Properties

Label 169.14.a.f.1.5
Level $169$
Weight $14$
Character 169.1
Self dual yes
Analytic conductor $181.220$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,14,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(181.220269929\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-131.328 q^{2} -395.120 q^{3} +9055.01 q^{4} +34433.6 q^{5} +51890.3 q^{6} +374853. q^{7} -113337. q^{8} -1.43820e6 q^{9} -4.52209e6 q^{10} +6.52193e6 q^{11} -3.57782e6 q^{12} -4.92287e7 q^{14} -1.36054e7 q^{15} -5.92943e7 q^{16} -1.13330e8 q^{17} +1.88876e8 q^{18} -7.26088e7 q^{19} +3.11796e8 q^{20} -1.48112e8 q^{21} -8.56511e8 q^{22} -2.61354e8 q^{23} +4.47816e7 q^{24} -3.50307e7 q^{25} +1.19821e9 q^{27} +3.39430e9 q^{28} -4.36764e9 q^{29} +1.78677e9 q^{30} -2.46004e9 q^{31} +8.71545e9 q^{32} -2.57695e9 q^{33} +1.48834e10 q^{34} +1.29076e10 q^{35} -1.30229e10 q^{36} +1.21767e10 q^{37} +9.53555e9 q^{38} -3.90259e9 q^{40} -3.26081e10 q^{41} +1.94512e10 q^{42} +1.89264e10 q^{43} +5.90561e10 q^{44} -4.95225e10 q^{45} +3.43231e10 q^{46} +1.30245e11 q^{47} +2.34284e10 q^{48} +4.36261e10 q^{49} +4.60051e9 q^{50} +4.47791e10 q^{51} +9.35113e10 q^{53} -1.57359e11 q^{54} +2.24574e11 q^{55} -4.24847e10 q^{56} +2.86892e10 q^{57} +5.73593e11 q^{58} +3.85302e11 q^{59} -1.23197e11 q^{60} +1.30762e11 q^{61} +3.23072e11 q^{62} -5.39115e11 q^{63} -6.58843e11 q^{64} +3.38425e11 q^{66} -1.00086e12 q^{67} -1.02621e12 q^{68} +1.03266e11 q^{69} -1.69512e12 q^{70} -1.79269e12 q^{71} +1.63001e11 q^{72} +1.44196e12 q^{73} -1.59913e12 q^{74} +1.38413e10 q^{75} -6.57473e11 q^{76} +2.44477e12 q^{77} -1.00167e12 q^{79} -2.04172e12 q^{80} +1.81952e12 q^{81} +4.28235e12 q^{82} +4.32147e12 q^{83} -1.34116e12 q^{84} -3.90237e12 q^{85} -2.48557e12 q^{86} +1.72574e12 q^{87} -7.39175e11 q^{88} +9.30942e11 q^{89} +6.50368e12 q^{90} -2.36656e12 q^{92} +9.72012e11 q^{93} -1.71048e13 q^{94} -2.50018e12 q^{95} -3.44365e12 q^{96} +9.20926e12 q^{97} -5.72932e12 q^{98} -9.37986e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 1460 q^{3} + 131070 q^{4} + 18234142 q^{9} + 7786950 q^{10} - 27694876 q^{12} + 61125588 q^{14} + 700365042 q^{16} - 47049798 q^{17} + 256370724 q^{22} + 834173772 q^{23} + 11926991364 q^{25} + 5605403288 q^{27}+ \cdots + 22616629029900 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −131.328 −1.45098 −0.725491 0.688232i \(-0.758387\pi\)
−0.725491 + 0.688232i \(0.758387\pi\)
\(3\) −395.120 −0.312926 −0.156463 0.987684i \(-0.550009\pi\)
−0.156463 + 0.987684i \(0.550009\pi\)
\(4\) 9055.01 1.10535
\(5\) 34433.6 0.985547 0.492773 0.870158i \(-0.335983\pi\)
0.492773 + 0.870158i \(0.335983\pi\)
\(6\) 51890.3 0.454049
\(7\) 374853. 1.20427 0.602136 0.798394i \(-0.294317\pi\)
0.602136 + 0.798394i \(0.294317\pi\)
\(8\) −113337. −0.152857
\(9\) −1.43820e6 −0.902078
\(10\) −4.52209e6 −1.43001
\(11\) 6.52193e6 1.11000 0.555001 0.831850i \(-0.312718\pi\)
0.555001 + 0.831850i \(0.312718\pi\)
\(12\) −3.57782e6 −0.345891
\(13\) 0 0
\(14\) −4.92287e7 −1.74738
\(15\) −1.36054e7 −0.308403
\(16\) −5.92943e7 −0.883554
\(17\) −1.13330e8 −1.13875 −0.569375 0.822078i \(-0.692815\pi\)
−0.569375 + 0.822078i \(0.692815\pi\)
\(18\) 1.88876e8 1.30890
\(19\) −7.26088e7 −0.354071 −0.177036 0.984204i \(-0.556651\pi\)
−0.177036 + 0.984204i \(0.556651\pi\)
\(20\) 3.11796e8 1.08937
\(21\) −1.48112e8 −0.376847
\(22\) −8.56511e8 −1.61059
\(23\) −2.61354e8 −0.368128 −0.184064 0.982914i \(-0.558925\pi\)
−0.184064 + 0.982914i \(0.558925\pi\)
\(24\) 4.47816e7 0.0478329
\(25\) −3.50307e7 −0.0286972
\(26\) 0 0
\(27\) 1.19821e9 0.595209
\(28\) 3.39430e9 1.33114
\(29\) −4.36764e9 −1.36352 −0.681758 0.731578i \(-0.738784\pi\)
−0.681758 + 0.731578i \(0.738784\pi\)
\(30\) 1.78677e9 0.447487
\(31\) −2.46004e9 −0.497842 −0.248921 0.968524i \(-0.580076\pi\)
−0.248921 + 0.968524i \(0.580076\pi\)
\(32\) 8.71545e9 1.43488
\(33\) −2.57695e9 −0.347348
\(34\) 1.48834e10 1.65230
\(35\) 1.29076e10 1.18687
\(36\) −1.30229e10 −0.997109
\(37\) 1.21767e10 0.780219 0.390110 0.920768i \(-0.372437\pi\)
0.390110 + 0.920768i \(0.372437\pi\)
\(38\) 9.53555e9 0.513751
\(39\) 0 0
\(40\) −3.90259e9 −0.150648
\(41\) −3.26081e10 −1.07209 −0.536044 0.844190i \(-0.680082\pi\)
−0.536044 + 0.844190i \(0.680082\pi\)
\(42\) 1.94512e10 0.546798
\(43\) 1.89264e10 0.456587 0.228294 0.973592i \(-0.426685\pi\)
0.228294 + 0.973592i \(0.426685\pi\)
\(44\) 5.90561e10 1.22694
\(45\) −4.95225e10 −0.889040
\(46\) 3.43231e10 0.534146
\(47\) 1.30245e11 1.76248 0.881242 0.472665i \(-0.156708\pi\)
0.881242 + 0.472665i \(0.156708\pi\)
\(48\) 2.34284e10 0.276487
\(49\) 4.36261e10 0.450269
\(50\) 4.60051e9 0.0416391
\(51\) 4.47791e10 0.356344
\(52\) 0 0
\(53\) 9.35113e10 0.579524 0.289762 0.957099i \(-0.406424\pi\)
0.289762 + 0.957099i \(0.406424\pi\)
\(54\) −1.57359e11 −0.863637
\(55\) 2.24574e11 1.09396
