Properties

Label 1690.2.c.h.1689.1
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,18,0,18,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.1
Root \(2.39737i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.h.1689.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -3.41573i q^{3} +1.00000 q^{4} +(-1.70807 - 1.44308i) q^{5} -3.41573i q^{6} +0.459770 q^{7} +1.00000 q^{8} -8.66724 q^{9} +(-1.70807 - 1.44308i) q^{10} -2.03092i q^{11} -3.41573i q^{12} +0.459770 q^{14} +(-4.92918 + 5.83433i) q^{15} +1.00000 q^{16} -5.39187i q^{17} -8.66724 q^{18} +3.30639i q^{19} +(-1.70807 - 1.44308i) q^{20} -1.57045i q^{21} -2.03092i q^{22} -4.15544i q^{23} -3.41573i q^{24} +(0.835031 + 4.92978i) q^{25} +19.3578i q^{27} +0.459770 q^{28} -6.05566 q^{29} +(-4.92918 + 5.83433i) q^{30} +6.52262i q^{31} +1.00000 q^{32} -6.93709 q^{33} -5.39187i q^{34} +(-0.785321 - 0.663485i) q^{35} -8.66724 q^{36} +8.07307 q^{37} +3.30639i q^{38} +(-1.70807 - 1.44308i) q^{40} -4.14511i q^{41} -1.57045i q^{42} +1.26725i q^{43} -2.03092i q^{44} +(14.8043 + 12.5075i) q^{45} -4.15544i q^{46} +1.29310 q^{47} -3.41573i q^{48} -6.78861 q^{49} +(0.835031 + 4.92978i) q^{50} -18.4172 q^{51} -5.78588i q^{53} +19.3578i q^{54} +(-2.93078 + 3.46896i) q^{55} +0.459770 q^{56} +11.2937 q^{57} -6.05566 q^{58} -6.77070i q^{59} +(-4.92918 + 5.83433i) q^{60} -5.98450 q^{61} +6.52262i q^{62} -3.98494 q^{63} +1.00000 q^{64} -6.93709 q^{66} +8.41427 q^{67} -5.39187i q^{68} -14.1939 q^{69} +(-0.785321 - 0.663485i) q^{70} -1.47782i q^{71} -8.66724 q^{72} +8.05573 q^{73} +8.07307 q^{74} +(16.8388 - 2.85224i) q^{75} +3.30639i q^{76} -0.933756i q^{77} +1.68287 q^{79} +(-1.70807 - 1.44308i) q^{80} +40.1194 q^{81} -4.14511i q^{82} -9.99259 q^{83} -1.57045i q^{84} +(-7.78090 + 9.20971i) q^{85} +1.26725i q^{86} +20.6845i q^{87} -2.03092i q^{88} +3.93934i q^{89} +(14.8043 + 12.5075i) q^{90} -4.15544i q^{92} +22.2796 q^{93} +1.29310 q^{94} +(4.77139 - 5.64755i) q^{95} -3.41573i q^{96} -7.05844 q^{97} -6.78861 q^{98} +17.6025i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 18 q^{2} + 18 q^{4} - 2 q^{5} - 2 q^{7} + 18 q^{8} - 16 q^{9} - 2 q^{10} - 2 q^{14} + 14 q^{15} + 18 q^{16} - 16 q^{18} - 2 q^{20} - 22 q^{25} - 2 q^{28} - 30 q^{29} + 14 q^{30} + 18 q^{32} - 28 q^{33}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.41573i 1.97208i −0.166522 0.986038i \(-0.553254\pi\)
0.166522 0.986038i \(-0.446746\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.70807 1.44308i −0.763874 0.645366i
\(6\) 3.41573i 1.39447i
\(7\) 0.459770 0.173777 0.0868883 0.996218i \(-0.472308\pi\)
0.0868883 + 0.996218i \(0.472308\pi\)
\(8\) 1.00000 0.353553
\(9\) −8.66724 −2.88908
\(10\) −1.70807 1.44308i −0.540140 0.456342i
\(11\) 2.03092i 0.612346i −0.951976 0.306173i \(-0.900951\pi\)
0.951976 0.306173i \(-0.0990485\pi\)
\(12\) 3.41573i 0.986038i
\(13\) 0 0
\(14\) 0.459770 0.122879
\(15\) −4.92918 + 5.83433i −1.27271 + 1.50642i
\(16\) 1.00000 0.250000
\(17\) 5.39187i 1.30772i −0.756616 0.653860i \(-0.773149\pi\)
0.756616 0.653860i \(-0.226851\pi\)
\(18\) −8.66724 −2.04289
\(19\) 3.30639i 0.758537i 0.925287 + 0.379269i \(0.123824\pi\)
−0.925287 + 0.379269i \(0.876176\pi\)
\(20\) −1.70807 1.44308i −0.381937 0.322683i
\(21\) 1.57045i 0.342701i
\(22\) 2.03092i 0.432994i
\(23\) 4.15544i 0.866468i −0.901281 0.433234i \(-0.857372\pi\)
0.901281 0.433234i \(-0.142628\pi\)
\(24\) 3.41573i 0.697234i
\(25\) 0.835031 + 4.92978i 0.167006 + 0.985956i
\(26\) 0 0
\(27\) 19.3578i 3.72541i
\(28\) 0.459770 0.0868883
\(29\) −6.05566 −1.12451 −0.562254 0.826965i \(-0.690066\pi\)
−0.562254 + 0.826965i \(0.690066\pi\)
\(30\) −4.92918 + 5.83433i −0.899942 + 1.06520i
\(31\) 6.52262i 1.17150i 0.810493 + 0.585749i \(0.199200\pi\)
−0.810493 + 0.585749i \(0.800800\pi\)
\(32\) 1.00000 0.176777
\(33\) −6.93709 −1.20759
\(34\) 5.39187i 0.924698i
\(35\) −0.785321 0.663485i −0.132743 0.112149i
\(36\) −8.66724 −1.44454
\(37\) 8.07307 1.32720 0.663602 0.748086i \(-0.269027\pi\)
0.663602 + 0.748086i \(0.269027\pi\)
\(38\) 3.30639i 0.536367i
\(39\) 0 0
\(40\) −1.70807 1.44308i −0.270070 0.228171i
\(41\) 4.14511i 0.647358i −0.946167 0.323679i \(-0.895080\pi\)
0.946167 0.323679i \(-0.104920\pi\)
\(42\) 1.57045i 0.242326i
\(43\) 1.26725i 0.193253i 0.995321 + 0.0966265i \(0.0308052\pi\)
−0.995321 + 0.0966265i \(0.969195\pi\)
\(44\) 2.03092i 0.306173i
\(45\) 14.8043 + 12.5075i 2.20689 + 1.86451i
\(46\) 4.15544i 0.612686i
\(47\) 1.29310 0.188618 0.0943088 0.995543i \(-0.469936\pi\)
0.0943088 + 0.995543i \(0.469936\pi\)
\(48\) 3.41573i 0.493019i
\(49\) −6.78861 −0.969802
\(50\) 0.835031 + 4.92978i 0.118091 + 0.697176i
\(51\) −18.4172 −2.57892
\(52\) 0 0
\(53\) 5.78588i 0.794751i −0.917656 0.397376i \(-0.869921\pi\)
0.917656 0.397376i \(-0.130079\pi\)
\(54\) 19.3578i 2.63426i
\(55\) −2.93078 + 3.46896i −0.395187 + 0.467755i
\(56\) 0.459770 0.0614393
\(57\) 11.2937 1.49589
\(58\) −6.05566 −0.795147
\(59\) 6.77070i 0.881470i −0.897637 0.440735i \(-0.854718\pi\)
0.897637 0.440735i \(-0.145282\pi\)
\(60\) −4.92918 + 5.83433i −0.636355 + 0.753208i
\(61\) −5.98450 −0.766237 −0.383119 0.923699i \(-0.625150\pi\)
−0.383119 + 0.923699i \(0.625150\pi\)
\(62\) 6.52262i 0.828374i
\(63\) −3.98494 −0.502055
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.93709 −0.853896
\(67\) 8.41427 1.02797 0.513983 0.857800i \(-0.328169\pi\)
0.513983 + 0.857800i \(0.328169\pi\)
\(68\) 5.39187i 0.653860i
\(69\) −14.1939 −1.70874
\(70\) −0.785321 0.663485i −0.0938638 0.0793017i
\(71\) 1.47782i 0.175385i −0.996148 0.0876927i \(-0.972051\pi\)
0.996148 0.0876927i \(-0.0279494\pi\)
\(72\) −8.66724 −1.02144
