Properties

Label 1170.2.bs.g.361.3
Level $1170$
Weight $2$
Character 1170.361
Analytic conductor $9.342$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(361,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,0,0,0,0,4,6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.3
Root \(1.20036 + 0.747754i\) of defining polynomial
Character \(\chi\) \(=\) 1170.361
Dual form 1170.2.bs.g.901.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +1.00000i q^{5} +(-3.45632 - 1.99551i) q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{10} +(-0.142181 + 0.0820885i) q^{11} +(1.50821 - 3.27495i) q^{13} -3.99102 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-0.783937 + 1.35782i) q^{17} +(-0.716063 - 0.413419i) q^{19} +(0.866025 + 0.500000i) q^{20} +(-0.0820885 + 0.142181i) q^{22} +(-3.49551 - 6.05440i) q^{23} -1.00000 q^{25} +(-0.331331 - 3.59030i) q^{26} +(-3.45632 + 1.99551i) q^{28} +(-2.92163 - 5.06040i) q^{29} +0.0858029i q^{31} +(-0.866025 - 0.500000i) q^{32} +1.56787i q^{34} +(1.99551 - 3.45632i) q^{35} +(-7.24026 + 4.18016i) q^{37} -0.826838 q^{38} +1.00000 q^{40} +(-7.48652 + 4.32235i) q^{41} +(5.62828 - 9.74846i) q^{43} +0.164177i q^{44} +(-6.05440 - 3.49551i) q^{46} -5.31634i q^{47} +(4.46410 + 7.73205i) q^{49} +(-0.866025 + 0.500000i) q^{50} +(-2.08209 - 2.94362i) q^{52} -10.3538 q^{53} +(-0.0820885 - 0.142181i) q^{55} +(-1.99551 + 3.45632i) q^{56} +(-5.06040 - 2.92163i) q^{58} +(3.00000 + 1.73205i) q^{59} +(3.21606 - 5.57038i) q^{61} +(0.0429015 + 0.0743075i) q^{62} -1.00000 q^{64} +(3.27495 + 1.50821i) q^{65} +(13.2566 - 7.65368i) q^{67} +(0.783937 + 1.35782i) q^{68} -3.99102i q^{70} +(5.19615 + 3.00000i) q^{71} +0.179739i q^{73} +(-4.18016 + 7.24026i) q^{74} +(-0.716063 + 0.413419i) q^{76} +0.655233 q^{77} -6.21257 q^{79} +(0.866025 - 0.500000i) q^{80} +(-4.32235 + 7.48652i) q^{82} -1.23952i q^{83} +(-1.35782 - 0.783937i) q^{85} -11.2566i q^{86} +(0.0820885 + 0.142181i) q^{88} +(8.98652 - 5.18837i) q^{89} +(-11.7480 + 8.30965i) q^{91} -6.99102 q^{92} +(-2.65817 - 4.60408i) q^{94} +(0.413419 - 0.716063i) q^{95} +(16.3853 + 9.46004i) q^{97} +(7.73205 + 4.46410i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 4 q^{10} + 6 q^{11} - 2 q^{13} - 4 q^{16} - 6 q^{17} - 6 q^{19} + 6 q^{22} - 12 q^{23} - 8 q^{25} - 30 q^{37} + 12 q^{38} + 8 q^{40} - 12 q^{41} + 4 q^{43} + 8 q^{49} - 10 q^{52} - 60 q^{53}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −3.45632 1.99551i −1.30637 0.754231i −0.324879 0.945756i \(-0.605323\pi\)
−0.981488 + 0.191525i \(0.938657\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) −0.142181 + 0.0820885i −0.0428693 + 0.0247506i −0.521281 0.853385i \(-0.674546\pi\)
0.478412 + 0.878135i \(0.341212\pi\)
\(12\) 0 0
\(13\) 1.50821 3.27495i 0.418301 0.908308i
\(14\) −3.99102 −1.06664
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.783937 + 1.35782i −0.190133 + 0.329319i −0.945294 0.326220i \(-0.894225\pi\)
0.755161 + 0.655539i \(0.227558\pi\)
\(18\) 0 0
\(19\) −0.716063 0.413419i −0.164276 0.0948449i 0.415608 0.909544i \(-0.363569\pi\)
−0.579884 + 0.814699i \(0.696902\pi\)
\(20\) 0.866025 + 0.500000i 0.193649 + 0.111803i
\(21\) 0 0
\(22\) −0.0820885 + 0.142181i −0.0175013 + 0.0303132i
\(23\) −3.49551 6.05440i −0.728864 1.26243i −0.957364 0.288885i \(-0.906715\pi\)
0.228500 0.973544i \(-0.426618\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −0.331331 3.59030i −0.0649793 0.704115i
\(27\) 0 0
\(28\) −3.45632 + 1.99551i −0.653183 + 0.377115i
\(29\) −2.92163 5.06040i −0.542532 0.939694i −0.998758 0.0498293i \(-0.984132\pi\)
0.456225 0.889864i \(-0.349201\pi\)
\(30\) 0 0
\(31\) 0.0858029i 0.0154107i 0.999970 + 0.00770533i \(0.00245271\pi\)
−0.999970 + 0.00770533i \(0.997547\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 1.56787i 0.268888i
\(35\) 1.99551 3.45632i 0.337302 0.584225i
\(36\) 0 0
\(37\) −7.24026 + 4.18016i −1.19029 + 0.687215i −0.958373 0.285520i \(-0.907834\pi\)
−0.231918 + 0.972735i \(0.574500\pi\)
\(38\) −0.826838 −0.134131
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −7.48652 + 4.32235i −1.16920 + 0.675037i −0.953491 0.301421i \(-0.902539\pi\)
−0.215707 + 0.976458i \(0.569206\pi\)
\(42\) 0 0
\(43\) 5.62828 9.74846i 0.858304 1.48663i −0.0152408 0.999884i \(-0.504851\pi\)
0.873545 0.486743i \(-0.161815\pi\)
\(44\) 0.164177i 0.0247506i
\(45\) 0 0
\(46\) −6.05440 3.49551i −0.892672 0.515384i
\(47\) 5.31634i 0.775468i −0.921771 0.387734i \(-0.873258\pi\)
0.921771 0.387734i \(-0.126742\pi\)
\(48\) 0 0
\(49\) 4.46410 + 7.73205i 0.637729 + 1.10458i
\(50\) −0.866025 + 0.500000i −0.122474 + 0.0707107i
\(51\) 0 0
\(52\) −2.08209 2.94362i −0.288734 0.408207i
\(53\) −10.3538 −1.42220 −0.711099 0.703092i \(-0.751802\pi\)
−0.711099 + 0.703092i \(0.751802\pi\)
\(54\) 0 0
\(55\) −0.0820885 0.142181i −0.0110688 0.0191717i
\(56\) −1.99551 + 3.45632i −0.266661 + 0.461870i
\(57\) 0 0
\(58\) −5.06040 2.92163i −0.664464 0.383628i
\(59\) 3.00000 + 1.73205i 0.390567 + 0.225494i 0.682406 0.730974i \(-0.260934\pi\)
−0.291839 + 0.956467i \(0.594267\pi\)
\(60\) 0 0
\(61\) 3.21606 5.57038i 0.411775 0.713215i −0.583309 0.812250i \(-0.698242\pi\)
0.995084 + 0.0990355i \(0.0315757\pi\)
\(62\) 0.0429015 + 0.0743075i 0.00544849 + 0.00943706i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 3.27495 + 1.50821i 0.406208 + 0.187070i
\(66\) 0 0
\(67\) 13.2566 7.65368i 1.61955 0.935045i 0.632509 0.774553i \(-0.282025\pi\)
0.987037 0.160493i \(-0.0513083\pi\)
\(68\) 0.783937 + 1.35782i 0.0950663 + 0.164660i
\(69\) 0 0
\(70\) 3.99102i 0.477018i
\(71\) 5.19615 + 3.00000i 0.616670 + 0.356034i 0.775571 0.631260i \(-0.217462\pi\)
−0.158901 + 0.987294i \(0.550795\pi\)
\(72\) 0 0
\(73\) 0.179739i 0.0210368i 0.999945 + 0.0105184i \(0.00334818\pi\)
−0.999945 + 0.0105184i \(0.996652\pi\)
\(74\) −4.18016 + 7.24026i −0.485934 + 0.841663i
\(75\) 0 0
\(76\) −0.716063 + 0.413419i −0.0821381 + 0.0474224i
\(77\) 0.655233 0.0746707
\(78\) 0 0
\(79\) −6.21257 −0.698968 −0.349484 0.936942i \(-0.613643\pi\)