\(56\) −4.24847e10 −0.184082
\(57\) 2.86892e10 0.110798
\(58\) 5.73593e11 1.97844
\(59\) 3.85302e11 1.18922 0.594612 0.804013i \(-0.297306\pi\)
0.594612 + 0.804013i \(0.297306\pi\)
\(60\) −1.23197e11 −0.340892
\(61\) 1.30762e11 0.324966 0.162483 0.986711i \(-0.448050\pi\)
0.162483 + 0.986711i \(0.448050\pi\)
\(62\) 3.23072e11 0.722359
\(63\) −5.39115e11 −1.08635
\(64\) −6.58843e11 −1.19843
\(65\) 0 0
\(66\) 3.38425e11 0.503995
\(67\) −1.00086e12 −1.35172 −0.675858 0.737032i \(-0.736227\pi\)
−0.675858 + 0.737032i \(0.736227\pi\)
\(68\) −1.02621e12 −1.25871
\(69\) 1.03266e11 0.115197
\(70\) −1.69512e12 −1.72212
\(71\) −1.79269e12 −1.66083 −0.830416 0.557145i \(-0.811897\pi\)
−0.830416 + 0.557145i \(0.811897\pi\)
\(72\) 1.63001e11 0.137889
\(73\) 1.44196e12 1.11521 0.557604 0.830107i \(-0.311721\pi\)
0.557604 + 0.830107i \(0.311721\pi\)
\(74\) −1.59913e12 −1.13208
\(75\) 1.38413e10 0.00898008
\(76\) −6.57473e11 −0.391372
\(77\) 2.44477e12 1.33674
\(78\) 0 0
\(79\) −1.00167e12 −0.463606 −0.231803 0.972763i \(-0.574462\pi\)
−0.231803 + 0.972763i \(0.574462\pi\)
\(80\) −2.04172e12 −0.870784
\(81\) 1.81952e12 0.715822
\(82\) 4.28235e12 1.55558
\(83\) 4.32147e12 1.45086 0.725428 0.688299i \(-0.241642\pi\)
0.725428 + 0.688299i \(0.241642\pi\)
\(84\) −1.34116e12 −0.416547
\(85\) −3.90237e12 −1.12229
\(86\) −2.48557e12 −0.662500
\(87\) 1.72574e12 0.426679
\(88\) −7.39175e11 −0.169672
\(89\) 9.30942e11 0.198558 0.0992791 0.995060i \(-0.468346\pi\)
0.0992791 + 0.995060i \(0.468346\pi\)
\(90\) 6.50368e12 1.28998
\(91\) 0 0
\(92\) −2.36656e12 −0.406909
\(93\) 9.72012e11 0.155787
\(94\) −1.71048e13 −2.55733
\(95\) −2.50018e12 −0.348954
\(96\) −3.44365e12 −0.449010
\(97\) 9.20926e12 1.12256 0.561279 0.827627i \(-0.310310\pi\)
0.561279 + 0.827627i \(0.310310\pi\)
\(98\) −5.72932e12 −0.653332
\(99\) −9.37986e12 −1.00131
\(100\) −3.17204e11 −0.0317204
\(101\) −1.23879e12 −0.116121 −0.0580603 0.998313i \(-0.518492\pi\)
−0.0580603 + 0.998313i \(0.518492\pi\)
\(102\) −5.88074e12 −0.517048
\(103\) −1.09950e12 −0.0907304 −0.0453652 0.998970i \(-0.514445\pi\)
−0.0453652 + 0.998970i \(0.514445\pi\)
\(104\) 0 0
\(105\) −5.10003e12 −0.371401
\(106\) −1.22806e13 −0.840878
\(107\) −2.80481e13 −1.80680 −0.903398 0.428804i \(-0.858935\pi\)
−0.903398 + 0.428804i \(0.858935\pi\)
\(108\) 1.08498e13 0.657912
\(109\) 2.96951e13 1.69595 0.847974 0.530038i \(-0.177822\pi\)
0.847974 + 0.530038i \(0.177822\pi\)
\(110\) −2.94928e13 −1.58731
\(111\) −4.81124e12 −0.244151
\(112\) −2.22267e13 −1.06404
\(113\) 3.71605e13 1.67908 0.839541 0.543297i \(-0.182824\pi\)
0.839541 + 0.543297i \(0.182824\pi\)
\(114\) −3.76769e12 −0.160766
\(115\) −8.99936e12 −0.362807
\(116\) −3.95490e13 −1.50716
\(117\) 0 0
\(118\) −5.06009e13 −1.72554
\(119\) −4.24823e13 −1.37136
\(120\) 1.54199e12 0.0471416
\(121\) 8.01287e12 0.232104
\(122\) −1.71727e13 −0.471519
\(123\) 1.28841e13 0.335484
\(124\) −2.22757e13 −0.550288
\(125\) −4.32394e13 −1.01383
\(126\) 7.08009e13 1.57627
\(127\) −1.51445e13 −0.320281 −0.160141 0.987094i \(-0.551195\pi\)
−0.160141 + 0.987094i \(0.551195\pi\)
\(128\) 1.51274e13 0.304018
\(129\) −7.47822e12 −0.142878
\(130\) 0 0
\(131\) −3.82953e13 −0.662037 −0.331018 0.943624i \(-0.607392\pi\)
−0.331018 + 0.943624i \(0.607392\pi\)
\(132\) −2.33343e13 −0.383940
\(133\) −2.72176e13 −0.426398
\(134\) 1.31440e14 1.96132
\(135\) 4.12587e13 0.586606
\(136\) 1.28445e13 0.174066
\(137\) −1.18739e14 −1.53430 −0.767152 0.641466i \(-0.778327\pi\)
−0.767152 + 0.641466i \(0.778327\pi\)
\(138\) −1.35617e13 −0.167148
\(139\) 1.01210e13 0.119022 0.0595111 0.998228i \(-0.481046\pi\)
0.0595111 + 0.998228i \(0.481046\pi\)
\(140\) 1.16878e14 1.31190
\(141\) −5.14625e13 −0.551526
\(142\) 2.35430e14 2.40984
\(143\) 0 0
\(144\) 8.52773e13 0.797035
\(145\) −1.50394e14 −1.34381
\(146\) −1.89370e14 −1.61814
\(147\) −1.72375e13 −0.140901
\(148\) 1.10260e14 0.862414
\(149\) 7.43757e13 0.556827 0.278413 0.960461i \(-0.410191\pi\)
0.278413 + 0.960461i \(0.410191\pi\)
\(150\) −1.81775e12 −0.0130299
\(151\) 1.57208e14 1.07926 0.539628 0.841904i \(-0.318565\pi\)
0.539628 + 0.841904i \(0.318565\pi\)
\(152\) 8.22924e12 0.0541223
\(153\) 1.62992e14 1.02724
\(154\) −3.21066e14 −1.93959
\(155\) −8.47081e13 −0.490647
\(156\) 0 0
\(157\) −2.26348e13 −0.120622 −0.0603112 0.998180i \(-0.519209\pi\)
−0.0603112 + 0.998180i \(0.519209\pi\)
\(158\) 1.31547e14 0.672684
\(159\) −3.69482e13 −0.181348
\(160\) 3.00104e14 1.41414
\(161\) −9.79695e13 −0.443326
\(162\) −2.38954e14 −1.03864
\(163\) 1.24004e14 0.517863 0.258932 0.965896i \(-0.416630\pi\)
0.258932 + 0.965896i \(0.416630\pi\)
\(164\) −2.95267e14 −1.18503
\(165\) −8.87335e13 −0.342328
\(166\) −5.67530e14 −2.10516
\(167\) 2.37469e14 0.847128 0.423564 0.905866i \(-0.360779\pi\)
0.423564 + 0.905866i \(0.360779\pi\)
\(168\) 1.67866e13 0.0576038