\(73\) 8.05573 0.942852 0.471426 0.881906i \(-0.343739\pi\)
0.471426 + 0.881906i \(0.343739\pi\)
\(74\) 8.07307 0.938475
\(75\) 16.8388 2.85224i 1.94438 0.329349i
\(76\) 3.30639i 0.379269i
\(77\) 0.933756i 0.106411i
\(78\) 0 0
\(79\) 1.68287 0.189338 0.0946690 0.995509i \(-0.469821\pi\)
0.0946690 + 0.995509i \(0.469821\pi\)
\(80\) −1.70807 1.44308i −0.190968 0.161341i
\(81\) 40.1194 4.45771
\(82\) 4.14511i 0.457751i
\(83\) −9.99259 −1.09683 −0.548415 0.836207i \(-0.684768\pi\)
−0.548415 + 0.836207i \(0.684768\pi\)
\(84\) 1.57045i 0.171350i
\(85\) −7.78090 + 9.20971i −0.843957 + 0.998933i
\(86\) 1.26725i 0.136651i
\(87\) 20.6845i 2.21761i
\(88\) 2.03092i 0.216497i
\(89\) 3.93934i 0.417569i 0.977962 + 0.208785i \(0.0669508\pi\)
−0.977962 + 0.208785i \(0.933049\pi\)
\(90\) 14.8043 + 12.5075i 1.56051 + 1.31841i
\(91\) 0 0
\(92\) 4.15544i 0.433234i
\(93\) 22.2796 2.31028
\(94\) 1.29310 0.133373
\(95\) 4.77139 5.64755i 0.489534 0.579427i
\(96\) 3.41573i 0.348617i
\(97\) −7.05844 −0.716676 −0.358338 0.933592i \(-0.616657\pi\)
−0.358338 + 0.933592i \(0.616657\pi\)
\(98\) −6.78861 −0.685753
\(99\) 17.6025i 1.76912i
\(100\) 0.835031 + 4.92978i 0.0835031 + 0.492978i
\(101\) −2.37044 −0.235868 −0.117934 0.993021i \(-0.537627\pi\)
−0.117934 + 0.993021i \(0.537627\pi\)
\(102\) −18.4172 −1.82357
\(103\) 6.75491i 0.665581i −0.943001 0.332790i \(-0.892010\pi\)
0.943001 0.332790i \(-0.107990\pi\)
\(104\) 0 0
\(105\) −2.26629 + 2.68245i −0.221167 + 0.261780i
\(106\) 5.78588i 0.561974i
\(107\) 0.0114398i 0.00110593i 1.00000 0.000552966i \(0.000176014\pi\)
−1.00000 0.000552966i \(0.999824\pi\)
\(108\) 19.3578i 1.86271i
\(109\) 3.79448i 0.363445i −0.983350 0.181723i \(-0.941833\pi\)
0.983350 0.181723i \(-0.0581673\pi\)
\(110\) −2.93078 + 3.46896i −0.279439 + 0.330753i
\(111\) 27.5755i 2.61735i
\(112\) 0.459770 0.0434442
\(113\) 5.57377i 0.524336i 0.965022 + 0.262168i \(0.0844375\pi\)
−0.965022 + 0.262168i \(0.915562\pi\)
\(114\) 11.2937 1.05776
\(115\) −5.99663 + 7.09779i −0.559189 + 0.661872i
\(116\) −6.05566 −0.562254
\(117\) 0 0
\(118\) 6.77070i 0.623294i
\(119\) 2.47902i 0.227251i
\(120\) −4.92918 + 5.83433i −0.449971 + 0.532599i
\(121\) 6.87536 0.625033
\(122\) −5.98450 −0.541812
\(123\) −14.1586 −1.27664
\(124\) 6.52262i 0.585749i
\(125\) 5.68778 9.62544i 0.508730 0.860926i
\(126\) −3.98494 −0.355006
\(127\) 11.4002i 1.01160i −0.862650 0.505801i \(-0.831197\pi\)
0.862650 0.505801i \(-0.168803\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.32857 0.381110
\(130\) 0 0
\(131\) −14.9906 −1.30974 −0.654869 0.755743i \(-0.727276\pi\)
−0.654869 + 0.755743i \(0.727276\pi\)
\(132\) −6.93709 −0.603796
\(133\) 1.52018i 0.131816i
\(134\) 8.41427 0.726882
\(135\) 27.9349 33.0645i 2.40425 2.84574i
\(136\) 5.39187i 0.462349i
\(137\) 13.6727 1.16814 0.584069 0.811704i \(-0.301460\pi\)
0.584069 + 0.811704i \(0.301460\pi\)
\(138\) −14.1939 −1.20826
\(139\) −11.8128 −1.00195 −0.500976 0.865461i \(-0.667026\pi\)
−0.500976 + 0.865461i \(0.667026\pi\)
\(140\) −0.785321 0.663485i −0.0663717 0.0560747i
\(141\) 4.41688i 0.371968i
\(142\) 1.47782i 0.124016i
\(143\) 0 0
\(144\) −8.66724 −0.722270
\(145\) 10.3435 + 8.73881i 0.858982 + 0.725718i
\(146\) 8.05573 0.666697
\(147\) 23.1881i 1.91252i
\(148\) 8.07307 0.663602
\(149\) 21.3478i 1.74888i 0.485136 + 0.874439i \(0.338770\pi\)
−0.485136 + 0.874439i \(0.661230\pi\)
\(150\) 16.8388 2.85224i 1.37488 0.232885i
\(151\) 22.9456i 1.86729i −0.358203 0.933644i \(-0.616610\pi\)
0.358203 0.933644i \(-0.383390\pi\)
\(152\) 3.30639i 0.268183i
\(153\) 46.7326i 3.77811i
\(154\) 0.933756i 0.0752442i
\(155\) 9.41268 11.1411i 0.756045 0.894876i
\(156\) 0 0
\(157\) 15.2264i 1.21520i −0.794244 0.607599i \(-0.792133\pi\)
0.794244 0.607599i \(-0.207867\pi\)
\(158\) 1.68287 0.133882
\(159\) −19.7630 −1.56731
\(160\) −1.70807 1.44308i −0.135035 0.114086i
\(161\) 1.91054i 0.150572i
\(162\) 40.1194 3.15208
\(163\) −5.47677 −0.428974 −0.214487 0.976727i \(-0.568808\pi\)
−0.214487 + 0.976727i \(0.568808\pi\)
\(164\) 4.14511i 0.323679i
\(165\) 11.8491 + 10.0108i 0.922448 + 0.779338i
\(166\) −9.99259 −0.775575
\(167\) −2.94085 −0.227569 −0.113785 0.993505i \(-0.536297\pi\)
−0.113785 + 0.993505i \(0.536297\pi\)
\(168\) 1.57045i 0.121163i
\(169\) 0 0
\(170\) −7.78090 + 9.20971i −0.596768 + 0.706352i
\(171\) 28.6573i 2.19148i
\(172\) 1.26725i 0.0966265i
\(173\) 3.88650i 0.295485i −0.989026 0.147742i \(-0.952799\pi\)
0.989026 0.147742i \(-0.0472007\pi\)
\(174\) 20.6845i 1.56809i
\(175\) 0.383922 + 2.26656i 0.0290218 + 0.171336i
\(176\) 2.03092i 0.153086i
\(177\) −23.1269 −1.73833
\(178\) 3.93934i 0.295266i
\(179\) 10.3238 0.771636 0.385818 0.922575i \(-0.373919\pi\)
0.385818 + 0.922575i \(0.373919\pi\)
\(180\) 14.8043 + 12.5075i 1.10345 + 0.932257i
\(181\) −3.68088 −0.273598 −0.136799 0.990599i \(-0.543681\pi\)
−0.136799 + 0.990599i \(0.543681\pi\)
\(182\) 0 0
\(183\) 20.4415i 1.51108i
\(184\) 4.15544i 0.306343i
\(185\) −13.7894 11.6501i −1.01382 0.856532i
\(186\) 22.2796 1.63362
\(187\) −10.9505 −0.800777
\(188\) 1.29310 0.0943088
\(189\) 8.90013i 0.647389i
\(190\) 4.77139 5.64755i 0.346153 0.409717i
\(191\) 25.0076 1.80948 0.904742 0.425959i \(-0.140063\pi\)
0.904742 + 0.425959i \(0.140063\pi\)
\(192\) 3.41573i 0.246509i
\(193\) 1.97401 0.142093 0.0710463 0.997473i \(-0.477366\pi\)
0.0710463 + 0.997473i \(0.477366\pi\)
\(194\) −7.05844 −0.506767
\(195\) 0 0
\(196\) −6.78861 −0.484901
\(197\) −17.6446 −1.25712 −0.628562 0.777760i \(-0.716356\pi\)
−0.628562 + 0.777760i \(0.716356\pi\)
\(198\) 17.6025i 1.25095i
\(199\) −16.1718 −1.14639 −0.573193 0.819421i \(-0.694295\pi\)