−0.349484 + 0.936942i \(0.613643\pi\)
\(80\) 0.866025 0.500000i 0.0968246 0.0559017i
\(81\) 0 0
\(82\) −4.32235 + 7.48652i −0.477323 + 0.826748i
\(83\) 1.23952i 0.136055i −0.997683 0.0680275i \(-0.978329\pi\)
0.997683 0.0680275i \(-0.0216706\pi\)
\(84\) 0 0
\(85\) −1.35782 0.783937i −0.147276 0.0850299i
\(86\) 11.2566i 1.21383i
\(87\) 0 0
\(88\) 0.0820885 + 0.142181i 0.00875066 + 0.0151566i
\(89\) 8.98652 5.18837i 0.952570 0.549966i 0.0586913 0.998276i \(-0.481307\pi\)
0.893878 + 0.448310i \(0.147974\pi\)
\(90\) 0 0
\(91\) −11.7480 + 8.30965i −1.23153 + 0.871088i
\(92\) −6.99102 −0.728864
\(93\) 0 0
\(94\) −2.65817 4.60408i −0.274169 0.474875i
\(95\) 0.413419 0.716063i 0.0424159 0.0734665i
\(96\) 0 0
\(97\) 16.3853 + 9.46004i 1.66367 + 0.960521i 0.970939 + 0.239326i \(0.0769264\pi\)
0.692732 + 0.721195i \(0.256407\pi\)
\(98\) 7.73205 + 4.46410i 0.781055 + 0.450942i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 7.33384 + 12.7026i 0.729745 + 1.26395i 0.956991 + 0.290117i \(0.0936943\pi\)
−0.227247 + 0.973837i \(0.572972\pi\)
\(102\) 0 0
\(103\) −2.26795 −0.223468 −0.111734 0.993738i \(-0.535640\pi\)
−0.111734 + 0.993738i \(0.535640\pi\)
\(104\) −3.27495 1.50821i −0.321135 0.147892i
\(105\) 0 0
\(106\) −8.96661 + 5.17688i −0.870914 + 0.502823i
\(107\) 2.34883 + 4.06830i 0.227070 + 0.393297i 0.956939 0.290290i \(-0.0937519\pi\)
−0.729868 + 0.683588i \(0.760419\pi\)
\(108\) 0 0
\(109\) 6.17161i 0.591133i 0.955322 + 0.295566i \(0.0955083\pi\)
−0.955322 + 0.295566i \(0.904492\pi\)
\(110\) −0.142181 0.0820885i −0.0135565 0.00782683i
\(111\) 0 0
\(112\) 3.99102i 0.377115i
\(113\) 5.63726 9.76403i 0.530309 0.918522i −0.469066 0.883163i \(-0.655409\pi\)
0.999375 0.0353590i \(-0.0112575\pi\)
\(114\) 0 0
\(115\) 6.05440 3.49551i 0.564575 0.325958i
\(116\) −5.84325 −0.542532
\(117\) 0 0
\(118\) 3.46410 0.318896
\(119\) 5.41907 3.12870i 0.496766 0.286808i
\(120\) 0 0
\(121\) −5.48652 + 9.50294i −0.498775 + 0.863903i
\(122\) 6.43213i 0.582337i
\(123\) 0 0
\(124\) 0.0743075 + 0.0429015i 0.00667301 + 0.00385266i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 4.06218 + 7.03590i 0.360460 + 0.624335i 0.988037 0.154220i \(-0.0492864\pi\)
−0.627577 + 0.778555i \(0.715953\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 3.59030 0.331331i 0.314890 0.0290596i
\(131\) −20.8034 −1.81760 −0.908802 0.417227i \(-0.863002\pi\)
−0.908802 + 0.417227i \(0.863002\pi\)
\(132\) 0 0
\(133\) 1.64996 + 2.85782i 0.143070 + 0.247804i
\(134\) 7.65368 13.2566i 0.661177 1.14519i
\(135\) 0 0
\(136\) 1.35782 + 0.783937i 0.116432 + 0.0672220i
\(137\) −4.54796 2.62577i −0.388559 0.224334i 0.292977 0.956120i \(-0.405354\pi\)
−0.681535 + 0.731785i \(0.738687\pi\)
\(138\) 0 0
\(139\) 8.36076 14.4813i 0.709150 1.22828i −0.256023 0.966671i \(-0.582412\pi\)
0.965173 0.261613i \(-0.0842544\pi\)
\(140\) −1.99551 3.45632i −0.168651 0.292112i
\(141\) 0 0
\(142\) 6.00000 0.503509
\(143\) 0.0543969 + 0.589444i 0.00454889 + 0.0492918i
\(144\) 0 0
\(145\) 5.06040 2.92163i 0.420244 0.242628i
\(146\) 0.0898694 + 0.155658i 0.00743765 + 0.0128824i
\(147\) 0 0
\(148\) 8.36033i 0.687215i
\(149\) 8.68868 + 5.01641i 0.711805 + 0.410961i 0.811729 0.584034i \(-0.198527\pi\)
−0.0999242 + 0.994995i \(0.531860\pi\)
\(150\) 0 0
\(151\) 10.8752i 0.885013i 0.896765 + 0.442507i \(0.145911\pi\)
−0.896765 + 0.442507i \(0.854089\pi\)
\(152\) −0.413419 + 0.716063i −0.0335327 + 0.0580804i
\(153\) 0 0
\(154\) 0.567448 0.327616i 0.0457263 0.0264001i
\(155\) −0.0858029 −0.00689185
\(156\) 0 0
\(157\) −17.6922 −1.41199 −0.705997 0.708215i \(-0.749501\pi\)
−0.705997 + 0.708215i \(0.749501\pi\)
\(158\) −5.38024 + 3.10628i −0.428029 + 0.247123i
\(159\) 0 0
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 27.9012i 2.19893i
\(162\) 0 0
\(163\) −1.22207 0.705563i −0.0957200 0.0552640i 0.451376 0.892334i \(-0.350933\pi\)
−0.547096 + 0.837070i \(0.684267\pi\)
\(164\) 8.64469i 0.675037i
\(165\) 0 0
\(166\) −0.619760 1.07346i −0.0481027 0.0833163i
\(167\) −0.610092 + 0.352237i −0.0472103 + 0.0272569i −0.523419 0.852075i \(-0.675344\pi\)
0.476209 + 0.879332i \(0.342011\pi\)
\(168\) 0 0
\(169\) −8.45062 9.87861i −0.650048 0.759893i
\(170\) −1.56787 −0.120250
\(171\) 0 0
\(172\) −5.62828 9.74846i −0.429152 0.743313i
\(173\) −0.327616 + 0.567448i −0.0249082 + 0.0431423i −0.878211 0.478274i \(-0.841263\pi\)
0.853303 + 0.521416i \(0.174596\pi\)
\(174\) 0 0
\(175\) 3.45632 + 1.99551i 0.261273 + 0.150846i
\(176\) 0.142181 + 0.0820885i 0.0107173 + 0.00618765i
\(177\) 0 0
\(178\) 5.18837 8.98652i 0.388885 0.673568i
\(179\) −3.70665 6.42011i −0.277048 0.479862i 0.693602 0.720359i \(-0.256023\pi\)
−0.970650 + 0.240497i \(0.922690\pi\)
\(180\) 0 0
\(181\) −0.496077 −0.0368731 −0.0184366 0.999830i \(-0.505869\pi\)
−0.0184366 + 0.999830i \(0.505869\pi\)
\(182\) −6.01928 + 13.0704i −0.446178 + 0.968841i
\(183\) 0 0
\(184\) −6.05440 + 3.49551i −0.446336 + 0.257692i
\(185\) −4.18016 7.24026i −0.307332 0.532314i
\(186\) 0 0
\(187\) 0.257409i 0.0188236i
\(188\) −4.60408 2.65817i −0.335787 0.193867i
\(189\) 0 0
\(190\) 0.826838i 0.0599852i
\(191\) 12.3972 21.4726i 0.897032 1.55370i 0.0657616 0.997835i \(-0.479052\pi\)
0.831270 0.555869i \(-0.187614\pi\)
\(192\) 0 0
\(193\) 3.34392 1.93061i 0.240700 0.138968i −0.374798 0.927106i \(-0.622288\pi\)
0.615499 + 0.788138i \(0.288955\pi\)
\(194\) 18.9201 1.35838
\(195\) 0 0
\(196\) 8.92820 0.637729
\(197\) −4.94989 + 2.85782i −0.352665 + 0.203611i −0.665858 0.746078i \(-0.731934\pi\)
0.313193 + 0.949689i \(0.398601\pi\)
\(198\) 0 0
\(199\) −0.567874 + 0.983586i −0.0402555 + 0.0697246i −0.885451 0.464732i \(-0.846151\pi\)
0.845196 + 0.534457i \(0.179484\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 0 0
\(202\) 12.7026 + 7.33384i 0.893751 + 0.516007i
\(203\) 23.3205i 1.63678i
\(204\) 0 0
\(205\) −4.32235 7.48652i −0.301886 0.522881i
\(206\) −1.96410 + 1.13397i −0.136845 + 0.0790078i
\(207\) 0 0
\(208\) −3.59030 + 0.331331i −0.248942 + 0.0229737i
\(209\) 0.135748 0.00938987