\(169\) 0 0
\(170\) 5.12490e14 1.62842
\(171\) 1.04426e14 0.319400
\(172\) 1.71379e14 0.504688
\(173\) 3.85044e14 1.09197 0.545984 0.837795i \(-0.316156\pi\)
0.545984 + 0.837795i \(0.316156\pi\)
\(174\) −2.26638e14 −0.619103
\(175\) −1.31314e13 −0.0345592
\(176\) −3.86714e14 −0.980747
\(177\) −1.52241e14 −0.372138
\(178\) −1.22259e14 −0.288104
\(179\) 2.34906e14 0.533763 0.266882 0.963729i \(-0.414007\pi\)
0.266882 + 0.963729i \(0.414007\pi\)
\(180\) −4.48427e14 −0.982698
\(181\) 5.06681e14 1.07108 0.535542 0.844509i \(-0.320107\pi\)
0.535542 + 0.844509i \(0.320107\pi\)
\(182\) 0 0
\(183\) −5.16667e13 −0.101690
\(184\) 2.96210e13 0.0562710
\(185\) 4.19286e14 0.768943
\(186\) −1.27652e14 −0.226045
\(187\) −7.39133e14 −1.26401
\(188\) 1.17937e15 1.94816
\(189\) 4.49154e14 0.716793
\(190\) 3.28343e14 0.506326
\(191\) 5.63941e14 0.840460 0.420230 0.907418i \(-0.361949\pi\)
0.420230 + 0.907418i \(0.361949\pi\)
\(192\) 2.60322e14 0.375019
\(193\) 1.26967e15 1.76835 0.884176 0.467154i \(-0.154720\pi\)
0.884176 + 0.467154i \(0.154720\pi\)
\(194\) −1.20943e15 −1.62881
\(195\) 0 0
\(196\) 3.95035e14 0.497703
\(197\) 1.13691e15 1.38578 0.692891 0.721042i \(-0.256337\pi\)
0.692891 + 0.721042i \(0.256337\pi\)
\(198\) 1.23184e15 1.45288
\(199\) −1.27254e15 −1.45254 −0.726269 0.687411i \(-0.758747\pi\)
−0.726269 + 0.687411i \(0.758747\pi\)
\(200\) 3.97027e12 0.00438657
\(201\) 3.95459e14 0.422987
\(202\) 1.62688e14 0.168489
\(203\) −1.63723e15 −1.64204
\(204\) 4.05475e14 0.393884
\(205\) −1.12281e15 −1.05659
\(206\) 1.44395e14 0.131648
\(207\) 3.75880e14 0.332080
\(208\) 0 0
\(209\) −4.73549e14 −0.393020
\(210\) 6.69776e14 0.538895
\(211\) 4.45383e14 0.347454 0.173727 0.984794i \(-0.444419\pi\)
0.173727 + 0.984794i \(0.444419\pi\)
\(212\) 8.46746e14 0.640575
\(213\) 7.08327e14 0.519716
\(214\) 3.68350e15 2.62163
\(215\) 6.51705e14 0.449988
\(216\) −1.35801e14 −0.0909819
\(217\) −9.22155e14 −0.599537
\(218\) −3.89979e15 −2.46079
\(219\) −5.69749e14 −0.348977
\(220\) 2.03351e15 1.20920
\(221\) 0 0
\(222\) 6.31850e14 0.354258
\(223\) 3.06892e15 1.67110 0.835552 0.549411i \(-0.185148\pi\)
0.835552 + 0.549411i \(0.185148\pi\)
\(224\) 3.26702e15 1.72798
\(225\) 5.03813e13 0.0258871
\(226\) −4.88021e15 −2.43632
\(227\) 3.41750e15 1.65783 0.828917 0.559372i \(-0.188958\pi\)
0.828917 + 0.559372i \(0.188958\pi\)
\(228\) 2.59781e14 0.122470
\(229\) 1.32062e15 0.605127 0.302564 0.953129i \(-0.402158\pi\)
0.302564 + 0.953129i \(0.402158\pi\)
\(230\) 1.18187e15 0.526426
\(231\) −9.65977e14 −0.418301
\(232\) 4.95014e14 0.208423
\(233\) −4.74976e14 −0.194473 −0.0972363 0.995261i \(-0.531000\pi\)
−0.0972363 + 0.995261i \(0.531000\pi\)
\(234\) 0 0
\(235\) 4.48481e15 1.73701
\(236\) 3.48891e15 1.31450
\(237\) 3.95780e14 0.145074
\(238\) 5.57911e15 1.98982
\(239\) −7.23199e14 −0.250999 −0.125499 0.992094i \(-0.540053\pi\)
−0.125499 + 0.992094i \(0.540053\pi\)
\(240\) 8.06724e14 0.272491
\(241\) −1.64374e15 −0.540407 −0.270204 0.962803i \(-0.587091\pi\)
−0.270204 + 0.962803i \(0.587091\pi\)
\(242\) −1.05231e15 −0.336779
\(243\) −2.62927e15 −0.819208
\(244\) 1.18405e15 0.359200
\(245\) 1.50220e15 0.443761
\(246\) −1.69204e15 −0.486781
\(247\) 0 0
\(248\) 2.78813e14 0.0760987
\(249\) −1.70750e15 −0.454010
\(250\) 5.67854e15 1.47105
\(251\) −1.46017e15 −0.368574 −0.184287 0.982872i \(-0.558998\pi\)
−0.184287 + 0.982872i \(0.558998\pi\)
\(252\) −4.88169e15 −1.20079
\(253\) −1.70453e15 −0.408622
\(254\) 1.98890e15 0.464722
\(255\) 1.54191e15 0.351194
\(256\) 3.41059e15 0.757303
\(257\) 5.99785e15 1.29846 0.649232 0.760590i \(-0.275090\pi\)
0.649232 + 0.760590i \(0.275090\pi\)
\(258\) 9.82098e14 0.207313
\(259\) 4.56446e15 0.939596
\(260\) 0 0
\(261\) 6.28156e15 1.23000
\(262\) 5.02924e15 0.960603
\(263\) −1.37873e15 −0.256902 −0.128451 0.991716i \(-0.541001\pi\)
−0.128451 + 0.991716i \(0.541001\pi\)
\(264\) 2.92063e14 0.0530946
\(265\) 3.21993e15 0.571148
\(266\) 3.57444e15 0.618695
\(267\) −3.67834e14 −0.0621339
\(268\) −9.06276e15 −1.49412
\(269\) −5.03972e15 −0.810993 −0.405496 0.914097i \(-0.632901\pi\)
−0.405496 + 0.914097i \(0.632901\pi\)
\(270\) −5.41842e15 −0.851155
\(271\) −9.37288e15 −1.43738 −0.718692 0.695329i \(-0.755259\pi\)
−0.718692 + 0.695329i \(0.755259\pi\)
\(272\) 6.71985e15 1.00615
\(273\) 0 0
\(274\) 1.55938e16 2.22625
\(275\) −2.28468e14 −0.0318539
\(276\) 9.35077e14 0.127332
\(277\) 1.25003e16 1.66266 0.831329 0.555780i \(-0.187580\pi\)
0.831329 + 0.555780i \(0.187580\pi\)
\(278\) −1.32917e15 −0.172699
\(279\) 3.53804e15 0.449092
\(280\) −1.46290e15 −0.181421
\(281\) −9.83881e15 −1.19221 −0.596103 0.802908i \(-0.703285\pi\)
−0.596103 + 0.802908i \(0.703285\pi\)
\(282\) 6.75845e15 0.800255
\(283\) −5.84477e15 −0.676326 −0.338163 0.941088i \(-0.609805\pi\)
−0.338163 + 0.941088i \(0.609805\pi\)
\(284\) −1.62328e16 −1.83580