−0.573193 + 0.819421i \(0.694295\pi\)
\(200\) 0.835031 + 4.92978i 0.0590456 + 0.348588i
\(201\) 28.7409i 2.02723i
\(202\) −2.37044 −0.166784
\(203\) −2.78421 −0.195413
\(204\) −18.4172 −1.28946
\(205\) −5.98173 + 7.08015i −0.417782 + 0.494499i
\(206\) 6.75491i 0.470637i
\(207\) 36.0162i 2.50330i
\(208\) 0 0
\(209\) 6.71501 0.464487
\(210\) −2.26629 + 2.68245i −0.156389 + 0.185106i
\(211\) −13.3757 −0.920819 −0.460410 0.887707i \(-0.652297\pi\)
−0.460410 + 0.887707i \(0.652297\pi\)
\(212\) 5.78588i 0.397376i
\(213\) −5.04785 −0.345873
\(214\) 0.0114398i 0.000782011i
\(215\) 1.82874 2.16455i 0.124719 0.147621i
\(216\) 19.3578i 1.31713i
\(217\) 2.99890i 0.203579i
\(218\) 3.79448i 0.256995i
\(219\) 27.5162i 1.85937i
\(220\) −2.93078 + 3.46896i −0.197593 + 0.233877i
\(221\) 0 0
\(222\) 27.5755i 1.85074i
\(223\) 3.02345 0.202465 0.101233 0.994863i \(-0.467721\pi\)
0.101233 + 0.994863i \(0.467721\pi\)
\(224\) 0.459770 0.0307197
\(225\) −7.23742 42.7276i −0.482494 2.84851i
\(226\) 5.57377i 0.370762i
\(227\) −14.6074 −0.969525 −0.484762 0.874646i \(-0.661094\pi\)
−0.484762 + 0.874646i \(0.661094\pi\)
\(228\) 11.2937 0.747946
\(229\) 14.0176i 0.926308i −0.886278 0.463154i \(-0.846718\pi\)
0.886278 0.463154i \(-0.153282\pi\)
\(230\) −5.99663 + 7.09779i −0.395406 + 0.468014i
\(231\) −3.18946 −0.209851
\(232\) −6.05566 −0.397573
\(233\) 26.5904i 1.74200i −0.491286 0.870998i \(-0.663473\pi\)
0.491286 0.870998i \(-0.336527\pi\)
\(234\) 0 0
\(235\) −2.20870 1.86604i −0.144080 0.121727i
\(236\) 6.77070i 0.440735i
\(237\) 5.74825i 0.373389i
\(238\) 2.47902i 0.160691i
\(239\) 12.3423i 0.798356i −0.916874 0.399178i \(-0.869296\pi\)
0.916874 0.399178i \(-0.130704\pi\)
\(240\) −4.92918 + 5.83433i −0.318177 + 0.376604i
\(241\) 3.79308i 0.244334i 0.992510 + 0.122167i \(0.0389843\pi\)
−0.992510 + 0.122167i \(0.961016\pi\)
\(242\) 6.87536 0.441965
\(243\) 78.9638i 5.06553i
\(244\) −5.98450 −0.383119
\(245\) 11.5954 + 9.79652i 0.740806 + 0.625877i
\(246\) −14.1586 −0.902719
\(247\) 0 0
\(248\) 6.52262i 0.414187i
\(249\) 34.1320i 2.16303i
\(250\) 5.68778 9.62544i 0.359727 0.608767i
\(251\) 0.547631 0.0345662 0.0172831 0.999851i \(-0.494498\pi\)
0.0172831 + 0.999851i \(0.494498\pi\)
\(252\) −3.98494 −0.251027
\(253\) −8.43936 −0.530578
\(254\) 11.4002i 0.715311i
\(255\) 31.4579 + 26.5775i 1.96997 + 1.66435i
\(256\) 1.00000 0.0625000
\(257\) 17.4033i 1.08559i −0.839866 0.542793i \(-0.817367\pi\)
0.839866 0.542793i \(-0.182633\pi\)
\(258\) 4.32857 0.269485
\(259\) 3.71175 0.230637
\(260\) 0 0
\(261\) 52.4859 3.24879
\(262\) −14.9906 −0.926124
\(263\) 11.6459i 0.718114i −0.933316 0.359057i \(-0.883098\pi\)
0.933316 0.359057i \(-0.116902\pi\)
\(264\) −6.93709 −0.426948
\(265\) −8.34949 + 9.88271i −0.512905 + 0.607090i
\(266\) 1.52018i 0.0932080i
\(267\) 13.4557 0.823478
\(268\) 8.41427 0.513983
\(269\) 16.9075 1.03087 0.515434 0.856929i \(-0.327631\pi\)
0.515434 + 0.856929i \(0.327631\pi\)
\(270\) 27.9349 33.0645i 1.70006 2.01224i
\(271\) 9.94128i 0.603889i −0.953325 0.301945i \(-0.902364\pi\)
0.953325 0.301945i \(-0.0976358\pi\)
\(272\) 5.39187i 0.326930i
\(273\) 0 0
\(274\) 13.6727 0.825999
\(275\) 10.0120 1.69588i 0.603746 0.102266i
\(276\) −14.1939 −0.854370
\(277\) 4.24476i 0.255043i 0.991836 + 0.127521i \(0.0407022\pi\)
−0.991836 + 0.127521i \(0.959298\pi\)
\(278\) −11.8128 −0.708487
\(279\) 56.5332i 3.38455i
\(280\) −0.785321 0.663485i −0.0469319 0.0396508i
\(281\) 24.6567i 1.47090i 0.677580 + 0.735449i \(0.263029\pi\)
−0.677580 + 0.735449i \(0.736971\pi\)
\(282\) 4.41688i 0.263021i
\(283\) 9.64034i 0.573059i 0.958071 + 0.286529i \(0.0925016\pi\)
−0.958071 + 0.286529i \(0.907498\pi\)
\(284\) 1.47782i 0.0876927i
\(285\) −19.2905 16.2978i −1.14267 0.965398i
\(286\) 0 0
\(287\) 1.90580i 0.112496i
\(288\) −8.66724 −0.510722
\(289\) −12.0722 −0.710131
\(290\) 10.3435 + 8.73881i 0.607392 + 0.513160i
\(291\) 24.1098i 1.41334i
\(292\) 8.05573 0.471426
\(293\) −6.02494 −0.351981 −0.175990 0.984392i \(-0.556313\pi\)
−0.175990 + 0.984392i \(0.556313\pi\)
\(294\) 23.1881i 1.35236i
\(295\) −9.77067 + 11.5649i −0.568871 + 0.673332i
\(296\) 8.07307 0.469238
\(297\) 39.3142 2.28124
\(298\) 21.3478i 1.23664i
\(299\) 0 0
\(300\) 16.8388 2.85224i 0.972190 0.164674i
\(301\) 0.582641i 0.0335829i
\(302\) 22.9456i 1.32037i
\(303\) 8.09679i 0.465149i
\(304\) 3.30639i 0.189634i
\(305\) 10.2220 + 8.63613i 0.585308 + 0.494503i
\(306\) 46.7326i 2.67153i
\(307\) 24.5247 1.39970 0.699850 0.714290i \(-0.253250\pi\)
0.699850 + 0.714290i \(0.253250\pi\)
\(308\) 0.933756i 0.0532057i
\(309\) −23.0730 −1.31258
\(310\) 9.41268 11.1411i 0.534604 0.632773i
\(311\) 20.6188 1.16918 0.584591 0.811328i \(-0.301255\pi\)
0.584591 + 0.811328i \(0.301255\pi\)
\(312\) 0 0
\(313\) 7.35529i 0.415746i −0.978156 0.207873i \(-0.933346\pi\)
0.978156 0.207873i \(-0.0666540\pi\)
\(314\) 15.2264i 0.859275i
\(315\) 6.80656 + 5.75059i 0.383506 + 0.324009i
\(316\) 1.68287 0.0946690
\(317\) −17.4476 −0.979954 −0.489977 0.871735i \(-0.662995\pi\)
−0.489977 + 0.871735i \(0.662995\pi\)
\(318\) −19.7630 −1.10826
\(319\) 12.2986i 0.688587i
\(320\) −1.70807 1.44308i −0.0954842 0.0806707i
\(321\) 0.0390755 0.00218098
\(322\) 1.91054i 0.106470i
\(323\) 17.8276 0.991954
\(324\) 40.1194 2.22885
\(325\) 0 0
\(326\) −5.47677 −0.303330
\(327\) −12.9609 −0.716742
\(328\) 4.14511i 0.228875i
\(329\) 0.594527 0.0327773
\(330\) 11.8491 + 10.0108i 0.652269 + 0.551075i
\(331\) 18.5906i 1.02183i 0.859630 + 0.510917i \(0.170694\pi\)
−0.859630 + 0.510917i \(0.829306\pi\)
\(332\) −9.99259 −0.548415
\(333\) −69.9713 −3.83440
\(334\) −2.94085 −0.160916