\(210\) 0 0
\(211\) 8.35475 + 14.4708i 0.575165 + 0.996214i 0.996024 + 0.0890882i \(0.0283953\pi\)
−0.420859 + 0.907126i \(0.638271\pi\)
\(212\) −5.17688 + 8.96661i −0.355549 + 0.615829i
\(213\) 0 0
\(214\) 4.06830 + 2.34883i 0.278103 + 0.160563i
\(215\) 9.74846 + 5.62828i 0.664840 + 0.383845i
\(216\) 0 0
\(217\) 0.171220 0.296562i 0.0116232 0.0201320i
\(218\) 3.08580 + 5.34477i 0.208997 + 0.361993i
\(219\) 0 0
\(220\) −0.164177 −0.0110688
\(221\) 3.26445 + 4.61523i 0.219591 + 0.310454i
\(222\) 0 0
\(223\) 19.7621 11.4097i 1.32337 0.764048i 0.339105 0.940749i \(-0.389876\pi\)
0.984265 + 0.176701i \(0.0565426\pi\)
\(224\) 1.99551 + 3.45632i 0.133330 + 0.230935i
\(225\) 0 0
\(226\) 11.2745i 0.749970i
\(227\) 3.28436 + 1.89623i 0.217991 + 0.125857i 0.605020 0.796211i \(-0.293165\pi\)
−0.387029 + 0.922068i \(0.626499\pi\)
\(228\) 0 0
\(229\) 4.69767i 0.310431i −0.987881 0.155215i \(-0.950393\pi\)
0.987881 0.155215i \(-0.0496071\pi\)
\(230\) 3.49551 6.05440i 0.230487 0.399215i
\(231\) 0 0
\(232\) −5.06040 + 2.92163i −0.332232 + 0.191814i
\(233\) 29.3752 1.92443 0.962216 0.272286i \(-0.0877798\pi\)
0.962216 + 0.272286i \(0.0877798\pi\)
\(234\) 0 0
\(235\) 5.31634 0.346800
\(236\) 3.00000 1.73205i 0.195283 0.112747i
\(237\) 0 0
\(238\) 3.12870 5.41907i 0.202804 0.351266i
\(239\) 4.19175i 0.271142i −0.990768 0.135571i \(-0.956713\pi\)
0.990768 0.135571i \(-0.0432869\pi\)
\(240\) 0 0
\(241\) 16.1343 + 9.31513i 1.03930 + 0.600041i 0.919635 0.392774i \(-0.128484\pi\)
0.119666 + 0.992814i \(0.461818\pi\)
\(242\) 10.9730i 0.705374i
\(243\) 0 0
\(244\) −3.21606 5.57038i −0.205887 0.356607i
\(245\) −7.73205 + 4.46410i −0.493983 + 0.285201i
\(246\) 0 0
\(247\) −2.43390 + 1.72155i −0.154865 + 0.109540i
\(248\) 0.0858029 0.00544849
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) 2.28394 3.95589i 0.144161 0.249694i −0.784899 0.619624i \(-0.787285\pi\)
0.929060 + 0.369930i \(0.120618\pi\)
\(252\) 0 0
\(253\) 0.993992 + 0.573882i 0.0624918 + 0.0360796i
\(254\) 7.03590 + 4.06218i 0.441472 + 0.254884i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.785027 + 1.35971i 0.0489686 + 0.0848161i 0.889471 0.456992i \(-0.151073\pi\)
−0.840502 + 0.541808i \(0.817740\pi\)
\(258\) 0 0
\(259\) 33.3662 2.07327
\(260\) 2.94362 2.08209i 0.182556 0.129126i
\(261\) 0 0
\(262\) −18.0163 + 10.4017i −1.11305 + 0.642620i
\(263\) −11.5167 19.9476i −0.710152 1.23002i −0.964800 0.262985i \(-0.915293\pi\)
0.254648 0.967034i \(-0.418040\pi\)
\(264\) 0 0
\(265\) 10.3538i 0.636026i
\(266\) 2.85782 + 1.64996i 0.175224 + 0.101166i
\(267\) 0 0
\(268\) 15.3074i 0.935045i
\(269\) 9.20708 15.9471i 0.561365 0.972314i −0.436012 0.899941i \(-0.643610\pi\)
0.997378 0.0723728i \(-0.0230571\pi\)
\(270\) 0 0
\(271\) −7.86510 + 4.54092i −0.477771 + 0.275841i −0.719487 0.694506i \(-0.755623\pi\)
0.241716 + 0.970347i \(0.422290\pi\)
\(272\) 1.56787 0.0950663
\(273\) 0 0
\(274\) −5.25154 −0.317257
\(275\) 0.142181 0.0820885i 0.00857386 0.00495012i
\(276\) 0 0
\(277\) −8.44843 + 14.6331i −0.507617 + 0.879218i 0.492344 + 0.870400i \(0.336140\pi\)
−0.999961 + 0.00881745i \(0.997193\pi\)
\(278\) 16.7215i 1.00289i
\(279\) 0 0
\(280\) −3.45632 1.99551i −0.206555 0.119254i
\(281\) 10.5011i 0.626443i 0.949680 + 0.313222i \(0.101408\pi\)
−0.949680 + 0.313222i \(0.898592\pi\)
\(282\) 0 0
\(283\) 2.86780 + 4.96717i 0.170473 + 0.295268i 0.938585 0.345047i \(-0.112137\pi\)
−0.768112 + 0.640315i \(0.778804\pi\)
\(284\) 5.19615 3.00000i 0.308335 0.178017i
\(285\) 0 0
\(286\) 0.341831 + 0.483275i 0.0202129 + 0.0285766i
\(287\) 34.5011 2.03654
\(288\) 0 0
\(289\) 7.27089 + 12.5935i 0.427699 + 0.740797i
\(290\) 2.92163 5.06040i 0.171564 0.297157i
\(291\) 0 0
\(292\) 0.155658 + 0.0898694i 0.00910922 + 0.00525921i
\(293\) 15.5306 + 8.96661i 0.907309 + 0.523835i 0.879564 0.475780i \(-0.157834\pi\)
0.0277446 + 0.999615i \(0.491167\pi\)
\(294\) 0 0
\(295\) −1.73205 + 3.00000i −0.100844 + 0.174667i
\(296\) 4.18016 + 7.24026i 0.242967 + 0.420831i
\(297\) 0 0
\(298\) 10.0328 0.581186
\(299\) −25.0998 + 2.31634i −1.45156 + 0.133957i
\(300\) 0 0
\(301\) −38.9063 + 22.4625i −2.24252 + 1.29472i
\(302\) 5.43761 + 9.41822i 0.312900 + 0.541958i
\(303\) 0 0
\(304\) 0.826838i 0.0474224i
\(305\) 5.57038 + 3.21606i 0.318959 + 0.184151i
\(306\) 0 0
\(307\) 26.7386i 1.52605i −0.646367 0.763027i \(-0.723712\pi\)
0.646367 0.763027i \(-0.276288\pi\)
\(308\) 0.327616 0.567448i 0.0186677 0.0323334i
\(309\) 0 0
\(310\) −0.0743075 + 0.0429015i −0.00422038 + 0.00243664i
\(311\) −25.4823 −1.44497 −0.722484 0.691388i \(-0.757000\pi\)
−0.722484 + 0.691388i \(0.757000\pi\)
\(312\) 0 0
\(313\) −8.68783 −0.491065 −0.245533 0.969388i \(-0.578963\pi\)
−0.245533 + 0.969388i \(0.578963\pi\)
\(314\) −15.3219 + 8.84611i −0.864666 + 0.499215i
\(315\) 0 0
\(316\) −3.10628 + 5.38024i −0.174742 + 0.302662i
\(317\) 35.4422i 1.99063i −0.0966826 0.995315i \(-0.530823\pi\)
0.0966826 0.995315i \(-0.469177\pi\)
\(318\) 0 0
\(319\) 0.830802 + 0.479664i 0.0465160 + 0.0268560i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) 13.9506 + 24.1632i 0.777438 + 1.34656i
\(323\) 1.12270 0.648189i 0.0624685 0.0360662i
\(324\) 0 0
\(325\) −1.50821 + 3.27495i −0.0836603 + 0.181662i
\(326\) −1.41113 −0.0781550
\(327\) 0 0
\(328\) 4.32235 + 7.48652i 0.238662 + 0.413374i
\(329\) −10.6088 + 18.3750i −0.584882 + 1.01304i
\(330\) 0 0
\(331\) −1.70362 0.983586i −0.0936395 0.0540628i 0.452449 0.891790i \(-0.350550\pi\)
−0.546089 + 0.837727i \(0.683884\pi\)
\(332\) −1.07346 0.619760i −0.0589135 0.0340138i
\(333\) 0 0
\(334\) −0.352237 + 0.610092i −0.0192735 + 0.0333827i
\(335\) 7.65368 + 13.2566i 0.418165 + 0.724283i
\(336\) 0 0
\(337\) −32.4750 −1.76903 −0.884513 0.466516i \(-0.845509\pi\)
−0.884513 + 0.466516i \(0.845509\pi\)
\(338\) −12.2578 4.32982i −0.666734 0.235511i
\(339\) 0 0
\(340\) −1.35782 + 0.783937i −0.0736381 + 0.0425150i
\(341\) −0.00704343 0.0121996i −0.000381423 0.000660644i
\(342\) 0 0
\(343\) 7.69549i 0.415517i
\(344\) −9.74846 5.62828i −0.525602 0.303456i