\(285\) 9.87872e14 0.109197
\(286\) 0 0
\(287\) −1.22233e16 −1.29108
\(288\) −1.25346e16 −1.29437
\(289\) 2.93919e15 0.296750
\(290\) 1.97509e16 1.94984
\(291\) −3.63876e15 −0.351277
\(292\) 1.30570e16 1.23269
\(293\) −4.86348e15 −0.449064 −0.224532 0.974467i \(-0.572085\pi\)
−0.224532 + 0.974467i \(0.572085\pi\)
\(294\) 2.26377e15 0.204444
\(295\) 1.32673e16 1.17204
\(296\) −1.38006e15 −0.119262
\(297\) 7.81466e15 0.660683
\(298\) −9.76760e15 −0.807945
\(299\) 0 0
\(300\) 1.25333e14 0.00992611
\(301\) 7.09464e15 0.549855
\(302\) −2.06458e16 −1.56598
\(303\) 4.89471e14 0.0363371
\(304\) 4.30529e15 0.312841
\(305\) 4.50260e15 0.320269
\(306\) −2.14054e16 −1.49051
\(307\) 7.25301e15 0.494446 0.247223 0.968959i \(-0.420482\pi\)
0.247223 + 0.968959i \(0.420482\pi\)
\(308\) 2.21374e16 1.47757
\(309\) 4.34434e14 0.0283919
\(310\) 1.11245e16 0.711919
\(311\) 1.02335e16 0.641328 0.320664 0.947193i \(-0.396094\pi\)
0.320664 + 0.947193i \(0.396094\pi\)
\(312\) 0 0
\(313\) −3.13076e16 −1.88197 −0.940983 0.338454i \(-0.890096\pi\)
−0.940983 + 0.338454i \(0.890096\pi\)
\(314\) 2.97258e15 0.175021
\(315\) −1.85637e16 −1.07064
\(316\) −9.07014e15 −0.512446
\(317\) 8.32828e15 0.460967 0.230484 0.973076i \(-0.425969\pi\)
0.230484 + 0.973076i \(0.425969\pi\)
\(318\) 4.85233e15 0.263132
\(319\) −2.84855e16 −1.51350
\(320\) −2.26863e16 −1.18111
\(321\) 1.10824e16 0.565392
\(322\) 1.28661e16 0.643257
\(323\) 8.22878e15 0.403198
\(324\) 1.64758e16 0.791232
\(325\) 0 0
\(326\) −1.62851e16 −0.751410
\(327\) −1.17331e16 −0.530705
\(328\) 3.69570e15 0.163876
\(329\) 4.88228e16 2.12251
\(330\) 1.16532e16 0.496711
\(331\) −9.65066e15 −0.403344 −0.201672 0.979453i \(-0.564637\pi\)
−0.201672 + 0.979453i \(0.564637\pi\)
\(332\) 3.91310e16 1.60370
\(333\) −1.75125e16 −0.703819
\(334\) −3.11862e16 −1.22917
\(335\) −3.44631e16 −1.33218
\(336\) 8.78221e15 0.332965
\(337\) −2.02797e16 −0.754167 −0.377084 0.926179i \(-0.623073\pi\)
−0.377084 + 0.926179i \(0.623073\pi\)
\(338\) 0 0
\(339\) −1.46829e16 −0.525427
\(340\) −3.53360e16 −1.24052
\(341\) −1.60442e16 −0.552605
\(342\) −1.37141e16 −0.463443
\(343\) −1.99658e16 −0.662025
\(344\) −2.14506e15 −0.0697927
\(345\) 3.55583e15 0.113532
\(346\) −5.05669e16 −1.58443
\(347\) 4.02927e16 1.23904 0.619520 0.784981i \(-0.287327\pi\)
0.619520 + 0.784981i \(0.287327\pi\)
\(348\) 1.56266e16 0.471628
\(349\) −3.14751e16 −0.932399 −0.466200 0.884679i \(-0.654377\pi\)
−0.466200 + 0.884679i \(0.654377\pi\)
\(350\) 1.72452e15 0.0501447
\(351\) 0 0
\(352\) 5.68416e16 1.59272
\(353\) 7.78706e15 0.214209 0.107105 0.994248i \(-0.465842\pi\)
0.107105 + 0.994248i \(0.465842\pi\)
\(354\) 1.99934e16 0.539966
\(355\) −6.17287e16 −1.63683
\(356\) 8.42969e15 0.219476
\(357\) 1.67856e16 0.429134
\(358\) −3.08497e16 −0.774481
\(359\) 4.57955e16 1.12904 0.564519 0.825420i \(-0.309062\pi\)
0.564519 + 0.825420i \(0.309062\pi\)
\(360\) 5.61272e15 0.135896
\(361\) −3.67810e16 −0.874634
\(362\) −6.65413e16 −1.55412
\(363\) −3.16605e15 −0.0726313
\(364\) 0 0
\(365\) 4.96520e16 1.09909
\(366\) 6.78527e15 0.147550
\(367\) −2.08270e16 −0.444935 −0.222468 0.974940i \(-0.571411\pi\)
−0.222468 + 0.974940i \(0.571411\pi\)
\(368\) 1.54968e16 0.325261
\(369\) 4.68971e16 0.967107
\(370\) −5.50639e16 −1.11572
\(371\) 3.50530e16 0.697903
\(372\) 8.80157e15 0.172199
\(373\) −5.08603e16 −0.977849 −0.488925 0.872326i \(-0.662611\pi\)
−0.488925 + 0.872326i \(0.662611\pi\)
\(374\) 9.70687e16 1.83406
\(375\) 1.70848e16 0.317253
\(376\) −1.47616e16 −0.269408
\(377\) 0 0
\(378\) −5.89864e16 −1.04005
\(379\) 1.37467e15 0.0238256 0.0119128 0.999929i \(-0.496208\pi\)
0.0119128 + 0.999929i \(0.496208\pi\)
\(380\) −2.26392e16 −0.385715
\(381\) 5.98391e15 0.100224
\(382\) −7.40612e16 −1.21949
\(383\) −5.21022e16 −0.843459 −0.421730 0.906722i \(-0.638577\pi\)
−0.421730 + 0.906722i \(0.638577\pi\)
\(384\) −5.97714e15 −0.0951350
\(385\) 8.41822e16 1.31742
\(386\) −1.66743e17 −2.56585
\(387\) −2.72201e16 −0.411877
\(388\) 8.33899e16 1.24082
\(389\) 3.60091e16 0.526914 0.263457 0.964671i \(-0.415137\pi\)
0.263457 + 0.964671i \(0.415137\pi\)
\(390\) 0 0
\(391\) 2.96194e16 0.419205
\(392\) −4.94444e15 −0.0688268
\(393\) 1.51312e16 0.207168
\(394\) −1.49308e17 −2.01075
\(395\) −3.44911e16 −0.456906
\(396\) −8.49347e16 −1.10679
\(397\) 8.48776e16 1.08807 0.544033 0.839064i \(-0.316897\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(398\) 1.67120e17 2.10761
\(399\) 1.07542e16 0.133431
\(400\) 2.07712e15 0.0253555
\(401\) 1.13816e17 1.36699 0.683497 0.729953i \(-0.260458\pi\)
0.683497 + 0.729953i \(0.260458\pi\)
\(402\) −5.19347e16 −0.613746
\(403\) 0 0
\(404\) −1.12173e16 −0.128354
\(405\) 6.26527e16 0.705476
\(406\) 2.15013e17 2.38257
\(407\) 7.94153e16 0.866045
\(408\) −5.07512e15 −0.0544697
\(409\) 1.27900e17 1.35104 0.675520 0.737342i \(-0.263919\pi\)