\(335\) −14.3722 12.1425i −0.785237 0.663414i
\(336\) 1.57045i 0.0856752i
\(337\) 11.2984i 0.615463i −0.951473 0.307732i \(-0.900430\pi\)
0.951473 0.307732i \(-0.0995699\pi\)
\(338\) 0 0
\(339\) 19.0385 1.03403
\(340\) −7.78090 + 9.20971i −0.421979 + 0.499466i
\(341\) 13.2469 0.717362
\(342\) 28.6573i 1.54961i
\(343\) −6.33959 −0.342305
\(344\) 1.26725i 0.0683253i
\(345\) 24.2442 + 20.4829i 1.30526 + 1.10276i
\(346\) 3.88650i 0.208939i
\(347\) 22.2403i 1.19392i −0.802270 0.596961i \(-0.796375\pi\)
0.802270 0.596961i \(-0.203625\pi\)
\(348\) 20.6845i 1.10881i
\(349\) 22.6265i 1.21117i −0.795781 0.605585i \(-0.792939\pi\)
0.795781 0.605585i \(-0.207061\pi\)
\(350\) 0.383922 + 2.26656i 0.0205215 + 0.121153i
\(351\) 0 0
\(352\) 2.03092i 0.108248i
\(353\) −7.66644 −0.408044 −0.204022 0.978966i \(-0.565401\pi\)
−0.204022 + 0.978966i \(0.565401\pi\)
\(354\) −23.1269 −1.22918
\(355\) −2.13262 + 2.52423i −0.113188 + 0.133972i
\(356\) 3.93934i 0.208785i
\(357\) −8.46766 −0.448156
\(358\) 10.3238 0.545629
\(359\) 31.5137i 1.66323i −0.555353 0.831615i \(-0.687417\pi\)
0.555353 0.831615i \(-0.312583\pi\)
\(360\) 14.8043 + 12.5075i 0.780255 + 0.659205i
\(361\) 8.06780 0.424621
\(362\) −3.68088 −0.193463
\(363\) 23.4844i 1.23261i
\(364\) 0 0
\(365\) −13.7598 11.6251i −0.720220 0.608484i
\(366\) 20.4415i 1.06849i
\(367\) 25.5000i 1.33109i 0.746359 + 0.665544i \(0.231800\pi\)
−0.746359 + 0.665544i \(0.768200\pi\)
\(368\) 4.15544i 0.216617i
\(369\) 35.9267i 1.87027i
\(370\) −13.7894 11.6501i −0.716877 0.605660i
\(371\) 2.66017i 0.138109i
\(372\) 22.2796 1.15514
\(373\) 15.2112i 0.787604i −0.919195 0.393802i \(-0.871159\pi\)
0.919195 0.393802i \(-0.128841\pi\)
\(374\) −10.9505 −0.566235
\(375\) −32.8780 19.4279i −1.69781 1.00325i
\(376\) 1.29310 0.0666864
\(377\) 0 0
\(378\) 8.90013i 0.457773i
\(379\) 17.2766i 0.887439i −0.896166 0.443719i \(-0.853659\pi\)
0.896166 0.443719i \(-0.146341\pi\)
\(380\) 4.77139 5.64755i 0.244767 0.289713i
\(381\) −38.9400 −1.99496
\(382\) 25.0076 1.27950
\(383\) 15.1262 0.772915 0.386458 0.922307i \(-0.373699\pi\)
0.386458 + 0.922307i \(0.373699\pi\)
\(384\) 3.41573i 0.174308i
\(385\) −1.34749 + 1.59492i −0.0686742 + 0.0812848i
\(386\) 1.97401 0.100475
\(387\) 10.9835i 0.558324i
\(388\) −7.05844 −0.358338
\(389\) −32.0553 −1.62527 −0.812635 0.582774i \(-0.801967\pi\)
−0.812635 + 0.582774i \(0.801967\pi\)
\(390\) 0 0
\(391\) −22.4056 −1.13310
\(392\) −6.78861 −0.342877
\(393\) 51.2040i 2.58290i
\(394\) −17.6446 −0.888920
\(395\) −2.87447 2.42852i −0.144630 0.122192i
\(396\) 17.6025i 0.884558i
\(397\) 7.52503 0.377670 0.188835 0.982009i \(-0.439529\pi\)
0.188835 + 0.982009i \(0.439529\pi\)
\(398\) −16.1718 −0.810617
\(399\) 5.19252 0.259951
\(400\) 0.835031 + 4.92978i 0.0417515 + 0.246489i
\(401\) 37.3359i 1.86447i 0.361860 + 0.932233i \(0.382142\pi\)
−0.361860 + 0.932233i \(0.617858\pi\)
\(402\) 28.7409i 1.43347i
\(403\) 0 0
\(404\) −2.37044 −0.117934
\(405\) −68.5269 57.8955i −3.40513 2.87685i
\(406\) −2.78421 −0.138178
\(407\) 16.3958i 0.812708i
\(408\) −18.4172 −0.911787
\(409\) 19.7733i 0.977729i 0.872360 + 0.488864i \(0.162589\pi\)
−0.872360 + 0.488864i \(0.837411\pi\)
\(410\) −5.98173 + 7.08015i −0.295417 + 0.349664i
\(411\) 46.7024i 2.30366i
\(412\) 6.75491i 0.332790i
\(413\) 3.11296i 0.153179i
\(414\) 36.0162i 1.77010i
\(415\) 17.0681 + 14.4201i 0.837839 + 0.707856i
\(416\) 0 0
\(417\) 40.3495i 1.97592i
\(418\) 6.71501 0.328442
\(419\) 12.4677 0.609086 0.304543 0.952499i \(-0.401496\pi\)
0.304543 + 0.952499i \(0.401496\pi\)
\(420\) −2.26629 + 2.68245i −0.110584 + 0.130890i
\(421\) 1.36944i 0.0667423i −0.999443 0.0333712i \(-0.989376\pi\)
0.999443 0.0333712i \(-0.0106243\pi\)
\(422\) −13.3757 −0.651118
\(423\) −11.2076 −0.544932
\(424\) 5.78588i 0.280987i
\(425\) 26.5807 4.50238i 1.28935 0.218397i
\(426\) −5.04785 −0.244569
\(427\) −2.75149 −0.133154
\(428\) 0.0114398i 0.000552966i
\(429\) 0 0
\(430\) 1.82874 2.16455i 0.0881896 0.104384i
\(431\) 11.1142i 0.535354i 0.963509 + 0.267677i \(0.0862560\pi\)
−0.963509 + 0.267677i \(0.913744\pi\)
\(432\) 19.3578i 0.931353i
\(433\) 30.2038i 1.45150i 0.687957 + 0.725752i \(0.258508\pi\)
−0.687957 + 0.725752i \(0.741492\pi\)
\(434\) 2.99890i 0.143952i
\(435\) 29.8494 35.3307i 1.43117 1.69398i
\(436\) 3.79448i 0.181723i
\(437\) 13.7395 0.657249
\(438\) 27.5162i 1.31478i
\(439\) 30.0084 1.43223 0.716113 0.697985i \(-0.245920\pi\)
0.716113 + 0.697985i \(0.245920\pi\)
\(440\) −2.93078 + 3.46896i −0.139720 + 0.165376i
\(441\) 58.8386 2.80184
\(442\) 0 0
\(443\) 10.0957i 0.479661i 0.970815 + 0.239830i \(0.0770918\pi\)
−0.970815 + 0.239830i \(0.922908\pi\)
\(444\) 27.5755i 1.30867i
\(445\) 5.68479 6.72868i 0.269485 0.318970i
\(446\) 3.02345 0.143165
\(447\) 72.9183 3.44892
\(448\) 0.459770 0.0217221
\(449\) 28.9563i 1.36653i 0.730169 + 0.683266i \(0.239441\pi\)
−0.730169 + 0.683266i \(0.760559\pi\)
\(450\) −7.23742 42.7276i −0.341175 2.01420i
\(451\) −8.41839 −0.396407
\(452\) 5.57377i 0.262168i
\(453\) −78.3761 −3.68243
\(454\) −14.6074 −0.685558
\(455\) 0 0
\(456\) 11.2937 0.528878
\(457\) 40.4620 1.89273 0.946367 0.323094i \(-0.104723\pi\)
0.946367 + 0.323094i \(0.104723\pi\)
\(458\) 14.0176i 0.654998i
\(459\) 104.375 4.87179
\(460\) −5.99663 + 7.09779i −0.279594 + 0.330936i
\(461\) 6.39717i 0.297946i 0.988841 + 0.148973i \(0.0475967\pi\)
−0.988841 + 0.148973i \(0.952403\pi\)
\(462\) −3.18946 −0.148387
\(463\) 15.3751 0.714541 0.357270 0.934001i \(-0.383707\pi\)
0.357270 + 0.934001i \(0.383707\pi\)
\(464\) −6.05566 −0.281127
\(465\) −38.0551 32.1512i −1.76476 1.49098i
\(466\) 26.5904i 1.23178i
