −22.2900 38.6074i −0.708065 1.22641i −0.965574 0.260129i \(-0.916235\pi\)
0.257508 0.966276i \(-0.417099\pi\)
\(992\) −0.0429015 + 0.0743075i −0.00136212 + 0.00235927i
\(993\) 2.15364i 0.0683436i
\(994\) 20.7379 + 11.9730i 0.657767 + 0.379762i
\(995\) −0.983586 0.567874i −0.0311818 0.0180028i
\(996\) 1.35701i 0.0429985i
\(997\) 6.20142 10.7412i 0.196401 0.340177i −0.750958 0.660350i \(-0.770408\pi\)
0.947359 + 0.320174i \(0.103741\pi\)
\(998\) −14.1336 24.4802i −0.447392 0.774906i
\(999\) −38.0588 + 21.9733i −1.20413 + 0.695204i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.l.j.361.3 8
13.2 odd 12 1690.2.a.u.1.3 4
13.3 even 3 1690.2.d.k.1351.7 8
13.4 even 6 inner 1690.2.l.j.1161.3 8
13.5 odd 4 1690.2.e.s.991.2 8
13.6 odd 12 1690.2.e.s.191.2 8
13.7 odd 12 1690.2.e.t.191.2 8
13.8 odd 4 1690.2.e.t.991.2 8
13.9 even 3 130.2.l.b.121.1 yes 8
13.10 even 6 1690.2.d.k.1351.3 8
13.11 odd 12 1690.2.a.t.1.3 4
13.12 even 2 130.2.l.b.101.1 8
39.35 odd 6 1170.2.bs.g.901.3 8
39.38 odd 2 1170.2.bs.g.361.3 8
52.35 odd 6 1040.2.da.d.641.3 8
52.51 odd 2 1040.2.da.d.881.3 8
65.9 even 6 650.2.m.c.251.4 8
65.12 odd 4 650.2.n.d.49.1 8
65.22 odd 12 650.2.n.e.199.4 8
65.24 odd 12 8450.2.a.cm.1.2 4
65.38 odd 4 650.2.n.e.49.4 8
65.48 odd 12 650.2.n.d.199.1 8
65.54 odd 12 8450.2.a.ci.1.2 4
65.64 even 2 650.2.m.c.101.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.l.b.101.1 8 13.12 even 2
130.2.l.b.121.1 yes 8 13.9 even 3
650.2.m.c.101.4 8 65.64 even 2
650.2.m.c.251.4 8 65.9 even 6
650.2.n.d.49.1 8 65.12 odd 4
650.2.n.d.199.1 8 65.48 odd 12
650.2.n.e.49.4 8 65.38 odd 4
650.2.n.e.199.4 8 65.22 odd 12
1040.2.da.d.641.3 8 52.35 odd 6
1040.2.da.d.881.3 8 52.51 odd 2
1170.2.bs.g.361.3 8 39.38 odd 2
1170.2.bs.g.901.3 8 39.35 odd 6
1690.2.a.t.1.3 4 13.11 odd 12
1690.2.a.u.1.3 4 13.2 odd 12
1690.2.d.k.1351.3 8 13.10 even 6
1690.2.d.k.1351.7 8 13.3 even 3
1690.2.e.s.191.2 8 13.6 odd 12
1690.2.e.s.991.2 8 13.5 odd 4
1690.2.e.t.191.2 8 13.7 odd 12
1690.2.e.t.991.2 8 13.8 odd 4
1690.2.l.j.361.3 8 1.1 even 1 trivial
1690.2.l.j.1161.3 8 13.4 even 6 inner
8450.2.a.ci.1.2 4 65.54 odd 12
8450.2.a.cm.1.2 4 65.24 odd 12