\(345\) 0 0
\(346\) 0.655233i 0.0352255i
\(347\) −5.19209 + 8.99296i −0.278726 + 0.482767i −0.971068 0.238802i \(-0.923245\pi\)
0.692343 + 0.721569i \(0.256579\pi\)
\(348\) 0 0
\(349\) 24.5943 14.1995i 1.31650 0.760083i 0.333338 0.942808i \(-0.391825\pi\)
0.983164 + 0.182725i \(0.0584918\pi\)
\(350\) 3.99102 0.213329
\(351\) 0 0
\(352\) 0.164177 0.00875066
\(353\) 8.14364 4.70173i 0.433442 0.250248i −0.267370 0.963594i \(-0.586154\pi\)
0.700812 + 0.713346i \(0.252821\pi\)
\(354\) 0 0
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 10.3767i 0.549966i
\(357\) 0 0
\(358\) −6.42011 3.70665i −0.339313 0.195903i
\(359\) 24.2487i 1.27980i 0.768459 + 0.639899i \(0.221024\pi\)
−0.768459 + 0.639899i \(0.778976\pi\)
\(360\) 0 0
\(361\) −9.15817 15.8624i −0.482009 0.834864i
\(362\) −0.429615 + 0.248039i −0.0225801 + 0.0130366i
\(363\) 0 0
\(364\) 1.32235 + 14.3289i 0.0693098 + 0.751040i
\(365\) −0.179739 −0.00940796
\(366\) 0 0
\(367\) −15.3049 26.5089i −0.798912 1.38376i −0.920325 0.391154i \(-0.872076\pi\)
0.121414 0.992602i \(-0.461257\pi\)
\(368\) −3.49551 + 6.05440i −0.182216 + 0.315607i
\(369\) 0 0
\(370\) −7.24026 4.18016i −0.376403 0.217316i
\(371\) 35.7859 + 20.6610i 1.85791 + 1.07267i
\(372\) 0 0
\(373\) 11.6767 20.2246i 0.604595 1.04719i −0.387520 0.921861i \(-0.626668\pi\)
0.992115 0.125328i \(-0.0399983\pi\)
\(374\) −0.128704 0.222922i −0.00665514 0.0115270i
\(375\) 0 0
\(376\) −5.31634 −0.274169
\(377\) −20.9790 + 1.93605i −1.08047 + 0.0997116i
\(378\) 0 0
\(379\) −15.0064 + 8.66397i −0.770829 + 0.445038i −0.833170 0.553017i \(-0.813477\pi\)
0.0623414 + 0.998055i \(0.480143\pi\)
\(380\) −0.413419 0.716063i −0.0212080 0.0367333i
\(381\) 0 0
\(382\) 24.7944i 1.26859i
\(383\) −16.2514 9.38275i −0.830408 0.479436i 0.0235845 0.999722i \(-0.492492\pi\)
−0.853992 + 0.520286i \(0.825825\pi\)
\(384\) 0 0
\(385\) 0.655233i 0.0333937i
\(386\) 1.93061 3.34392i 0.0982655 0.170201i
\(387\) 0 0
\(388\) 16.3853 9.46004i 0.831836 0.480261i
\(389\) −7.13963 −0.361994 −0.180997 0.983484i \(-0.557932\pi\)
−0.180997 + 0.983484i \(0.557932\pi\)
\(390\) 0 0
\(391\) 10.9610 0.554323
\(392\) 7.73205 4.46410i 0.390528 0.225471i
\(393\) 0 0
\(394\) −2.85782 + 4.94989i −0.143975 + 0.249372i
\(395\) 6.21257i 0.312588i
\(396\) 0 0
\(397\) 1.81414 + 1.04739i 0.0910490 + 0.0525672i 0.544833 0.838544i \(-0.316593\pi\)
−0.453784 + 0.891112i \(0.649926\pi\)
\(398\) 1.13575i 0.0569299i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) −21.8101 + 12.5921i −1.08914 + 0.628818i −0.933349 0.358971i \(-0.883128\pi\)
−0.155796 + 0.987789i \(0.549794\pi\)
\(402\) 0 0
\(403\) 0.281000 + 0.129409i 0.0139976 + 0.00644630i
\(404\) 14.6677 0.729745
\(405\) 0 0
\(406\) 11.6603 + 20.1962i 0.578689 + 1.00232i
\(407\) 0.686287 1.18868i 0.0340180 0.0589208i
\(408\) 0 0
\(409\) 8.37798 + 4.83703i 0.414264 + 0.239176i 0.692620 0.721302i \(-0.256456\pi\)
−0.278356 + 0.960478i \(0.589790\pi\)
\(410\) −7.48652 4.32235i −0.369733 0.213465i
\(411\) 0 0
\(412\) −1.13397 + 1.96410i −0.0558669 + 0.0967643i
\(413\) −6.91264 11.9730i −0.340149 0.589155i
\(414\) 0 0
\(415\) 1.23952 0.0608456
\(416\) −2.94362 + 2.08209i −0.144323 + 0.102083i
\(417\) 0 0
\(418\) 0.117561 0.0678739i 0.00575010 0.00331982i
\(419\) 4.67369 + 8.09507i 0.228325 + 0.395470i 0.957312 0.289057i \(-0.0933419\pi\)
−0.728987 + 0.684528i \(0.760009\pi\)
\(420\) 0 0
\(421\) 25.5243i 1.24398i −0.783026 0.621989i \(-0.786325\pi\)
0.783026 0.621989i \(-0.213675\pi\)
\(422\) 14.4708 + 8.35475i 0.704430 + 0.406703i
\(423\) 0 0
\(424\) 10.3538i 0.502823i
\(425\) 0.783937 1.35782i 0.0380265 0.0658639i
\(426\) 0 0
\(427\) −22.2315 + 12.8354i −1.07586 + 0.621146i
\(428\) 4.69767 0.227070
\(429\) 0 0
\(430\) 11.2566 0.542839
\(431\) 3.55397 2.05189i 0.171189 0.0988359i −0.411957 0.911203i \(-0.635155\pi\)
0.583146 + 0.812367i \(0.301821\pi\)
\(432\) 0 0
\(433\) 1.34392 2.32773i 0.0645845 0.111864i −0.831925 0.554888i \(-0.812761\pi\)
0.896510 + 0.443024i \(0.146094\pi\)
\(434\) 0.342441i 0.0164377i
\(435\) 0 0
\(436\) 5.34477 + 3.08580i 0.255968 + 0.147783i
\(437\) 5.78044i 0.276516i
\(438\) 0 0
\(439\) −1.23848 2.14512i −0.0591096 0.102381i 0.834956 0.550316i \(-0.185493\pi\)
−0.894066 + 0.447935i \(0.852159\pi\)
\(440\) −0.142181 + 0.0820885i −0.00677823 + 0.00391341i
\(441\) 0 0
\(442\) 5.13471 + 2.36468i 0.244233 + 0.112476i
\(443\) 17.3774 0.825624 0.412812 0.910816i \(-0.364547\pi\)
0.412812 + 0.910816i \(0.364547\pi\)
\(444\) 0 0
\(445\) 5.18837 + 8.98652i 0.245952 + 0.426002i
\(446\) 11.4097 19.7621i 0.540263 0.935763i
\(447\) 0 0
\(448\) 3.45632 + 1.99551i 0.163296 + 0.0942789i
\(449\) −25.9206 14.9653i −1.22327 0.706255i −0.257655 0.966237i \(-0.582950\pi\)
−0.965613 + 0.259982i \(0.916283\pi\)
\(450\) 0 0
\(451\) 0.709629 1.22911i 0.0334151 0.0578767i
\(452\) −5.63726 9.76403i −0.265155 0.459261i
\(453\) 0 0
\(454\) 3.79246 0.177989
\(455\) −8.30965 11.7480i −0.389562 0.550757i
\(456\) 0 0
\(457\) 9.93255 5.73456i 0.464625 0.268251i −0.249362 0.968410i \(-0.580221\pi\)
0.713987 + 0.700159i \(0.246888\pi\)
\(458\) −2.34883 4.06830i −0.109754 0.190099i
\(459\) 0 0
\(460\) 6.99102i 0.325958i
\(461\) −20.7904 12.0034i −0.968307 0.559052i −0.0695873 0.997576i \(-0.522168\pi\)
−0.898720 + 0.438524i \(0.855502\pi\)
\(462\) 0 0
\(463\) 26.3163i 1.22302i −0.791235 0.611512i \(-0.790562\pi\)
0.791235 0.611512i \(-0.209438\pi\)
\(464\) −2.92163 + 5.06040i −0.135633 + 0.234923i
\(465\) 0 0
\(466\) 25.4397 14.6876i 1.17847 0.680390i
\(467\) 16.2776 0.753236 0.376618 0.926369i \(-0.377087\pi\)
0.376618 + 0.926369i \(0.377087\pi\)
\(468\) 0 0
\(469\) −61.0919 −2.82096
\(470\) 4.60408 2.65817i 0.212371 0.122612i
\(471\) 0 0
\(472\) 1.73205 3.00000i 0.0797241 0.138086i
\(473\) 1.84807i 0.0849742i
\(474\) 0 0
\(475\) 0.716063 + 0.413419i 0.0328552 + 0.0189690i
\(476\) 6.25741i 0.286808i
\(477\) 0 0
\(478\) −2.09588 3.63017i −0.0958632 0.166040i
\(479\) 24.0075 13.8608i 1.09693 0.633314i 0.161519 0.986870i \(-0.448361\pi\)