\(467\) 9.41379i 0.435618i −0.975991 0.217809i \(-0.930109\pi\)
0.975991 0.217809i \(-0.0698911\pi\)
\(468\) 0 0
\(469\) 3.86863 0.178637
\(470\) −2.20870 1.86604i −0.101880 0.0860742i
\(471\) −52.0093 −2.39646
\(472\) 6.77070i 0.311647i
\(473\) 2.57367 0.118338
\(474\) 5.74825i 0.264026i
\(475\) −16.2998 + 2.76094i −0.747884 + 0.126680i
\(476\) 2.47902i 0.113626i
\(477\) 50.1476i 2.29610i
\(478\) 12.3423i 0.564523i
\(479\) 24.7651i 1.13155i 0.824560 + 0.565774i \(0.191423\pi\)
−0.824560 + 0.565774i \(0.808577\pi\)
\(480\) −4.92918 + 5.83433i −0.224985 + 0.266299i
\(481\) 0 0
\(482\) 3.79308i 0.172770i
\(483\) −6.52591 −0.296939
\(484\) 6.87536 0.312516
\(485\) 12.0563 + 10.1859i 0.547450 + 0.462518i
\(486\) 78.9638i 3.58187i
\(487\) −27.2037 −1.23272 −0.616358 0.787466i \(-0.711393\pi\)
−0.616358 + 0.787466i \(0.711393\pi\)
\(488\) −5.98450 −0.270906
\(489\) 18.7072i 0.845969i
\(490\) 11.5954 + 9.79652i 0.523829 + 0.442562i
\(491\) 27.4578 1.23915 0.619576 0.784937i \(-0.287305\pi\)
0.619576 + 0.784937i \(0.287305\pi\)
\(492\) −14.1586 −0.638319
\(493\) 32.6513i 1.47054i
\(494\) 0 0
\(495\) 25.4018 30.0663i 1.14173 1.35138i
\(496\) 6.52262i 0.292874i
\(497\) 0.679459i 0.0304779i
\(498\) 34.1320i 1.52949i
\(499\) 2.92681i 0.131022i −0.997852 0.0655109i \(-0.979132\pi\)
0.997852 0.0655109i \(-0.0208677\pi\)
\(500\) 5.68778 9.62544i 0.254365 0.430463i
\(501\) 10.0451i 0.448784i
\(502\) 0.547631 0.0244420
\(503\) 0.113123i 0.00504392i 0.999997 + 0.00252196i \(0.000802766\pi\)
−0.999997 + 0.00252196i \(0.999197\pi\)
\(504\) −3.98494 −0.177503
\(505\) 4.04888 + 3.42074i 0.180173 + 0.152221i
\(506\) −8.43936 −0.375175
\(507\) 0 0
\(508\) 11.4002i 0.505801i
\(509\) 19.0806i 0.845731i −0.906193 0.422865i \(-0.861024\pi\)
0.906193 0.422865i \(-0.138976\pi\)
\(510\) 31.4579 + 26.5775i 1.39298 + 1.17687i
\(511\) 3.70378 0.163846
\(512\) 1.00000 0.0441942
\(513\) −64.0044 −2.82586
\(514\) 17.4033i 0.767626i
\(515\) −9.74788 + 11.5379i −0.429543 + 0.508420i
\(516\) 4.32857 0.190555
\(517\) 2.62618i 0.115499i
\(518\) 3.71175 0.163085
\(519\) −13.2752 −0.582718
\(520\) 0 0
\(521\) −6.88125 −0.301473 −0.150736 0.988574i \(-0.548164\pi\)
−0.150736 + 0.988574i \(0.548164\pi\)
\(522\) 52.4859 2.29724
\(523\) 19.7227i 0.862414i −0.902253 0.431207i \(-0.858088\pi\)
0.902253 0.431207i \(-0.141912\pi\)
\(524\) −14.9906 −0.654869
\(525\) 7.74198 1.31138i 0.337888 0.0572331i
\(526\) 11.6459i 0.507783i
\(527\) 35.1691 1.53199
\(528\) −6.93709 −0.301898
\(529\) 5.73235 0.249233
\(530\) −8.34949 + 9.88271i −0.362679 + 0.429277i
\(531\) 58.6833i 2.54664i
\(532\) 1.52018i 0.0659080i
\(533\) 0 0
\(534\) 13.4557 0.582287
\(535\) 0.0165086 0.0195401i 0.000713730 0.000844792i
\(536\) 8.41427 0.363441
\(537\) 35.2633i 1.52173i
\(538\) 16.9075 0.728934
\(539\) 13.7871i 0.593854i
\(540\) 27.9349 33.0645i 1.20213 1.42287i
\(541\) 41.8747i 1.80034i 0.435543 + 0.900168i \(0.356556\pi\)
−0.435543 + 0.900168i \(0.643444\pi\)
\(542\) 9.94128i 0.427014i
\(543\) 12.5729i 0.539555i
\(544\) 5.39187i 0.231174i
\(545\) −5.47575 + 6.48125i −0.234555 + 0.277626i
\(546\) 0 0
\(547\) 28.0881i 1.20096i −0.799639 0.600481i \(-0.794976\pi\)
0.799639 0.600481i \(-0.205024\pi\)
\(548\) 13.6727 0.584069
\(549\) 51.8692 2.21372
\(550\) 10.0120 1.69588i 0.426913 0.0723126i
\(551\) 20.0224i 0.852981i
\(552\) −14.1939 −0.604131
\(553\) 0.773734 0.0329025
\(554\) 4.24476i 0.180343i
\(555\) −39.7936 + 47.1009i −1.68915 + 1.99932i
\(556\) −11.8128 −0.500976
\(557\) 29.3170 1.24220 0.621101 0.783730i \(-0.286685\pi\)
0.621101 + 0.783730i \(0.286685\pi\)
\(558\) 56.5332i 2.39324i
\(559\) 0 0
\(560\) −0.785321 0.663485i −0.0331859 0.0280374i
\(561\) 37.4038i 1.57919i
\(562\) 24.6567i 1.04008i
\(563\) 2.10937i 0.0888995i 0.999012 + 0.0444497i \(0.0141535\pi\)
−0.999012 + 0.0444497i \(0.985847\pi\)
\(564\) 4.41688i 0.185984i
\(565\) 8.04341 9.52041i 0.338389 0.400527i
\(566\) 9.64034i 0.405214i
\(567\) 18.4457 0.774646
\(568\) 1.47782i 0.0620081i
\(569\) 14.0188 0.587697 0.293849 0.955852i \(-0.405064\pi\)
0.293849 + 0.955852i \(0.405064\pi\)
\(570\) −19.2905 16.2978i −0.807992 0.682640i
\(571\) 27.5675 1.15366 0.576831 0.816864i \(-0.304289\pi\)
0.576831 + 0.816864i \(0.304289\pi\)
\(572\) 0 0
\(573\) 85.4192i 3.56844i
\(574\) 1.90580i 0.0795464i
\(575\) 20.4854 3.46992i 0.854300 0.144706i
\(576\) −8.66724 −0.361135
\(577\) 19.0434 0.792788 0.396394 0.918080i \(-0.370261\pi\)
0.396394 + 0.918080i \(0.370261\pi\)
\(578\) −12.0722 −0.502138
\(579\) 6.74271i 0.280217i
\(580\) 10.3435 + 8.73881i 0.429491 + 0.362859i
\(581\) −4.59429 −0.190603
\(582\) 24.1098i 0.999382i
\(583\) −11.7507 −0.486663
\(584\) 8.05573 0.333348
\(585\) 0 0
\(586\) −6.02494 −0.248888
\(587\) −16.0453 −0.662260 −0.331130 0.943585i \(-0.607430\pi\)
−0.331130 + 0.943585i \(0.607430\pi\)
\(588\) 23.1881i 0.956261i
\(589\) −21.5663 −0.888625
\(590\) −9.77067 + 11.5649i −0.402252 + 0.476118i
\(591\) 60.2691i 2.47914i
\(592\) 8.07307 0.331801
\(593\) 43.3422 1.77985 0.889925 0.456107i \(-0.150756\pi\)
0.889925 + 0.456107i \(0.150756\pi\)
\(594\) 39.3142 1.61308
\(595\) −3.57742 + 4.23434i −0.146660 + 0.173591i
\(596\) 21.3478i 0.874439i
\(597\) 55.2384i 2.26076i
\(598\) 0 0
\(599\) 8.53779 0.348845 0.174422 0.984671i \(-0.444194\pi\)
0.174422 + 0.984671i \(0.444194\pi\)
\(600\) 16.8388 2.85224i 0.687442 0.116442i
\(601\) −31.5044 −1.28509 −0.642545 0.766248i \(-0.722121\pi\)
−0.642545 + 0.766248i \(0.722121\pi\)
\(602\) 0.582641i 0.0237467i
\(603\) −72.9285 −2.96988
\(604\) 22.9456i 0.933644i
\(605\) −11.7436 9.92171i −0.477446 0.403375i