0.675520 + 0.737342i \(0.263919\pi\)
\(410\) 1.47457e17 1.53310
\(411\) 4.69163e16 0.480123
\(412\) −9.95597e15 −0.100289
\(413\) 1.44432e17 1.43215
\(414\) −4.93636e16 −0.481842
\(415\) 1.48804e17 1.42989
\(416\) 0 0
\(417\) −3.99902e15 −0.0372451
\(418\) 6.21902e16 0.570264
\(419\) 5.71614e16 0.516074 0.258037 0.966135i \(-0.416924\pi\)
0.258037 + 0.966135i \(0.416924\pi\)
\(420\) −4.61808e16 −0.410527
\(421\) 1.01036e17 0.884391 0.442196 0.896919i \(-0.354200\pi\)
0.442196 + 0.896919i \(0.354200\pi\)
\(422\) −5.84911e16 −0.504149
\(423\) −1.87319e17 −1.58990
\(424\) −1.05983e16 −0.0885844
\(425\) 3.97004e15 0.0326789
\(426\) −9.30231e16 −0.754099
\(427\) 4.90165e16 0.391347
\(428\) −2.53976e17 −1.99714
\(429\) 0 0
\(430\) −8.55871e16 −0.652925
\(431\) −4.57527e16 −0.343807 −0.171904 0.985114i \(-0.554992\pi\)
−0.171904 + 0.985114i \(0.554992\pi\)
\(432\) −7.10472e16 −0.525899
\(433\) −1.90037e17 −1.38569 −0.692847 0.721085i \(-0.743644\pi\)
−0.692847 + 0.721085i \(0.743644\pi\)
\(434\) 1.21105e17 0.869917
\(435\) 5.94235e16 0.420512
\(436\) 2.68889e17 1.87461
\(437\) 1.89766e16 0.130343
\(438\) 7.48239e16 0.506359
\(439\) −1.84977e17 −1.23338 −0.616692 0.787205i \(-0.711527\pi\)
−0.616692 + 0.787205i \(0.711527\pi\)
\(440\) −2.54524e16 −0.167220
\(441\) −6.27432e16 −0.406177
\(442\) 0 0
\(443\) 3.66792e16 0.230566 0.115283 0.993333i \(-0.463222\pi\)
0.115283 + 0.993333i \(0.463222\pi\)
\(444\) −4.35658e16 −0.269871
\(445\) 3.20557e16 0.195688
\(446\) −4.03034e17 −2.42474
\(447\) −2.93873e16 −0.174245
\(448\) −2.46969e17 −1.44323
\(449\) −2.02229e17 −1.16478 −0.582389 0.812910i \(-0.697882\pi\)
−0.582389 + 0.812910i \(0.697882\pi\)
\(450\) −6.61647e15 −0.0375617
\(451\) −2.12668e17 −1.19002
\(452\) 3.36489e17 1.85597
\(453\) −6.21160e16 −0.337727
\(454\) −4.48813e17 −2.40549
\(455\) 0 0
\(456\) −3.25154e15 −0.0169363
\(457\) 3.18023e17 1.63307 0.816533 0.577299i \(-0.195893\pi\)
0.816533 + 0.577299i \(0.195893\pi\)
\(458\) −1.73434e17 −0.878028
\(459\) −1.35794e17 −0.677794
\(460\) −8.14893e16 −0.401028
\(461\) −1.82782e17 −0.886906 −0.443453 0.896298i \(-0.646247\pi\)
−0.443453 + 0.896298i \(0.646247\pi\)
\(462\) 1.26860e17 0.606947
\(463\) 1.90228e17 0.897424 0.448712 0.893677i \(-0.351883\pi\)
0.448712 + 0.893677i \(0.351883\pi\)
\(464\) 2.58976e17 1.20474
\(465\) 3.34699e16 0.153536
\(466\) 6.23776e16 0.282176
\(467\) 2.67874e17 1.19501 0.597504 0.801866i \(-0.296159\pi\)
0.597504 + 0.801866i \(0.296159\pi\)
\(468\) 0 0
\(469\) −3.75174e17 −1.62783
\(470\) −5.88980e17 −2.52037
\(471\) 8.94345e15 0.0377459
\(472\) −4.36689e16 −0.181781
\(473\) 1.23437e17 0.506813
\(474\) −5.19770e16 −0.210500
\(475\) 2.54354e15 0.0101608
\(476\) −3.84677e17 −1.51583
\(477\) −1.34488e17 −0.522775
\(478\) 9.49761e16 0.364194
\(479\) 2.90930e17 1.10054 0.550272 0.834985i \(-0.314524\pi\)
0.550272 + 0.834985i \(0.314524\pi\)
\(480\) −1.18577e17 −0.442521
\(481\) 0 0
\(482\) 2.15868e17 0.784121
\(483\) 3.87097e16 0.138728
\(484\) 7.25566e16 0.256556
\(485\) 3.17108e17 1.10633
\(486\) 3.45296e17 1.18865
\(487\) −1.50117e17 −0.509909 −0.254954 0.966953i \(-0.582060\pi\)
−0.254954 + 0.966953i \(0.582060\pi\)
\(488\) −1.48201e16 −0.0496733
\(489\) −4.89964e16 −0.162053
\(490\) −1.97281e17 −0.643889
\(491\) −4.04108e17 −1.30157 −0.650785 0.759262i \(-0.725560\pi\)
−0.650785 + 0.759262i \(0.725560\pi\)
\(492\) 1.16666e17 0.370826
\(493\) 4.94986e17 1.55270
\(494\) 0 0
\(495\) −3.22982e17 −0.986836
\(496\) 1.45867e17 0.439870
\(497\) −6.71995e17 −2.00009
\(498\) 2.24242e17 0.658760
\(499\) 1.63567e17 0.474288 0.237144 0.971475i \(-0.423789\pi\)
0.237144 + 0.971475i \(0.423789\pi\)
\(500\) −3.91533e17 −1.12063
\(501\) −9.38286e16 −0.265088
\(502\) 1.91761e17 0.534794
\(503\) 9.71299e16 0.267400 0.133700 0.991022i \(-0.457314\pi\)
0.133700 + 0.991022i \(0.457314\pi\)
\(504\) 6.11016e16 0.166056
\(505\) −4.26560e16 −0.114442
\(506\) 2.23853e17 0.592904
\(507\) 0 0
\(508\) −1.37134e17 −0.354022
\(509\) 2.40330e17 0.612550 0.306275 0.951943i \(-0.400917\pi\)
0.306275 + 0.951943i \(0.400917\pi\)
\(510\) −2.02495e17 −0.509575
\(511\) 5.40525e17 1.34301
\(512\) −5.71829e17 −1.40285
\(513\) −8.70007e16 −0.210746
\(514\) −7.87684e17 −1.88405
\(515\) −3.78597e16 −0.0894191
\(516\) −6.77153e16 −0.157930
\(517\) 8.49449e17 1.95636
\(518\) −5.99441e17 −1.36334
\(519\) −1.52138e17 −0.341705
\(520\) 0 0
\(521\) −1.01539e17 −0.222428 −0.111214 0.993796i \(-0.535474\pi\)
−0.111214 + 0.993796i \(0.535474\pi\)
\(522\) −8.24943e17 −1.78470
\(523\) −7.50671e17 −1.60394 −0.801971 0.597363i \(-0.796215\pi\)
−0.801971 + 0.597363i \(0.796215\pi\)
\(524\) −3.46764e17 −0.731781
\(525\) 5.18848e15 0.0108144
\(526\) 1.81066e17 0.372760
\(527\) 2.78797e17 0.566917
\(528\) 1.52798e17 0.306901
\(529\) −4.35730e17 −0.864482
\(530\) −4.22867e17 −0.828725