0.935414 + 0.353556i \(0.115027\pi\)
\(480\) 0 0
\(481\) 2.77003 + 30.0161i 0.126303 + 1.36861i
\(482\) 18.6303 0.848586
\(483\) 0 0
\(484\) 5.48652 + 9.50294i 0.249387 + 0.431952i
\(485\) −9.46004 + 16.3853i −0.429558 + 0.744016i
\(486\) 0 0
\(487\) 21.0182 + 12.1349i 0.952425 + 0.549883i 0.893833 0.448399i \(-0.148006\pi\)
0.0585916 + 0.998282i \(0.481339\pi\)
\(488\) −5.57038 3.21606i −0.252159 0.145584i
\(489\) 0 0
\(490\) −4.46410 + 7.73205i −0.201668 + 0.349298i
\(491\) −5.15117 8.92208i −0.232469 0.402648i 0.726065 0.687626i \(-0.241347\pi\)
−0.958534 + 0.284978i \(0.908014\pi\)
\(492\) 0 0
\(493\) 9.16148 0.412612
\(494\) −1.24704 + 2.70786i −0.0561071 + 0.121832i
\(495\) 0 0
\(496\) 0.0743075 0.0429015i 0.00333650 0.00192633i
\(497\) −11.9730 20.7379i −0.537065 0.930223i
\(498\) 0 0
\(499\) 28.2672i 1.26542i 0.774391 + 0.632708i \(0.218057\pi\)
−0.774391 + 0.632708i \(0.781943\pi\)
\(500\) −0.866025 0.500000i −0.0387298 0.0223607i
\(501\) 0 0
\(502\) 4.56787i 0.203874i
\(503\) 15.3561 26.5976i 0.684697 1.18593i −0.288835 0.957379i \(-0.593268\pi\)
0.973532 0.228551i \(-0.0733987\pi\)
\(504\) 0 0
\(505\) −12.7026 + 7.33384i −0.565258 + 0.326352i
\(506\) 1.14776 0.0510243
\(507\) 0 0
\(508\) 8.12436 0.360460
\(509\) 1.86255 1.07534i 0.0825560 0.0476637i −0.458154 0.888873i \(-0.651489\pi\)
0.540710 + 0.841209i \(0.318156\pi\)
\(510\) 0 0
\(511\) 0.358670 0.621235i 0.0158666 0.0274818i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 1.35971 + 0.785027i 0.0599741 + 0.0346260i
\(515\) 2.26795i 0.0999378i
\(516\) 0 0
\(517\) 0.436410 + 0.755884i 0.0191933 + 0.0332438i
\(518\) 28.8960 16.6831i 1.26962 0.733013i
\(519\) 0 0
\(520\) 1.50821 3.27495i 0.0661392 0.143616i
\(521\) −10.6848 −0.468110 −0.234055 0.972223i \(-0.575200\pi\)
−0.234055 + 0.972223i \(0.575200\pi\)
\(522\) 0 0
\(523\) −3.95601 6.85201i −0.172984 0.299617i 0.766478 0.642271i \(-0.222008\pi\)
−0.939462 + 0.342654i \(0.888674\pi\)
\(524\) −10.4017 + 18.0163i −0.454401 + 0.787046i
\(525\) 0 0
\(526\) −19.9476 11.5167i −0.869755 0.502153i
\(527\) −0.116505 0.0672641i −0.00507503 0.00293007i
\(528\) 0 0
\(529\) −12.9371 + 22.4078i −0.562485 + 0.974252i
\(530\) −5.17688 8.96661i −0.224869 0.389485i
\(531\) 0 0
\(532\) 3.29992 0.143070
\(533\) 2.86425 + 31.0370i 0.124065 + 1.34436i
\(534\) 0 0
\(535\) −4.06830 + 2.34883i −0.175888 + 0.101549i
\(536\) −7.65368 13.2566i −0.330588 0.572596i
\(537\) 0 0
\(538\) 18.4142i 0.793891i
\(539\) −1.26942 0.732902i −0.0546780 0.0315683i
\(540\) 0 0
\(541\) 34.7694i 1.49485i 0.664345 + 0.747426i \(0.268711\pi\)
−0.664345 + 0.747426i \(0.731289\pi\)
\(542\) −4.54092 + 7.86510i −0.195049 + 0.337835i
\(543\) 0 0
\(544\) 1.35782 0.783937i 0.0582160 0.0336110i
\(545\) −6.17161 −0.264363
\(546\) 0 0
\(547\) 8.98506 0.384173 0.192087 0.981378i \(-0.438475\pi\)
0.192087 + 0.981378i \(0.438475\pi\)
\(548\) −4.54796 + 2.62577i −0.194279 + 0.112167i
\(549\) 0 0
\(550\) 0.0820885 0.142181i 0.00350026 0.00606263i
\(551\) 4.83143i 0.205826i
\(552\) 0 0
\(553\) 21.4726 + 12.3972i 0.913109 + 0.527184i
\(554\) 16.8969i 0.717878i
\(555\) 0 0
\(556\) −8.36076 14.4813i −0.354575 0.614142i
\(557\) −26.2342 + 15.1464i −1.11158 + 0.641771i −0.939238 0.343266i \(-0.888467\pi\)
−0.172342 + 0.985037i \(0.555134\pi\)
\(558\) 0 0
\(559\) −23.4371 33.1350i −0.991286 1.40146i
\(560\) −3.99102 −0.168651
\(561\) 0 0
\(562\) 5.25055 + 9.09422i 0.221481 + 0.383616i
\(563\) 1.20514 2.08736i 0.0507905 0.0879717i −0.839512 0.543341i \(-0.817159\pi\)
0.890303 + 0.455369i \(0.150493\pi\)
\(564\) 0 0
\(565\) 9.76403 + 5.63726i 0.410776 + 0.237161i
\(566\) 4.96717 + 2.86780i 0.208786 + 0.120543i
\(567\) 0 0
\(568\) 3.00000 5.19615i 0.125877 0.218026i
\(569\) 2.18565 + 3.78566i 0.0916273 + 0.158703i 0.908196 0.418545i \(-0.137460\pi\)
−0.816569 + 0.577248i \(0.804126\pi\)
\(570\) 0 0
\(571\) −19.0050 −0.795335 −0.397668 0.917530i \(-0.630180\pi\)
−0.397668 + 0.917530i \(0.630180\pi\)
\(572\) 0.537672 + 0.247613i 0.0224812 + 0.0103532i
\(573\) 0 0
\(574\) 29.8788 17.2505i 1.24712 0.720024i
\(575\) 3.49551 + 6.05440i 0.145773 + 0.252486i
\(576\) 0 0
\(577\) 13.0620i 0.543777i 0.962329 + 0.271888i \(0.0876481\pi\)
−0.962329 + 0.271888i \(0.912352\pi\)
\(578\) 12.5935 + 7.27089i 0.523822 + 0.302429i
\(579\) 0 0
\(580\) 5.84325i 0.242628i
\(581\) −2.47347 + 4.28418i −0.102617 + 0.177738i
\(582\) 0 0
\(583\) 1.47211 0.849924i 0.0609686 0.0352002i
\(584\) 0.179739 0.00743765
\(585\) 0 0
\(586\) 17.9332 0.740815
\(587\) −24.2844 + 14.0206i −1.00232 + 0.578691i −0.908935 0.416938i \(-0.863103\pi\)
−0.0933882 + 0.995630i \(0.529770\pi\)
\(588\) 0 0
\(589\) 0.0354726 0.0614403i 0.00146162 0.00253160i
\(590\) 3.46410i 0.142615i
\(591\) 0 0
\(592\) 7.24026 + 4.18016i 0.297573 + 0.171804i
\(593\) 32.1848i 1.32167i −0.750531 0.660835i \(-0.770202\pi\)
0.750531 0.660835i \(-0.229798\pi\)
\(594\) 0 0
\(595\) 3.12870 + 5.41907i 0.128264 + 0.222160i
\(596\) 8.68868 5.01641i 0.355902 0.205480i
\(597\) 0 0
\(598\) −20.5789 + 14.5559i −0.841534 + 0.595236i
\(599\) −13.8415 −0.565550 −0.282775 0.959186i \(-0.591255\pi\)
−0.282775 + 0.959186i \(0.591255\pi\)
\(600\) 0 0
\(601\) −4.06873 7.04724i −0.165967 0.287463i 0.771031 0.636797i \(-0.219741\pi\)
−0.936998 + 0.349334i \(0.886408\pi\)
\(602\) −22.4625 + 38.9063i −0.915505 + 1.58570i
\(603\) 0 0
\(604\) 9.41822 + 5.43761i 0.383222 + 0.221253i
\(605\) −9.50294 5.48652i −0.386349 0.223059i
\(606\) 0 0
\(607\) 22.8555 39.5869i 0.927676 1.60678i 0.140475 0.990084i \(-0.455137\pi\)
0.787201 0.616697i \(-0.211530\pi\)
\(608\) 0.413419 + 0.716063i 0.0167664 + 0.0290402i
\(609\) 0 0
\(610\) 6.43213 0.260429
\(611\) −17.4108 8.01814i −0.704364 0.324379i
\(612\) 0 0
\(613\) −33.1743 + 19.1532i −1.33990 + 0.773591i −0.986792 0.161992i \(-0.948208\pi\)
−0.353107 + 0.935583i \(0.614875\pi\)
\(614\) −13.3693 23.1563i −0.539542 0.934513i
\(615\) 0 0
\(616\) 0.655233i 0.0264001i
\(617\) −4.67667 2.70008i −0.188276 0.108701i 0.402899 0.915244i \(-0.368002\pi\)