\(606\) 8.09679i 0.328910i
\(607\) 14.8586i 0.603093i −0.953451 0.301546i \(-0.902497\pi\)
0.953451 0.301546i \(-0.0975028\pi\)
\(608\) 3.30639i 0.134092i
\(609\) 9.51012i 0.385369i
\(610\) 10.2220 + 8.63613i 0.413876 + 0.349667i
\(611\) 0 0
\(612\) 46.7326i 1.88905i
\(613\) 24.9342 1.00708 0.503541 0.863971i \(-0.332030\pi\)
0.503541 + 0.863971i \(0.332030\pi\)
\(614\) 24.5247 0.989737
\(615\) 24.1839 + 20.4320i 0.975190 + 0.823898i
\(616\) 0.933756i 0.0376221i
\(617\) 20.7921 0.837057 0.418528 0.908204i \(-0.362546\pi\)
0.418528 + 0.908204i \(0.362546\pi\)
\(618\) −23.0730 −0.928131
\(619\) 22.8769i 0.919501i 0.888048 + 0.459751i \(0.152061\pi\)
−0.888048 + 0.459751i \(0.847939\pi\)
\(620\) 9.41268 11.1411i 0.378022 0.447438i
\(621\) 80.4401 3.22795
\(622\) 20.6188 0.826737
\(623\) 1.81119i 0.0725638i
\(624\) 0 0
\(625\) −23.6054 + 8.23304i −0.944218 + 0.329321i
\(626\) 7.35529i 0.293977i
\(627\) 22.9367i 0.916004i
\(628\) 15.2264i 0.607599i
\(629\) 43.5289i 1.73561i
\(630\) 6.80656 + 5.75059i 0.271180 + 0.229109i
\(631\) 22.6688i 0.902429i 0.892416 + 0.451214i \(0.149009\pi\)
−0.892416 + 0.451214i \(0.850991\pi\)
\(632\) 1.68287 0.0669411
\(633\) 45.6877i 1.81592i
\(634\) −17.4476 −0.692932
\(635\) −16.4514 + 19.4724i −0.652854 + 0.772737i
\(636\) −19.7630 −0.783655
\(637\) 0 0
\(638\) 12.2986i 0.486905i
\(639\) 12.8087i 0.506703i
\(640\) −1.70807 1.44308i −0.0675175 0.0570428i
\(641\) 11.5650 0.456789 0.228394 0.973569i \(-0.426652\pi\)
0.228394 + 0.973569i \(0.426652\pi\)
\(642\) 0.0390755 0.00154219
\(643\) 25.4887 1.00518 0.502588 0.864526i \(-0.332381\pi\)
0.502588 + 0.864526i \(0.332381\pi\)
\(644\) 1.91054i 0.0752860i
\(645\) −7.39352 6.24648i −0.291120 0.245955i
\(646\) 17.8276 0.701418
\(647\) 0.686256i 0.0269795i 0.999909 + 0.0134897i \(0.00429405\pi\)
−0.999909 + 0.0134897i \(0.995706\pi\)
\(648\) 40.1194 1.57604
\(649\) −13.7508 −0.539764
\(650\) 0 0
\(651\) 10.2435 0.401473
\(652\) −5.47677 −0.214487
\(653\) 20.7584i 0.812338i 0.913798 + 0.406169i \(0.133136\pi\)
−0.913798 + 0.406169i \(0.866864\pi\)
\(654\) −12.9609 −0.506813
\(655\) 25.6051 + 21.6327i 1.00047 + 0.845259i
\(656\) 4.14511i 0.161839i
\(657\) −69.8210 −2.72398
\(658\) 0.594527 0.0231771
\(659\) 23.2146 0.904312 0.452156 0.891939i \(-0.350655\pi\)
0.452156 + 0.891939i \(0.350655\pi\)
\(660\) 11.8491 + 10.0108i 0.461224 + 0.389669i
\(661\) 14.9740i 0.582422i −0.956659 0.291211i \(-0.905942\pi\)
0.956659 0.291211i \(-0.0940581\pi\)
\(662\) 18.5906i 0.722546i
\(663\) 0 0
\(664\) −9.99259 −0.387788
\(665\) 2.19374 2.59657i 0.0850696 0.100691i
\(666\) −69.9713 −2.71133
\(667\) 25.1639i 0.974350i
\(668\) −2.94085 −0.113785
\(669\) 10.3273i 0.399277i
\(670\) −14.3722 12.1425i −0.555246 0.469105i
\(671\) 12.1541i 0.469202i
\(672\) 1.57045i 0.0605815i
\(673\) 17.2347i 0.664348i 0.943218 + 0.332174i \(0.107782\pi\)
−0.943218 + 0.332174i \(0.892218\pi\)
\(674\) 11.2984i 0.435198i
\(675\) −95.4297 + 16.1644i −3.67309 + 0.622167i
\(676\) 0 0
\(677\) 12.1285i 0.466136i 0.972460 + 0.233068i \(0.0748765\pi\)
−0.972460 + 0.233068i \(0.925124\pi\)
\(678\) 19.0385 0.731170
\(679\) −3.24526 −0.124542
\(680\) −7.78090 + 9.20971i −0.298384 + 0.353176i
\(681\) 49.8949i 1.91198i
\(682\) 13.2469 0.507251
\(683\) 20.0828 0.768449 0.384224 0.923240i \(-0.374469\pi\)
0.384224 + 0.923240i \(0.374469\pi\)
\(684\) 28.6573i 1.09574i
\(685\) −23.3540 19.7308i −0.892311 0.753877i
\(686\) −6.33959 −0.242047
\(687\) −47.8803 −1.82675
\(688\) 1.26725i 0.0483133i
\(689\) 0 0
\(690\) 24.2442 + 20.4829i 0.922960 + 0.779771i
\(691\) 24.8495i 0.945320i 0.881245 + 0.472660i \(0.156706\pi\)
−0.881245 + 0.472660i \(0.843294\pi\)
\(692\) 3.88650i 0.147742i
\(693\) 8.09309i 0.307431i
\(694\) 22.2403i 0.844231i
\(695\) 20.1772 + 17.0469i 0.765365 + 0.646625i
\(696\) 20.6845i 0.784045i
\(697\) −22.3499 −0.846562
\(698\) 22.6265i 0.856427i
\(699\) −90.8258 −3.43535
\(700\) 0.383922 + 2.26656i 0.0145109 + 0.0856680i
\(701\) 26.3896 0.996720 0.498360 0.866970i \(-0.333936\pi\)
0.498360 + 0.866970i \(0.333936\pi\)
\(702\) 0 0
\(703\) 26.6927i 1.00673i
\(704\) 2.03092i 0.0765432i
\(705\) −6.37391 + 7.54435i −0.240055 + 0.284137i
\(706\) −7.66644 −0.288530
\(707\) −1.08986 −0.0409883
\(708\) −23.1269 −0.869163
\(709\) 28.0118i 1.05201i −0.850483 0.526003i \(-0.823690\pi\)
0.850483 0.526003i \(-0.176310\pi\)
\(710\) −2.13262 + 2.52423i −0.0800358 + 0.0947327i
\(711\) −14.5859 −0.547013
\(712\) 3.93934i 0.147633i
\(713\) 27.1043 1.01507
\(714\) −8.46766 −0.316894
\(715\) 0 0
\(716\) 10.3238 0.385818
\(717\) −42.1580 −1.57442
\(718\) 31.5137i 1.17608i
\(719\) −40.0185 −1.49244 −0.746219 0.665700i \(-0.768133\pi\)
−0.746219 + 0.665700i \(0.768133\pi\)
\(720\) 14.8043 + 12.5075i 0.551723 + 0.466128i
\(721\) 3.10570i 0.115662i
\(722\) 8.06780 0.300252
\(723\) 12.9562 0.481845
\(724\) −3.68088 −0.136799
\(725\) −5.05666 29.8531i −0.187800 1.10871i
\(726\) 23.4844i 0.871588i
\(727\) 37.8003i 1.40193i −0.713194 0.700967i \(-0.752752\pi\)
0.713194 0.700967i \(-0.247248\pi\)
\(728\) 0 0
\(729\) −149.361 −5.53189
\(730\) −13.7598 11.6251i −0.509272 0.430263i
\(731\) 6.83282 0.252721
\(732\) 20.4415i 0.755539i
\(733\) 6.65212 0.245701 0.122851 0.992425i \(-0.460796\pi\)
0.122851 + 0.992425i \(0.460796\pi\)
\(734\) 25.5000i 0.941221i
\(735\) 33.4623 39.6070i 1.23428 1.46093i
\(736\) 4.15544i 0.153171i
\(737\) 17.0887i 0.629471i
\(738\) 35.9267i 1.32248i
\(739\) 28.4479i 1.04647i −0.852188 0.523236i \(-0.824725\pi\)
0.852188 0.523236i \(-0.175275\pi\)
\(740\) −13.7894 11.6501i −0.506908 0.428266i
\(741\) 0 0
\(742\) 2.66017i 0.0976580i