\(531\) −5.54143e17 −1.07277
\(532\) −2.46456e17 −0.471318
\(533\) 0 0
\(534\) 4.83069e16 0.0901552
\(535\) −9.65797e17 −1.78068
\(536\) 1.13434e17 0.206620
\(537\) −9.28159e16 −0.167028
\(538\) 6.61856e17 1.17674
\(539\) 2.84526e17 0.499799
\(540\) 3.73598e17 0.648404
\(541\) 1.02532e18 1.75824 0.879120 0.476601i \(-0.158131\pi\)
0.879120 + 0.476601i \(0.158131\pi\)
\(542\) 1.23092e18 2.08562
\(543\) −2.00200e17 −0.335170
\(544\) −9.87725e17 −1.63397
\(545\) 1.02251e18 1.67144
\(546\) 0 0
\(547\) 9.61246e17 1.53432 0.767162 0.641454i \(-0.221668\pi\)
0.767162 + 0.641454i \(0.221668\pi\)
\(548\) −1.07519e18 −1.69594
\(549\) −1.88062e17 −0.293144
\(550\) 3.00042e16 0.0462195
\(551\) 3.17129e17 0.482782
\(552\) −1.17039e16 −0.0176086
\(553\) −3.75480e17 −0.558307
\(554\) −1.64164e18 −2.41249
\(555\) −1.65668e17 −0.240622
\(556\) 9.16459e16 0.131561
\(557\) 1.09446e18 1.55289 0.776443 0.630188i \(-0.217022\pi\)
0.776443 + 0.630188i \(0.217022\pi\)
\(558\) −4.64643e17 −0.651624
\(559\) 0 0
\(560\) −7.65345e17 −1.04866
\(561\) 2.92046e17 0.395542
\(562\) 1.29211e18 1.72987
\(563\) 1.00277e18 1.32708 0.663542 0.748139i \(-0.269052\pi\)
0.663542 + 0.748139i \(0.269052\pi\)
\(564\) −4.65993e17 −0.609628
\(565\) 1.27957e18 1.65481
\(566\) 7.67582e17 0.981336
\(567\) 6.82054e17 0.862043
\(568\) 2.03177e17 0.253870
\(569\) 2.47556e17 0.305804 0.152902 0.988241i \(-0.451138\pi\)
0.152902 + 0.988241i \(0.451138\pi\)
\(570\) −1.29735e17 −0.158442
\(571\) −4.36442e17 −0.526977 −0.263489 0.964662i \(-0.584873\pi\)
−0.263489 + 0.964662i \(0.584873\pi\)
\(572\) 0 0
\(573\) −2.22825e17 −0.263001
\(574\) 1.60525e18 1.87334
\(575\) 9.15543e15 0.0105642
\(576\) 9.47549e17 1.08107
\(577\) −2.14944e17 −0.242483 −0.121242 0.992623i \(-0.538688\pi\)
−0.121242 + 0.992623i \(0.538688\pi\)
\(578\) −3.85997e17 −0.430579
\(579\) −5.01673e17 −0.553363
\(580\) −1.36182e18 −1.48538
\(581\) 1.61992e18 1.74722
\(582\) 4.77871e17 0.509696
\(583\) 6.09874e17 0.643272
\(584\) −1.63427e17 −0.170467
\(585\) 0 0
\(586\) 6.38711e17 0.651583
\(587\) 7.60913e17 0.767693 0.383846 0.923397i \(-0.374599\pi\)
0.383846 + 0.923397i \(0.374599\pi\)
\(588\) −1.56086e17 −0.155744
\(589\) 1.78621e17 0.176271
\(590\) −1.74237e18 −1.70060
\(591\) −4.49216e17 −0.433647
\(592\) −7.22007e17 −0.689366
\(593\) −1.17587e18 −1.11046 −0.555230 0.831697i \(-0.687370\pi\)
−0.555230 + 0.831697i \(0.687370\pi\)
\(594\) −1.02628e18 −0.958638
\(595\) −1.46282e18 −1.35154
\(596\) 6.73472e17 0.615487
\(597\) 5.02807e17 0.454536
\(598\) 0 0
\(599\) 8.19079e15 0.00724522 0.00362261 0.999993i \(-0.498847\pi\)
0.00362261 + 0.999993i \(0.498847\pi\)
\(600\) −1.56873e15 −0.00137267
\(601\) 1.82135e18 1.57655 0.788277 0.615320i \(-0.210973\pi\)
0.788277 + 0.615320i \(0.210973\pi\)
\(602\) −9.31724e17 −0.797829
\(603\) 1.43943e18 1.21935
\(604\) 1.42352e18 1.19295
\(605\) 2.75912e17 0.228750
\(606\) −6.42812e16 −0.0527244
\(607\) 5.44050e17 0.441481 0.220741 0.975333i \(-0.429153\pi\)
0.220741 + 0.975333i \(0.429153\pi\)
\(608\) −6.32818e17 −0.508049
\(609\) 6.46901e17 0.513837
\(610\) −5.91317e17 −0.464704
\(611\) 0 0
\(612\) 1.47589e18 1.13546
\(613\) −3.56930e16 −0.0271700 −0.0135850 0.999908i \(-0.504324\pi\)
−0.0135850 + 0.999908i \(0.504324\pi\)
\(614\) −9.52522e17 −0.717432
\(615\) 4.43647e17 0.330635
\(616\) −2.77082e17 −0.204331
\(617\) 5.92640e17 0.432451 0.216226 0.976343i \(-0.430625\pi\)
0.216226 + 0.976343i \(0.430625\pi\)
\(618\) −5.70533e16 −0.0411961
\(619\) 1.92570e18 1.37594 0.687969 0.725740i \(-0.258502\pi\)
0.687969 + 0.725740i \(0.258502\pi\)
\(620\) −7.67032e17 −0.542335
\(621\) −3.13158e17 −0.219113
\(622\) −1.34394e18 −0.930554
\(623\) 3.48967e17 0.239118
\(624\) 0 0
\(625\) −1.44613e18 −0.970479
\(626\) 4.11156e18 2.73070
\(627\) 1.87109e17 0.122986
\(628\) −2.04958e17 −0.133330
\(629\) −1.37998e18 −0.888475
\(630\) 2.43793e18 1.55349
\(631\) 1.45499e17 0.0917632 0.0458816 0.998947i \(-0.485390\pi\)
0.0458816 + 0.998947i \(0.485390\pi\)
\(632\) 1.13526e17 0.0708655
\(633\) −1.75980e17 −0.108727
\(634\) −1.09373e18 −0.668855
\(635\) −5.21480e17 −0.315652
\(636\) −3.34566e17 −0.200452
\(637\) 0 0
\(638\) 3.74093e18 2.19607
\(639\) 2.57825e18 1.49820
\(640\) 5.20891e17 0.299624
\(641\) −2.86100e17 −0.162907 −0.0814536 0.996677i \(-0.525956\pi\)
−0.0814536 + 0.996677i \(0.525956\pi\)
\(642\) −1.45542e18 −0.820374
\(643\) 6.03216e17 0.336590 0.168295 0.985737i \(-0.446174\pi\)
0.168295 + 0.985737i \(0.446174\pi\)
\(644\) −8.87115e17 −0.490029
\(645\) −2.57502e17 −0.140813
\(646\) −1.08067e18 −0.585033
\(647\) −1.64825e18 −0.883375 −0.441688 0.897169i \(-0.645620\pi\)
−0.441688 + 0.897169i \(0.645620\pi\)
\(648\) −2.06219e17 −0.109418
\(649\) 2.51291e18 1.32004
\(650\) 0 0
\(651\) 3.64362e17 0.187610
\(652\) 1.12285e18 0.572419