−0.591175 + 0.806543i \(0.701336\pi\)
\(618\) 0 0
\(619\) 20.2758i 0.814954i 0.913216 + 0.407477i \(0.133591\pi\)
−0.913216 + 0.407477i \(0.866409\pi\)
\(620\) −0.0429015 + 0.0743075i −0.00172296 + 0.00298426i
\(621\) 0 0
\(622\) −22.0683 + 12.7411i −0.884858 + 0.510873i
\(623\) −41.4137 −1.65921
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −7.52388 + 4.34392i −0.300715 + 0.173618i
\(627\) 0 0
\(628\) −8.84611 + 15.3219i −0.352998 + 0.611411i
\(629\) 13.1079i 0.522648i
\(630\) 0 0
\(631\) −22.1700 12.7999i −0.882576 0.509555i −0.0110689 0.999939i \(-0.503523\pi\)
−0.871507 + 0.490383i \(0.836857\pi\)
\(632\) 6.21257i 0.247123i
\(633\) 0 0
\(634\) −17.7211 30.6938i −0.703794 1.21901i
\(635\) −7.03590 + 4.06218i −0.279211 + 0.161203i
\(636\) 0 0
\(637\) 32.0549 2.95819i 1.27006 0.117208i
\(638\) 0.959327 0.0379801
\(639\) 0 0
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) −0.738951 + 1.27990i −0.0291868 + 0.0505530i −0.880250 0.474510i \(-0.842625\pi\)
0.851063 + 0.525063i \(0.175958\pi\)
\(642\) 0 0
\(643\) −35.7724 20.6532i −1.41073 0.814483i −0.415269 0.909698i \(-0.636313\pi\)
−0.995457 + 0.0952153i \(0.969646\pi\)
\(644\) 24.1632 + 13.9506i 0.952163 + 0.549732i
\(645\) 0 0
\(646\) 0.648189 1.12270i 0.0255027 0.0441719i
\(647\) −8.96379 15.5257i −0.352403 0.610380i 0.634267 0.773114i \(-0.281302\pi\)
−0.986670 + 0.162734i \(0.947969\pi\)
\(648\) 0 0
\(649\) −0.568726 −0.0223244
\(650\) 0.331331 + 3.59030i 0.0129959 + 0.140823i
\(651\) 0 0
\(652\) −1.22207 + 0.705563i −0.0478600 + 0.0276320i
\(653\) 13.9229 + 24.1152i 0.544846 + 0.943702i 0.998617 + 0.0525830i \(0.0167454\pi\)
−0.453770 + 0.891119i \(0.649921\pi\)
\(654\) 0 0
\(655\) 20.8034i 0.812857i
\(656\) 7.48652 + 4.32235i 0.292300 + 0.168759i
\(657\) 0 0
\(658\) 21.2176i 0.827148i
\(659\) 7.42915 12.8677i 0.289399 0.501253i −0.684268 0.729231i \(-0.739878\pi\)
0.973666 + 0.227978i \(0.0732114\pi\)
\(660\) 0 0
\(661\) 19.5210 11.2705i 0.759279 0.438370i −0.0697577 0.997564i \(-0.522223\pi\)
0.829037 + 0.559194i \(0.188889\pi\)
\(662\) −1.96717 −0.0764563
\(663\) 0 0
\(664\) −1.23952 −0.0481027
\(665\) −2.85782 + 1.64996i −0.110821 + 0.0639828i
\(666\) 0 0
\(667\) −20.4251 + 35.3774i −0.790864 + 1.36982i
\(668\) 0.704473i 0.0272569i
\(669\) 0 0
\(670\) 13.2566 + 7.65368i 0.512145 + 0.295687i
\(671\) 1.05601i 0.0407667i
\(672\) 0 0
\(673\) 13.1200 + 22.7244i 0.505737 + 0.875963i 0.999978 + 0.00663747i \(0.00211279\pi\)
−0.494241 + 0.869325i \(0.664554\pi\)
\(674\) −28.1242 + 16.2375i −1.08330 + 0.625445i
\(675\) 0 0
\(676\) −12.7804 + 2.37915i −0.491555 + 0.0915058i
\(677\) −13.6685 −0.525324 −0.262662 0.964888i \(-0.584600\pi\)
−0.262662 + 0.964888i \(0.584600\pi\)
\(678\) 0 0
\(679\) −37.7551 65.3938i −1.44891 2.50958i
\(680\) −0.783937 + 1.35782i −0.0300626 + 0.0520700i
\(681\) 0 0
\(682\) −0.0121996 0.00704343i −0.000467146 0.000269707i
\(683\) −3.98506 2.30078i −0.152484 0.0880368i 0.421817 0.906681i \(-0.361393\pi\)
−0.574301 + 0.818644i \(0.694726\pi\)
\(684\) 0 0
\(685\) 2.62577 4.54796i 0.100325 0.173769i
\(686\) −3.84774 6.66449i −0.146908 0.254451i
\(687\) 0 0
\(688\) −11.2566 −0.429152
\(689\) −15.6156 + 33.9080i −0.594907 + 1.29179i
\(690\) 0 0
\(691\) 26.1212 15.0811i 0.993699 0.573712i 0.0873208 0.996180i \(-0.472169\pi\)
0.906378 + 0.422468i \(0.138836\pi\)
\(692\) 0.327616 + 0.567448i 0.0124541 + 0.0215711i
\(693\) 0 0
\(694\) 10.3842i 0.394178i
\(695\) 14.4813 + 8.36076i 0.549305 + 0.317142i
\(696\) 0 0
\(697\) 13.5538i 0.513386i
\(698\) 14.1995 24.5943i 0.537460 0.930907i
\(699\) 0 0
\(700\) 3.45632 1.99551i 0.130637 0.0754231i
\(701\) 29.3752 1.10949 0.554743 0.832022i \(-0.312817\pi\)
0.554743 + 0.832022i \(0.312817\pi\)
\(702\) 0 0
\(703\) 6.91264 0.260715
\(704\) 0.142181 0.0820885i 0.00535866 0.00309383i
\(705\) 0 0
\(706\) 4.70173 8.14364i 0.176952 0.306490i
\(707\) 58.5389i 2.20158i
\(708\) 0 0
\(709\) −13.9540 8.05634i −0.524053 0.302562i 0.214538 0.976716i \(-0.431175\pi\)
−0.738591 + 0.674153i \(0.764509\pi\)
\(710\) 6.00000i 0.225176i
\(711\) 0 0
\(712\) −5.18837 8.98652i −0.194442 0.336784i
\(713\) 0.519485 0.299925i 0.0194549 0.0112323i
\(714\) 0 0
\(715\) −0.589444 + 0.0543969i −0.0220439 + 0.00203433i
\(716\) −7.41331 −0.277048
\(717\) 0 0
\(718\) 12.1244 + 21.0000i 0.452477 + 0.783713i
\(719\) 11.3238 19.6133i 0.422305 0.731454i −0.573859 0.818954i \(-0.694554\pi\)
0.996165 + 0.0874998i \(0.0278877\pi\)
\(720\) 0 0
\(721\) 7.83876 + 4.52571i 0.291931 + 0.168546i
\(722\) −15.8624 9.15817i −0.590338 0.340832i
\(723\) 0 0
\(724\) −0.248039 + 0.429615i −0.00921828 + 0.0159665i
\(725\) 2.92163 + 5.06040i 0.108506 + 0.187939i
\(726\) 0 0
\(727\) −4.36795 −0.161998 −0.0809991 0.996714i \(-0.525811\pi\)
−0.0809991 + 0.996714i \(0.525811\pi\)
\(728\) 8.30965 + 11.7480i 0.307976 + 0.435411i
\(729\) 0 0
\(730\) −0.155658 + 0.0898694i −0.00576118 + 0.00332622i
\(731\) 8.82443 + 15.2844i 0.326383 + 0.565313i
\(732\) 0 0
\(733\) 6.50392i 0.240228i 0.992760 + 0.120114i \(0.0383260\pi\)
−0.992760 + 0.120114i \(0.961674\pi\)
\(734\) −26.5089 15.3049i −0.978463 0.564916i
\(735\) 0 0
\(736\) 6.99102i 0.257692i
\(737\) −1.25656 + 2.17642i −0.0462859 + 0.0801695i
\(738\) 0 0
\(739\) −1.89078 + 1.09164i −0.0695535 + 0.0401567i −0.534373 0.845249i \(-0.679452\pi\)
0.464820 + 0.885405i \(0.346119\pi\)
\(740\) −8.36033 −0.307332
\(741\) 0 0
\(742\) 41.3220 1.51698
\(743\) −8.64371 + 4.99045i −0.317107 + 0.183082i −0.650102 0.759847i \(-0.725274\pi\)
0.332995 + 0.942928i \(0.391941\pi\)
\(744\) 0 0
\(745\) −5.01641 + 8.68868i −0.183787 + 0.318329i
\(746\) 23.3533i 0.855026i
\(747\) 0 0
\(748\) −0.222922 0.128704i −0.00815085 0.00470590i
\(749\) 18.7485i 0.685054i
\(750\) 0 0
\(751\) 7.82026 + 13.5451i 0.285365 + 0.494267i 0.972698 0.232076i \(-0.0745517\pi\)
−0.687332 + 0.726343i \(0.741218\pi\)
\(752\) −4.60408 + 2.65817i −0.167894 + 0.0969335i
\(753\) 0 0
\(754\) −17.2003 + 12.1662i −0.626399 + 0.443066i
\(755\) −10.8752 −0.395790
\(756\) 0 0