\(743\) −16.3224 −0.598809 −0.299405 0.954126i \(-0.596788\pi\)
−0.299405 + 0.954126i \(0.596788\pi\)
\(744\) 22.2796 0.816808
\(745\) 30.8066 36.4636i 1.12867 1.33592i
\(746\) 15.2112i 0.556920i
\(747\) 86.6082 3.16883
\(748\) −10.9505 −0.400388
\(749\) 0.00525969i 0.000192185i
\(750\) −32.8780 19.4279i −1.20053 0.709408i
\(751\) 0.398628 0.0145461 0.00727307 0.999974i \(-0.497685\pi\)
0.00727307 + 0.999974i \(0.497685\pi\)
\(752\) 1.29310 0.0471544
\(753\) 1.87056i 0.0681671i
\(754\) 0 0
\(755\) −33.1124 + 39.1928i −1.20508 + 1.42637i
\(756\) 8.90013i 0.323695i
\(757\) 40.1310i 1.45859i 0.684201 + 0.729293i \(0.260151\pi\)
−0.684201 + 0.729293i \(0.739849\pi\)
\(758\) 17.2766i 0.627514i
\(759\) 28.8266i 1.04634i
\(760\) 4.77139 5.64755i 0.173076 0.204858i
\(761\) 3.64226i 0.132032i 0.997819 + 0.0660158i \(0.0210288\pi\)
−0.997819 + 0.0660158i \(0.978971\pi\)
\(762\) −38.9400 −1.41065
\(763\) 1.74459i 0.0631583i
\(764\) 25.0076 0.904742
\(765\) 67.4390 79.8228i 2.43826 2.88600i
\(766\) 15.1262 0.546533
\(767\) 0 0
\(768\) 3.41573i 0.123255i
\(769\) 16.4037i 0.591533i −0.955260 0.295767i \(-0.904425\pi\)
0.955260 0.295767i \(-0.0955750\pi\)
\(770\) −1.34749 + 1.59492i −0.0485600 + 0.0574771i
\(771\) −59.4450 −2.14086
\(772\) 1.97401 0.0710463
\(773\) −11.3166 −0.407028 −0.203514 0.979072i \(-0.565236\pi\)
−0.203514 + 0.979072i \(0.565236\pi\)
\(774\) 10.9835i 0.394795i
\(775\) −32.1551 + 5.44659i −1.15505 + 0.195647i
\(776\) −7.05844 −0.253383
\(777\) 12.6784i 0.454834i
\(778\) −32.0553 −1.14924
\(779\) 13.7053 0.491045
\(780\) 0 0
\(781\) −3.00134 −0.107396
\(782\) −22.4056 −0.801221
\(783\) 117.224i 4.18925i
\(784\) −6.78861 −0.242450
\(785\) −21.9729 + 26.0078i −0.784247 + 0.928258i
\(786\) 51.2040i 1.82639i
\(787\) 23.6730 0.843850 0.421925 0.906631i \(-0.361354\pi\)
0.421925 + 0.906631i \(0.361354\pi\)
\(788\) −17.6446 −0.628562
\(789\) −39.7791 −1.41618
\(790\) −2.87447 2.42852i −0.102269 0.0864030i
\(791\) 2.56265i 0.0911174i
\(792\) 17.6025i 0.625477i
\(793\) 0 0
\(794\) 7.52503 0.267053
\(795\) 33.7567 + 28.5197i 1.19723 + 1.01149i
\(796\) −16.1718 −0.573193
\(797\) 4.35054i 0.154104i 0.997027 + 0.0770520i \(0.0245507\pi\)
−0.997027 + 0.0770520i \(0.975449\pi\)
\(798\) 5.19252 0.183813
\(799\) 6.97221i 0.246659i
\(800\) 0.835031 + 4.92978i 0.0295228 + 0.174294i
\(801\) 34.1432i 1.20639i
\(802\) 37.3359i 1.31838i
\(803\) 16.3605i 0.577351i
\(804\) 28.7409i 1.01361i
\(805\) −2.75707 + 3.26335i −0.0971740 + 0.115018i
\(806\) 0 0
\(807\) 57.7516i 2.03295i
\(808\) −2.37044 −0.0833918
\(809\) 24.9033 0.875552 0.437776 0.899084i \(-0.355766\pi\)
0.437776 + 0.899084i \(0.355766\pi\)
\(810\) −68.5269 57.8955i −2.40779 2.03424i
\(811\) 30.1105i 1.05732i 0.848833 + 0.528661i \(0.177306\pi\)
−0.848833 + 0.528661i \(0.822694\pi\)
\(812\) −2.78421 −0.0977065
\(813\) −33.9568 −1.19092
\(814\) 16.3958i 0.574671i
\(815\) 9.35473 + 7.90343i 0.327682 + 0.276845i
\(816\) −18.4172 −0.644730
\(817\) −4.19000 −0.146590
\(818\) 19.7733i 0.691359i
\(819\) 0 0
\(820\) −5.98173 + 7.08015i −0.208891 + 0.247250i
\(821\) 33.9761i 1.18577i 0.805286 + 0.592887i \(0.202012\pi\)
−0.805286 + 0.592887i \(0.797988\pi\)
\(822\) 46.7024i 1.62893i
\(823\) 18.7804i 0.654644i 0.944913 + 0.327322i \(0.106146\pi\)
−0.944913 + 0.327322i \(0.893854\pi\)
\(824\) 6.75491i 0.235318i
\(825\) −5.79268 34.1983i −0.201675 1.19063i
\(826\) 3.11296i 0.108314i
\(827\) −56.4739 −1.96379 −0.981895 0.189426i \(-0.939337\pi\)
−0.981895 + 0.189426i \(0.939337\pi\)
\(828\) 36.0162i 1.25165i
\(829\) 37.9617 1.31846 0.659231 0.751940i \(-0.270882\pi\)
0.659231 + 0.751940i \(0.270882\pi\)
\(830\) 17.0681 + 14.4201i 0.592442 + 0.500530i
\(831\) 14.4990 0.502964
\(832\) 0 0
\(833\) 36.6033i 1.26823i
\(834\) 40.3495i 1.39719i
\(835\) 5.02318 + 4.24388i 0.173834 + 0.146866i
\(836\) 6.71501 0.232244
\(837\) −126.264 −4.36431
\(838\) 12.4677 0.430689
\(839\) 17.7895i 0.614162i 0.951683 + 0.307081i \(0.0993522\pi\)
−0.951683 + 0.307081i \(0.900648\pi\)
\(840\) −2.26629 + 2.68245i −0.0781944 + 0.0925532i
\(841\) 7.67098 0.264517
\(842\) 1.36944i 0.0471940i
\(843\) 84.2209 2.90072
\(844\) −13.3757 −0.460410
\(845\) 0 0
\(846\) −11.2076 −0.385325
\(847\) 3.16108 0.108616
\(848\) 5.78588i 0.198688i
\(849\) 32.9289 1.13012
\(850\) 26.5807 4.50238i 0.911711 0.154430i
\(851\) 33.5471i 1.14998i
\(852\) −5.04785 −0.172937
\(853\) −12.0381 −0.412178 −0.206089 0.978533i \(-0.566074\pi\)
−0.206089 + 0.978533i \(0.566074\pi\)
\(854\) −2.75149 −0.0941542
\(855\) −41.3548 + 48.9487i −1.41430 + 1.67401i
\(856\) 0.0114398i 0.000391006i
\(857\) 21.6745i 0.740388i 0.928954 + 0.370194i \(0.120709\pi\)
−0.928954 + 0.370194i \(0.879291\pi\)
\(858\) 0 0
\(859\) 54.1515 1.84762 0.923812 0.382846i \(-0.125056\pi\)
0.923812 + 0.382846i \(0.125056\pi\)
\(860\) 1.82874 2.16455i 0.0623595 0.0738105i
\(861\) −6.50969 −0.221850
\(862\) 11.1142i 0.378553i
\(863\) −41.6531 −1.41789 −0.708943 0.705265i \(-0.750828\pi\)
−0.708943 + 0.705265i \(0.750828\pi\)
\(864\) 19.3578i 0.658566i
\(865\) −5.60853 + 6.63842i −0.190696 + 0.225713i
\(866\) 30.2038i 1.02637i
\(867\) 41.2355i 1.40043i
\(868\) 2.99890i 0.101789i
\(869\) 3.41778i 0.115940i
\(870\) 29.8494 35.3307i 1.01199 1.19782i
\(871\) 0 0
\(872\) 3.79448i 0.128497i
\(873\) 61.1773 2.07054
\(874\) 13.7395 0.464745
\(875\) 2.61507 4.42549i 0.0884055 0.149609i
\(876\) 27.5162i 0.929687i
\(877\) 51.8500 1.75085 0.875425 0.483355i \(-0.160582\pi\)
0.875425 + 0.483355i \(0.160582\pi\)
\(878\) 30.0084 1.01274
\(879\) 20.5796i 0.694133i
\(880\) −2.93078 + 3.46896i −0.0987967 + 0.116939i