\(653\) 2.14977e18 1.08506 0.542532 0.840035i \(-0.317466\pi\)
0.542532 + 0.840035i \(0.317466\pi\)
\(654\) 1.54089e18 0.770044
\(655\) −1.31864e18 −0.652468
\(656\) 1.93348e18 0.947248
\(657\) −2.07384e18 −1.00600
\(658\) −6.41180e18 −3.07972
\(659\) 1.20457e18 0.572899 0.286449 0.958095i \(-0.407525\pi\)
0.286449 + 0.958095i \(0.407525\pi\)
\(660\) −8.03483e17 −0.378391
\(661\) −1.01556e17 −0.0473583 −0.0236791 0.999720i \(-0.507538\pi\)
−0.0236791 + 0.999720i \(0.507538\pi\)
\(662\) 1.26740e18 0.585244
\(663\) 0 0
\(664\) −4.89782e17 −0.221774
\(665\) −9.37201e17 −0.420235
\(666\) 2.29988e18 1.02123
\(667\) 1.14150e18 0.501948
\(668\) 2.15028e18 0.936371
\(669\) −1.21259e18 −0.522931
\(670\) 4.52596e18 1.93297
\(671\) 8.52820e17 0.360712
\(672\) −1.29086e18 −0.540730
\(673\) 1.43921e18 0.597073 0.298537 0.954398i \(-0.403501\pi\)
0.298537 + 0.954398i \(0.403501\pi\)
\(674\) 2.66329e18 1.09428
\(675\) −4.19742e16 −0.0170808
\(676\) 0 0
\(677\) 2.58231e18 1.03082 0.515410 0.856944i \(-0.327640\pi\)
0.515410 + 0.856944i \(0.327640\pi\)
\(678\) 1.92827e18 0.762385
\(679\) 3.45212e18 1.35186
\(680\) 4.42282e17 0.171550
\(681\) −1.35032e18 −0.518778
\(682\) 2.10705e18 0.801820
\(683\) 1.41325e18 0.532703 0.266351 0.963876i \(-0.414182\pi\)
0.266351 + 0.963876i \(0.414182\pi\)
\(684\) 9.45579e17 0.353048
\(685\) −4.08862e18 −1.51213
\(686\) 2.62206e18 0.960587
\(687\) −5.21803e17 −0.189360
\(688\) −1.12223e18 −0.403420
\(689\) 0 0
\(690\) −4.66979e17 −0.164732
\(691\) −2.24990e18 −0.786240 −0.393120 0.919487i \(-0.628604\pi\)
−0.393120 + 0.919487i \(0.628604\pi\)
\(692\) 3.48657e18 1.20700
\(693\) −3.51607e18 −1.20585
\(694\) −5.29156e18 −1.79782
\(695\) 3.48503e17 0.117302
\(696\) −1.95590e17 −0.0652209
\(697\) 3.69549e18 1.22084
\(698\) 4.13356e18 1.35289
\(699\) 1.87673e17 0.0608555
\(700\) −1.18905e17 −0.0381999
\(701\) −1.45384e18 −0.462754 −0.231377 0.972864i \(-0.574323\pi\)
−0.231377 + 0.972864i \(0.574323\pi\)
\(702\) 0 0
\(703\) −8.84132e17 −0.276253
\(704\) −4.29693e18 −1.33026
\(705\) −1.77204e18 −0.543555
\(706\) −1.02266e18 −0.310813
\(707\) −4.64365e17 −0.139841
\(708\) −1.37854e18 −0.411342
\(709\) −1.03106e18 −0.304848 −0.152424 0.988315i \(-0.548708\pi\)
−0.152424 + 0.988315i \(0.548708\pi\)
\(710\) 8.10670e18 2.37501
\(711\) 1.44061e18 0.418209
\(712\) −1.05510e17 −0.0303510
\(713\) 6.42942e17 0.183269
\(714\) −2.20442e18 −0.622666
\(715\) 0 0
\(716\) 2.12707e18 0.589994
\(717\) 2.85750e17 0.0785438
\(718\) −6.01422e18 −1.63821
\(719\) 4.01205e18 1.08300 0.541500 0.840701i \(-0.317856\pi\)
0.541500 + 0.840701i \(0.317856\pi\)
\(720\) 2.93640e18 0.785515
\(721\) −4.12151e17 −0.109264
\(722\) 4.83036e18 1.26908
\(723\) 6.49473e17 0.169107
\(724\) 4.58800e18 1.18392
\(725\) 1.53002e17 0.0391290
\(726\) 4.15790e17 0.105387
\(727\) −3.16021e18 −0.793856 −0.396928 0.917850i \(-0.629924\pi\)
−0.396928 + 0.917850i \(0.629924\pi\)
\(728\) 0 0
\(729\) −1.86203e18 −0.459471
\(730\) −6.52069e18 −1.59476
\(731\) −2.14494e18 −0.519939
\(732\) −4.67842e17 −0.112403
\(733\) 1.64864e16 0.00392601 0.00196300 0.999998i \(-0.499375\pi\)
0.00196300 + 0.999998i \(0.499375\pi\)
\(734\) 2.73516e18 0.645593
\(735\) −5.93551e17 −0.138864
\(736\) −2.27782e18 −0.528218
\(737\) −6.52752e18 −1.50041
\(738\) −6.15889e18 −1.40325
\(739\) −3.68743e18 −0.832789 −0.416395 0.909184i \(-0.636707\pi\)
−0.416395 + 0.909184i \(0.636707\pi\)
\(740\) 3.79664e18 0.849949
\(741\) 0 0
\(742\) −4.60344e18 −1.01264
\(743\) 2.64028e18 0.575736 0.287868 0.957670i \(-0.407054\pi\)
0.287868 + 0.957670i \(0.407054\pi\)
\(744\) −1.10165e17 −0.0238132
\(745\) 2.56102e18 0.548779
\(746\) 6.67938e18 1.41884
\(747\) −6.21515e18 −1.30878
\(748\) −6.69285e18 −1.39717
\(749\) −1.05139e19 −2.17587
\(750\) −2.24371e18 −0.460328
\(751\) 8.20198e17 0.166824 0.0834121 0.996515i \(-0.473418\pi\)
0.0834121 + 0.996515i \(0.473418\pi\)
\(752\) −7.72280e18 −1.55725
\(753\) 5.76943e17 0.115336
\(754\) 0 0
\(755\) 5.41324e18 1.06366
\(756\) 4.06709e18 0.792305
\(757\) −5.41071e17 −0.104503 −0.0522517 0.998634i \(-0.516640\pi\)
−0.0522517 + 0.998634i \(0.516640\pi\)
\(758\) −1.80532e17 −0.0345705
\(759\) 6.73496e17 0.127868
\(760\) 2.83362e17 0.0533401
\(761\) −9.55846e17 −0.178397 −0.0891985 0.996014i \(-0.528431\pi\)
−0.0891985 + 0.996014i \(0.528431\pi\)
\(762\) −7.85854e17 −0.145423
\(763\) 1.11313e19 2.04238
\(764\) 5.10649e18 0.929000
\(765\) 5.61240e18 1.01239
\(766\) 6.84247e18 1.22384
\(767\) 0 0
\(768\) −1.34759e18 −0.236979
\(769\) −8.62926e18 −1.50471 −0.752354 0.658759i \(-0.771082\pi\)
−0.752354 + 0.658759i \(0.771082\pi\)
\(770\) −1.10555e19 −1.91156
\(771\) −2.36987e18 −0.406323
\(772\) 1.14969e19 1.95464
\(773\) −8.01344e17 −0.135099 −0.0675495 0.997716i \(-0.521518\pi\)
−0.0675495 + 0.997716i \(0.521518\pi\)
\(774\) 3.57475e18 0.597626
\(775\) 8.61771e16 0.0142867