\(757\) −2.76476 4.78871i −0.100487 0.174049i 0.811398 0.584494i \(-0.198707\pi\)
−0.911885 + 0.410445i \(0.865373\pi\)
\(758\) −8.66397 + 15.0064i −0.314690 + 0.545058i
\(759\) 0 0
\(760\) −0.716063 0.413419i −0.0259743 0.0149963i
\(761\) 33.3086 + 19.2308i 1.20744 + 0.697114i 0.962199 0.272349i \(-0.0878004\pi\)
0.245239 + 0.969463i \(0.421134\pi\)
\(762\) 0 0
\(763\) 12.3155 21.3310i 0.445851 0.772236i
\(764\) −12.3972 21.4726i −0.448516 0.776852i
\(765\) 0 0
\(766\) −18.7655 −0.678025
\(767\) 10.1970 7.21257i 0.368192 0.260431i
\(768\) 0 0
\(769\) −9.77174 + 5.64172i −0.352378 + 0.203445i −0.665732 0.746191i \(-0.731881\pi\)
0.313354 + 0.949636i \(0.398547\pi\)
\(770\) 0.327616 + 0.567448i 0.0118065 + 0.0204494i
\(771\) 0 0
\(772\) 3.86122i 0.138968i
\(773\) −7.84674 4.53032i −0.282228 0.162944i 0.352204 0.935923i \(-0.385432\pi\)
−0.634431 + 0.772979i \(0.718766\pi\)
\(774\) 0 0
\(775\) 0.0858029i 0.00308213i
\(776\) 9.46004 16.3853i 0.339595 0.588197i
\(777\) 0 0
\(778\) −6.18310 + 3.56982i −0.221675 + 0.127984i
\(779\) 7.14776 0.256095
\(780\) 0 0
\(781\) −0.985062 −0.0352483
\(782\) 9.49253 5.48052i 0.339452 0.195983i
\(783\) 0 0
\(784\) 4.46410 7.73205i 0.159432 0.276145i
\(785\) 17.6922i 0.631463i
\(786\) 0 0
\(787\) 1.60236 + 0.925123i 0.0571180 + 0.0329771i 0.528287 0.849066i \(-0.322835\pi\)
−0.471169 + 0.882043i \(0.656168\pi\)
\(788\) 5.71564i 0.203611i
\(789\) 0 0
\(790\) −3.10628 5.38024i −0.110517 0.191420i
\(791\) −38.9684 + 22.4984i −1.38556 + 0.799951i
\(792\) 0 0
\(793\) −13.3923 18.9337i −0.475573 0.672357i
\(794\) 2.09479 0.0743412
\(795\) 0 0
\(796\) 0.567874 + 0.983586i 0.0201278 + 0.0348623i
\(797\) 2.32892 4.03381i 0.0824947 0.142885i −0.821826 0.569738i \(-0.807045\pi\)
0.904321 + 0.426853i \(0.140378\pi\)
\(798\) 0 0
\(799\) 7.21862 + 4.16767i 0.255377 + 0.147442i
\(800\) 0.866025 + 0.500000i 0.0306186 + 0.0176777i
\(801\) 0 0
\(802\) −12.5921 + 21.8101i −0.444641 + 0.770141i
\(803\) −0.0147545 0.0255555i −0.000520674 0.000901835i
\(804\) 0 0
\(805\) −27.9012 −0.983390
\(806\) 0.308058 0.0284291i 0.0108509 0.00100137i
\(807\) 0 0
\(808\) 12.7026 7.33384i 0.446875 0.258004i
\(809\) −17.7431 30.7319i −0.623813 1.08048i −0.988769 0.149452i \(-0.952249\pi\)
0.364956 0.931025i \(-0.381084\pi\)
\(810\) 0 0
\(811\) 38.5309i 1.35300i 0.736442 + 0.676501i \(0.236504\pi\)
−0.736442 + 0.676501i \(0.763496\pi\)
\(812\) 20.1962 + 11.6603i 0.708746 + 0.409195i
\(813\) 0 0
\(814\) 1.37257i 0.0481087i
\(815\) 0.705563 1.22207i 0.0247148 0.0428073i
\(816\) 0 0
\(817\) −8.06040 + 4.65368i −0.281998 + 0.162812i
\(818\) 9.67405 0.338245
\(819\) 0 0
\(820\) −8.64469 −0.301886
\(821\) 19.7784 11.4191i 0.690272 0.398528i −0.113442 0.993545i \(-0.536188\pi\)
0.803714 + 0.595016i \(0.202854\pi\)
\(822\) 0 0
\(823\) −1.59722 + 2.76647i −0.0556757 + 0.0964332i −0.892520 0.451008i \(-0.851065\pi\)
0.836844 + 0.547441i \(0.184398\pi\)
\(824\) 2.26795i 0.0790078i
\(825\) 0 0
\(826\) −11.9730 6.91264i −0.416596 0.240522i
\(827\) 17.5779i 0.611244i −0.952153 0.305622i \(-0.901136\pi\)
0.952153 0.305622i \(-0.0988644\pi\)
\(828\) 0 0
\(829\) 10.9566 + 18.9774i 0.380540 + 0.659114i 0.991139 0.132825i \(-0.0424050\pi\)
−0.610600 + 0.791939i \(0.709072\pi\)
\(830\) 1.07346 0.619760i 0.0372602 0.0215122i
\(831\) 0 0
\(832\) −1.50821 + 3.27495i −0.0522877 + 0.113539i
\(833\) −13.9983 −0.485012
\(834\) 0 0
\(835\) −0.352237 0.610092i −0.0121897 0.0211131i
\(836\) 0.0678739 0.117561i 0.00234747 0.00406593i
\(837\) 0 0
\(838\) 8.09507 + 4.67369i 0.279640 + 0.161450i
\(839\) 28.9265 + 16.7007i 0.998655 + 0.576574i 0.907850 0.419295i \(-0.137723\pi\)
0.0908051 + 0.995869i \(0.471056\pi\)
\(840\) 0 0
\(841\) −2.57180 + 4.45448i −0.0886826 + 0.153603i
\(842\) −12.7621 22.1047i −0.439812 0.761777i
\(843\) 0 0
\(844\) 16.7095 0.575165
\(845\) 9.87861 8.45062i 0.339835 0.290710i
\(846\) 0 0
\(847\) 37.9264 21.8968i 1.30317 0.752383i
\(848\) 5.17688 + 8.96661i 0.177775 + 0.307915i
\(849\) 0 0
\(850\) 1.56787i 0.0537776i
\(851\) 50.6168 + 29.2236i 1.73512 + 1.00177i
\(852\) 0 0
\(853\) 35.3037i 1.20877i 0.796691 + 0.604387i \(0.206582\pi\)
−0.796691 + 0.604387i \(0.793418\pi\)
\(854\) −12.8354 + 22.2315i −0.439217 + 0.760746i
\(855\) 0 0
\(856\) 4.06830 2.34883i 0.139052 0.0802815i
\(857\) 52.7645 1.80240 0.901200 0.433404i \(-0.142688\pi\)
0.901200 + 0.433404i \(0.142688\pi\)
\(858\) 0 0
\(859\) 34.2305 1.16793 0.583964 0.811780i \(-0.301501\pi\)
0.583964 + 0.811780i \(0.301501\pi\)
\(860\) 9.74846 5.62828i 0.332420 0.191923i
\(861\) 0 0
\(862\) 2.05189 3.55397i 0.0698875 0.121049i
\(863\) 3.33252i 0.113440i −0.998390 0.0567202i \(-0.981936\pi\)
0.998390 0.0567202i \(-0.0180643\pi\)
\(864\) 0 0
\(865\) −0.567448 0.327616i −0.0192938 0.0111393i
\(866\) 2.68783i 0.0913362i
\(867\) 0 0
\(868\) −0.171220 0.296562i −0.00581160 0.0100660i
\(869\) 0.883311 0.509980i 0.0299643 0.0172999i
\(870\) 0 0
\(871\) −5.07180 54.9579i −0.171851 1.86218i
\(872\) 6.17161 0.208997
\(873\) 0 0
\(874\) 2.89022 + 5.00601i 0.0977631 + 0.169331i
\(875\) −1.99551 + 3.45632i −0.0674605 + 0.116845i
\(876\) 0 0
\(877\) −14.4702 8.35438i −0.488624 0.282107i 0.235379 0.971904i \(-0.424367\pi\)
−0.724003 + 0.689796i \(0.757700\pi\)
\(878\) −2.14512 1.23848i −0.0723942 0.0417968i
\(879\) 0 0
\(880\) −0.0820885 + 0.142181i −0.00276720 + 0.00479293i
\(881\) −11.1797 19.3638i −0.376654 0.652383i 0.613919 0.789369i \(-0.289592\pi\)
−0.990573 + 0.136985i \(0.956259\pi\)
\(882\) 0 0
\(883\) −13.9499 −0.469450 −0.234725 0.972062i \(-0.575419\pi\)
−0.234725 + 0.972062i \(0.575419\pi\)
\(884\) 5.62913 0.519485i 0.189328 0.0174722i
\(885\) 0 0
\(886\) 15.0492 8.68868i 0.505589 0.291902i
\(887\) −1.88845 3.27089i −0.0634078 0.109826i 0.832579 0.553907i \(-0.186864\pi\)
−0.895987 + 0.444081i \(0.853530\pi\)
\(888\) 0 0
\(889\) 32.4244i 1.08748i
\(890\) 8.98652 + 5.18837i 0.301229 + 0.173915i
\(891\) 0 0
\(892\) 22.8193i 0.764048i
\(893\) −2.19788 + 3.80683i −0.0735491 + 0.127391i
\(894\) 0 0