\(881\) −11.0112 −0.370977 −0.185488 0.982646i \(-0.559387\pi\)
−0.185488 + 0.982646i \(0.559387\pi\)
\(882\) 58.8386 1.98120
\(883\) 42.0418i 1.41482i −0.706803 0.707410i \(-0.749863\pi\)
0.706803 0.707410i \(-0.250137\pi\)
\(884\) 0 0
\(885\) 39.5025 + 33.3740i 1.32786 + 1.12186i
\(886\) 10.0957i 0.339171i
\(887\) 50.3024i 1.68899i −0.535563 0.844495i \(-0.679900\pi\)
0.535563 0.844495i \(-0.320100\pi\)
\(888\) 27.5755i 0.925372i
\(889\) 5.24146i 0.175793i
\(890\) 5.68479 6.72868i 0.190555 0.225546i
\(891\) 81.4793i 2.72966i
\(892\) 3.02345 0.101233
\(893\) 4.27548i 0.143073i
\(894\) 72.9183 2.43875
\(895\) −17.6338 14.8981i −0.589433 0.497988i
\(896\) 0.459770 0.0153598
\(897\) 0 0
\(898\) 28.9563i 0.966284i
\(899\) 39.4988i 1.31736i
\(900\) −7.23742 42.7276i −0.241247 1.42425i
\(901\) −31.1967 −1.03931
\(902\) −8.41839 −0.280302
\(903\) 1.99015 0.0662279
\(904\) 5.57377i 0.185381i
\(905\) 6.28721 + 5.31181i 0.208994 + 0.176571i
\(906\) −78.3761 −2.60387
\(907\) 1.54390i 0.0512642i 0.999671 + 0.0256321i \(0.00815985\pi\)
−0.999671 + 0.0256321i \(0.991840\pi\)
\(908\) −14.6074 −0.484762
\(909\) 20.5452 0.681440
\(910\) 0 0
\(911\) 25.5772 0.847411 0.423705 0.905800i \(-0.360729\pi\)
0.423705 + 0.905800i \(0.360729\pi\)
\(912\) 11.2937 0.373973
\(913\) 20.2942i 0.671639i
\(914\) 40.4620 1.33836
\(915\) 29.4987 34.9155i 0.975198 1.15427i
\(916\) 14.0176i 0.463154i
\(917\) −6.89224 −0.227602
\(918\) 104.375 3.44488
\(919\) −49.1848 −1.62246 −0.811228 0.584730i \(-0.801201\pi\)
−0.811228 + 0.584730i \(0.801201\pi\)
\(920\) −5.99663 + 7.09779i −0.197703 + 0.234007i
\(921\) 83.7700i 2.76031i
\(922\) 6.39717i 0.210680i
\(923\) 0 0
\(924\) −3.18946 −0.104926
\(925\) 6.74126 + 39.7985i 0.221651 + 1.30856i
\(926\) 15.3751 0.505257
\(927\) 58.5464i 1.92292i
\(928\) −6.05566 −0.198787
\(929\) 9.91513i 0.325305i −0.986683 0.162652i \(-0.947995\pi\)
0.986683 0.162652i \(-0.0520049\pi\)
\(930\) −38.0551 32.1512i −1.24788 1.05428i
\(931\) 22.4458i 0.735631i
\(932\) 26.5904i 0.870998i
\(933\) 70.4282i 2.30572i
\(934\) 9.41379i 0.308029i
\(935\) 18.7042 + 15.8024i 0.611692 + 0.516794i
\(936\) 0 0
\(937\) 24.7485i 0.808497i −0.914649 0.404248i \(-0.867533\pi\)
0.914649 0.404248i \(-0.132467\pi\)
\(938\) 3.86863 0.126315
\(939\) −25.1237 −0.819882
\(940\) −2.20870 1.86604i −0.0720400 0.0608637i
\(941\) 40.4541i 1.31877i −0.751807 0.659383i \(-0.770817\pi\)
0.751807 0.659383i \(-0.229183\pi\)
\(942\) −52.0093 −1.69455
\(943\) −17.2247 −0.560915
\(944\) 6.77070i 0.220368i
\(945\) 12.8436 15.2021i 0.417803 0.494524i
\(946\) 2.57367 0.0836774
\(947\) −18.3367 −0.595864 −0.297932 0.954587i \(-0.596297\pi\)
−0.297932 + 0.954587i \(0.596297\pi\)
\(948\) 5.74825i 0.186694i
\(949\) 0 0
\(950\) −16.2998 + 2.76094i −0.528834 + 0.0895766i
\(951\) 59.5963i 1.93254i
\(952\) 2.47902i 0.0803454i
\(953\) 4.21731i 0.136612i −0.997664 0.0683060i \(-0.978241\pi\)
0.997664 0.0683060i \(-0.0217594\pi\)
\(954\) 50.1476i 1.62359i
\(955\) −42.7148 36.0880i −1.38222 1.16778i
\(956\) 12.3423i 0.399178i
\(957\) 42.0086 1.35795
\(958\) 24.7651i 0.800125i
\(959\) 6.28630 0.202995
\(960\) −4.92918 + 5.83433i −0.159089 + 0.188302i
\(961\) −11.5446 −0.372407
\(962\) 0 0
\(963\) 0.0991519i 0.00319512i
\(964\) 3.79308i 0.122167i
\(965\) −3.37176 2.84866i −0.108541 0.0917018i
\(966\) −6.52591 −0.209968
\(967\) −46.9135 −1.50864 −0.754318 0.656509i \(-0.772033\pi\)
−0.754318 + 0.656509i \(0.772033\pi\)
\(968\) 6.87536 0.220982
\(969\) 60.8944i 1.95621i
\(970\) 12.0563 + 10.1859i 0.387106 + 0.327050i
\(971\) −40.5157 −1.30021 −0.650105 0.759844i \(-0.725275\pi\)
−0.650105 + 0.759844i \(0.725275\pi\)
\(972\) 78.9638i 2.53276i
\(973\) −5.43119 −0.174116
\(974\) −27.2037 −0.871662
\(975\) 0 0
\(976\) −5.98450 −0.191559
\(977\) −51.0911 −1.63455 −0.817275 0.576248i \(-0.804516\pi\)
−0.817275 + 0.576248i \(0.804516\pi\)
\(978\) 18.7072i 0.598190i
\(979\) 8.00049 0.255697
\(980\) 11.5954 + 9.79652i 0.370403 + 0.312938i
\(981\) 32.8877i 1.05002i
\(982\) 27.4578 0.876213
\(983\) −47.7672 −1.52354 −0.761768 0.647850i \(-0.775668\pi\)
−0.761768 + 0.647850i \(0.775668\pi\)
\(984\) −14.1586 −0.451360
\(985\) 30.1382 + 25.4625i 0.960283 + 0.811304i
\(986\) 32.6513i 1.03983i
\(987\) 2.03075i 0.0646394i
\(988\) 0 0
\(989\) 5.26596 0.167448
\(990\) 25.4018 30.0663i 0.807323 0.955571i
\(991\) 36.5994 1.16262 0.581309 0.813683i \(-0.302541\pi\)
0.581309 + 0.813683i \(0.302541\pi\)
\(992\) 6.52262i 0.207094i
\(993\) 63.5007 2.01513
\(994\) 0.679459i 0.0215511i
\(995\) 27.6225 + 23.3372i 0.875693 + 0.739838i
\(996\) 34.1320i 1.08151i
\(997\) 52.9031i 1.67546i −0.546087 0.837729i \(-0.683883\pi\)
0.546087 0.837729i \(-0.316117\pi\)
\(998\) 2.92681i 0.0926464i
\(999\) 156.277i 4.94438i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.h.1689.1 18
5.4 even 2 1690.2.c.g.1689.18 18
13.5 odd 4 1690.2.b.f.339.1 18
13.8 odd 4 1690.2.b.g.339.10 yes 18
13.12 even 2 1690.2.c.g.1689.1 18
65.8 even 4 8450.2.a.da.1.9 9
65.18 even 4 8450.2.a.cw.1.9 9
65.34 odd 4 1690.2.b.g.339.9 yes 18
65.44 odd 4 1690.2.b.f.339.18 yes 18
65.47 even 4 8450.2.a.ct.1.1 9
65.57 even 4 8450.2.a.cx.1.1 9
65.64 even 2 inner 1690.2.c.h.1689.18 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.1 18 13.5 odd 4
1690.2.b.f.339.18 yes 18 65.44 odd 4
1690.2.b.g.339.9 yes 18 65.34 odd 4
1690.2.b.g.339.10 yes 18 13.8 odd 4
1690.2.c.g.1689.1 18 13.12 even 2
1690.2.c.g.1689.18 18 5.4 even 2
1690.2.c.h.1689.1 18 1.1 even 1 trivial
1690.2.c.h.1689.18 18 65.64 even 2 inner
8450.2.a.ct.1.1 9 65.47 even 4
8450.2.a.cw.1.9 9 65.18 even 4
8450.2.a.cx.1.1 9 65.57 even 4
8450.2.a.da.1.9 9 65.8 even 4