\(895\) 6.42011 3.70665i 0.214601 0.123900i
\(896\) 3.99102 0.133330
\(897\) 0 0
\(898\) −29.9305 −0.998795
\(899\) 0.434197 0.250684i 0.0144813 0.00836078i
\(900\) 0 0
\(901\) 8.11669 14.0585i 0.270406 0.468357i
\(902\) 1.41926i 0.0472562i
\(903\) 0 0
\(904\) −9.76403 5.63726i −0.324747 0.187493i
\(905\) 0.496077i 0.0164902i
\(906\) 0 0
\(907\) 1.19449 + 2.06892i 0.0396625 + 0.0686975i 0.885175 0.465258i \(-0.154038\pi\)
−0.845513 + 0.533955i \(0.820705\pi\)
\(908\) 3.28436 1.89623i 0.108995 0.0629285i
\(909\) 0 0
\(910\) −13.0704 6.01928i −0.433279 0.199537i
\(911\) −53.5178 −1.77313 −0.886563 0.462608i \(-0.846914\pi\)
−0.886563 + 0.462608i \(0.846914\pi\)
\(912\) 0 0
\(913\) 0.101750 + 0.176237i 0.00336744 + 0.00583258i
\(914\) 5.73456 9.93255i 0.189682 0.328540i
\(915\) 0 0
\(916\) −4.06830 2.34883i −0.134420 0.0776077i
\(917\) 71.9033 + 41.5134i 2.37446 + 1.37089i
\(918\) 0 0
\(919\) −12.8564 + 22.2679i −0.424094 + 0.734552i −0.996335 0.0855332i \(-0.972741\pi\)
0.572242 + 0.820085i \(0.306074\pi\)
\(920\) −3.49551 6.05440i −0.115243 0.199608i
\(921\) 0 0
\(922\) −24.0067 −0.790619
\(923\) 17.6617 12.4925i 0.581343 0.411197i
\(924\) 0 0
\(925\) 7.24026 4.18016i 0.238058 0.137443i
\(926\) −13.1582 22.7906i −0.432404 0.748946i
\(927\) 0 0
\(928\) 5.84325i 0.191814i
\(929\) −5.43127 3.13575i −0.178194 0.102881i 0.408250 0.912870i \(-0.366139\pi\)
−0.586444 + 0.809990i \(0.699473\pi\)
\(930\) 0 0
\(931\) 7.38218i 0.241941i
\(932\) 14.6876 25.4397i 0.481108 0.833304i
\(933\) 0 0
\(934\) 14.0968 8.13878i 0.461261 0.266309i
\(935\) 0.257409 0.00841816
\(936\) 0 0
\(937\) −20.7863 −0.679059 −0.339530 0.940595i \(-0.610268\pi\)
−0.339530 + 0.940595i \(0.610268\pi\)
\(938\) −52.9071 + 30.5459i −1.72748 + 0.997360i
\(939\) 0 0
\(940\) 2.65817 4.60408i 0.0866999 0.150169i
\(941\) 13.2566i 0.432151i −0.976377 0.216076i \(-0.930674\pi\)
0.976377 0.216076i \(-0.0693258\pi\)
\(942\) 0 0
\(943\) 52.3384 + 30.2176i 1.70437 + 0.984020i
\(944\) 3.46410i 0.112747i
\(945\) 0 0
\(946\) 0.924033 + 1.60047i 0.0300429 + 0.0520359i
\(947\) −14.2379 + 8.22023i −0.462668 + 0.267122i −0.713166 0.700996i \(-0.752739\pi\)
0.250497 + 0.968117i \(0.419406\pi\)
\(948\) 0 0
\(949\) 0.588636 + 0.271083i 0.0191079 + 0.00879974i
\(950\) 0.826838 0.0268262
\(951\) 0 0
\(952\) −3.12870 5.41907i −0.101402 0.175633i
\(953\) −13.9047 + 24.0837i −0.450419 + 0.780148i −0.998412 0.0563345i \(-0.982059\pi\)
0.547993 + 0.836483i \(0.315392\pi\)
\(954\) 0 0
\(955\) 21.4726 + 12.3972i 0.694838 + 0.401165i
\(956\) −3.63017 2.09588i −0.117408 0.0677855i
\(957\) 0 0
\(958\) 13.8608 24.0075i 0.447821 0.775648i
\(959\) 10.4795 + 18.1510i 0.338400 + 0.586126i
\(960\) 0 0
\(961\) 30.9926 0.999763
\(962\) 17.4069 + 24.6096i 0.561222 + 0.793447i
\(963\) 0 0
\(964\) 16.1343 9.31513i 0.519650 0.300020i
\(965\) 1.93061 + 3.34392i 0.0621486 + 0.107644i
\(966\) 0 0
\(967\) 2.34329i 0.0753552i 0.999290 + 0.0376776i \(0.0119960\pi\)
−0.999290 + 0.0376776i \(0.988004\pi\)
\(968\) 9.50294 + 5.48652i 0.305436 + 0.176344i
\(969\) 0 0
\(970\) 18.9201i 0.607487i
\(971\) 1.85867 3.21931i 0.0596476 0.103313i −0.834660 0.550766i \(-0.814336\pi\)
0.894307 + 0.447453i \(0.147669\pi\)
\(972\) 0 0
\(973\) −57.7949 + 33.3679i −1.85282 + 1.06973i
\(974\) 24.2697 0.777652
\(975\) 0 0
\(976\) −6.43213 −0.205887
\(977\) 16.6990 9.64115i 0.534247 0.308448i −0.208497 0.978023i \(-0.566857\pi\)
0.742744 + 0.669575i \(0.233524\pi\)
\(978\) 0 0
\(979\) −0.851811 + 1.47538i −0.0272240 + 0.0471533i
\(980\) 8.92820i 0.285201i
\(981\) 0 0
\(982\) −8.92208 5.15117i −0.284715 0.164380i
\(983\) 12.6837i 0.404546i −0.979329 0.202273i \(-0.935167\pi\)
0.979329 0.202273i \(-0.0648328\pi\)
\(984\) 0 0
\(985\) −2.85782 4.94989i −0.0910577 0.157717i
\(986\) 7.93408 4.58074i 0.252672 0.145881i
\(987\) 0 0
\(988\) 0.273957 + 2.96859i 0.00871573 + 0.0944436i
\(989\) −78.6948 −2.50235
\(990\) 0 0
\(991\) −22.2900 38.6074i −0.708065 1.22641i −0.965574 0.260129i \(-0.916235\pi\)
0.257508 0.966276i \(-0.417099\pi\)
\(992\) 0.0429015 0.0743075i 0.00136212 0.00235927i
\(993\) 0 0
\(994\) −20.7379 11.9730i −0.657767 0.379762i
\(995\) −0.983586 0.567874i −0.0311818 0.0180028i
\(996\) 0 0
\(997\) 6.20142 10.7412i 0.196401 0.340177i −0.750958 0.660350i \(-0.770408\pi\)
0.947359 + 0.320174i \(0.103741\pi\)
\(998\) 14.1336 + 24.4802i 0.447392 + 0.774906i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bs.g.361.3 8
3.2 odd 2 130.2.l.b.101.1 8
12.11 even 2 1040.2.da.d.881.3 8
13.4 even 6 inner 1170.2.bs.g.901.3 8
15.2 even 4 650.2.n.d.49.1 8
15.8 even 4 650.2.n.e.49.4 8
15.14 odd 2 650.2.m.c.101.4 8
39.2 even 12 1690.2.a.t.1.3 4
39.5 even 4 1690.2.e.t.991.2 8
39.8 even 4 1690.2.e.s.991.2 8
39.11 even 12 1690.2.a.u.1.3 4
39.17 odd 6 130.2.l.b.121.1 yes 8
39.20 even 12 1690.2.e.s.191.2 8
39.23 odd 6 1690.2.d.k.1351.7 8
39.29 odd 6 1690.2.d.k.1351.3 8
39.32 even 12 1690.2.e.t.191.2 8
39.35 odd 6 1690.2.l.j.1161.3 8
39.38 odd 2 1690.2.l.j.361.3 8
156.95 even 6 1040.2.da.d.641.3 8
195.17 even 12 650.2.n.e.199.4 8
195.89 even 12 8450.2.a.ci.1.2 4
195.119 even 12 8450.2.a.cm.1.2 4
195.134 odd 6 650.2.m.c.251.4 8
195.173 even 12 650.2.n.d.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.l.b.101.1 8 3.2 odd 2
130.2.l.b.121.1 yes 8 39.17 odd 6
650.2.m.c.101.4 8 15.14 odd 2
650.2.m.c.251.4 8 195.134 odd 6
650.2.n.d.49.1 8 15.2 even 4
650.2.n.d.199.1 8 195.173 even 12
650.2.n.e.49.4 8 15.8 even 4
650.2.n.e.199.4 8 195.17 even 12
1040.2.da.d.641.3 8 156.95 even 6
1040.2.da.d.881.3 8 12.11 even 2
1170.2.bs.g.361.3 8 1.1 even 1 trivial
1170.2.bs.g.901.3 8 13.4 even 6 inner
1690.2.a.t.1.3 4 39.2 even 12
1690.2.a.u.1.3 4 39.11 even 12
1690.2.d.k.1351.3 8 39.29 odd 6
1690.2.d.k.1351.7 8 39.23 odd 6
1690.2.e.s.191.2 8 39.20 even 12
1690.2.e.s.991.2 8 39.8 even 4
1690.2.e.t.191.2 8 39.32 even 12
1690.2.e.t.991.2 8 39.5 even 4
1690.2.l.j.361.3 8 39.38 odd 2
1690.2.l.j.1161.3 8 39.35 odd 6
8450.2.a.ci.1.2 4 195.89 even 12
8450.2.a.cm.1.2 4 195.119 even 12