\(776\) −1.04375e18 −0.171591
\(777\) −1.80351e18 −0.294023
\(778\) −4.72899e18 −0.764542
\(779\) 2.36763e18 0.379596
\(780\) 0 0
\(781\) −1.16918e19 −1.84353
\(782\) −3.88985e18 −0.608259
\(783\) −5.23336e18 −0.811576
\(784\) −2.58678e18 −0.397837
\(785\) −7.79396e17 −0.118879
\(786\) −1.98715e18 −0.300597
\(787\) −1.06991e19 −1.60514 −0.802569 0.596559i \(-0.796534\pi\)
−0.802569 + 0.596559i \(0.796534\pi\)
\(788\) 1.02947e19 1.53177
\(789\) 5.44765e17 0.0803912
\(790\) 4.52965e18 0.662962
\(791\) 1.39297e19 2.02207
\(792\) 1.06308e18 0.153057
\(793\) 0 0
\(794\) −1.11468e19 −1.57876
\(795\) −1.27226e18 −0.178727
\(796\) −1.15229e19 −1.60556
\(797\) 6.30434e18 0.871286 0.435643 0.900120i \(-0.356521\pi\)
0.435643 + 0.900120i \(0.356521\pi\)
\(798\) −1.41233e18 −0.193606
\(799\) −1.47607e19 −2.00703
\(800\) −3.05309e17 −0.0411770
\(801\) −1.33888e18 −0.179115
\(802\) −1.49473e19 −1.98348
\(803\) 9.40438e18 1.23788
\(804\) 3.58088e18 0.467547
\(805\) −3.37344e18 −0.436918
\(806\) 0 0
\(807\) 1.99130e18 0.253780
\(808\) 1.40401e17 0.0177499
\(809\) 4.55086e18 0.570727 0.285364 0.958419i \(-0.407886\pi\)
0.285364 + 0.958419i \(0.407886\pi\)
\(810\) −8.22804e18 −1.02363
\(811\) 7.25312e17 0.0895137 0.0447568 0.998998i \(-0.485749\pi\)
0.0447568 + 0.998998i \(0.485749\pi\)
\(812\) −1.48251e19 −1.81503
\(813\) 3.70341e18 0.449794
\(814\) −1.04294e19 −1.25662
\(815\) 4.26989e18 0.510379
\(816\) −2.65515e18 −0.314849
\(817\) −1.37423e18 −0.161664
\(818\) −1.67968e19 −1.96033
\(819\) 0 0
\(820\) −1.01671e19 −1.16790
\(821\) −7.12450e18 −0.811940 −0.405970 0.913886i \(-0.633066\pi\)
−0.405970 + 0.913886i \(0.633066\pi\)
\(822\) −6.16142e18 −0.696649
\(823\) −8.32183e18 −0.933512 −0.466756 0.884386i \(-0.654577\pi\)
−0.466756 + 0.884386i \(0.654577\pi\)
\(824\) 1.24614e17 0.0138688
\(825\) 9.02723e16 0.00996791
\(826\) −1.89679e19 −2.07802
\(827\) −2.03770e18 −0.221491 −0.110745 0.993849i \(-0.535324\pi\)
−0.110745 + 0.993849i \(0.535324\pi\)
\(828\) 3.40360e18 0.367064
\(829\) 1.72064e19 1.84113 0.920567 0.390585i \(-0.127727\pi\)
0.920567 + 0.390585i \(0.127727\pi\)
\(830\) −1.95421e19 −2.07474
\(831\) −4.93913e18 −0.520288
\(832\) 0 0
\(833\) −4.94416e18 −0.512743
\(834\) 5.25182e17 0.0540419
\(835\) 8.17690e18 0.834884
\(836\) −4.28799e18 −0.434423
\(837\) −2.94765e18 −0.296320
\(838\) −7.50689e18 −0.748814
\(839\) 6.83173e18 0.676205 0.338102 0.941109i \(-0.390215\pi\)
0.338102 + 0.941109i \(0.390215\pi\)
\(840\) 5.78021e17 0.0567713
\(841\) 8.81567e18 0.859175
\(842\) −1.32689e19 −1.28324
\(843\) 3.88751e18 0.373072
\(844\) 4.03294e18 0.384057
\(845\) 0 0
\(846\) 2.46002e19 2.30691
\(847\) 3.00365e18 0.279516
\(848\) −5.54469e18 −0.512041
\(849\) 2.30939e18 0.211640
\(850\) −5.21377e17 −0.0474165
\(851\) −3.18242e18 −0.287220
\(852\) 6.41391e18 0.574467
\(853\) −5.24391e18 −0.466108 −0.233054 0.972464i \(-0.574872\pi\)
−0.233054 + 0.972464i \(0.574872\pi\)
\(854\) −6.43724e18 −0.567837
\(855\) 3.59577e18 0.314783
\(856\) 3.17888e18 0.276182
\(857\) −7.70440e18 −0.664299 −0.332149 0.943227i \(-0.607774\pi\)
−0.332149 + 0.943227i \(0.607774\pi\)
\(858\) 0 0
\(859\) −1.00646e19 −0.854755 −0.427378 0.904073i \(-0.640563\pi\)
−0.427378 + 0.904073i \(0.640563\pi\)
\(860\) 5.90119e18 0.497393
\(861\) 4.82966e18 0.404013
\(862\) 6.00861e18 0.498858
\(863\) 1.70633e19 1.40602 0.703011 0.711179i \(-0.251839\pi\)
0.703011 + 0.711179i \(0.251839\pi\)
\(864\) 1.04430e19 0.854052
\(865\) 1.32584e19 1.07619
\(866\) 2.49572e19 2.01062
\(867\) −1.16133e18 −0.0928608
\(868\) −8.35012e18 −0.662696
\(869\) −6.53283e18 −0.514604
\(870\) −7.80397e18 −0.610155
\(871\) 0 0
\(872\) −3.36555e18 −0.259238
\(873\) −1.32448e19 −1.01263
\(874\) −2.49216e18 −0.189126
\(875\) −1.62084e19 −1.22093
\(876\) −5.15908e18 −0.385741
\(877\) 7.32897e18 0.543933 0.271966 0.962307i \(-0.412326\pi\)
0.271966 + 0.962307i \(0.412326\pi\)
\(878\) 2.42926e19 1.78962
\(879\) 1.92166e18 0.140523
\(880\) −1.33159e19 −0.966572
\(881\) −4.06767e18 −0.293091 −0.146546 0.989204i \(-0.546815\pi\)
−0.146546 + 0.989204i \(0.546815\pi\)
\(882\) 8.23993e18 0.589356
\(883\) 1.19014e19 0.844993 0.422497 0.906365i \(-0.361154\pi\)
0.422497 + 0.906365i \(0.361154\pi\)
\(884\) 0 0
\(885\) −5.24219e18 −0.366760
\(886\) −4.81700e18 −0.334547
\(887\) 2.29331e19 1.58110 0.790550 0.612397i \(-0.209795\pi\)
0.790550 + 0.612397i \(0.209795\pi\)
\(888\) 5.45291e17 0.0373202
\(889\) −5.67698e18 −0.385705
\(890\) −4.20981e18 −0.283940
\(891\) 1.18668e19 0.794563
\(892\) 2.77891e19 1.84715
\(893\) −9.45693e18 −0.624045
\(894\) 3.85937e18 0.252827
\(895\) 8.08864e18 0.526049
\(896\) 5.67056e18 0.366120
\(897\) 0 0
\(898\) 2.65583e19 1.69007
\(899\) 1.07446e19 0.678815
\(900\) 4.56203e17 0.0286142
\(901\) −1.05977e19 −0.659932
\(902\) 2.79292e19 1.72670
\(903\) −2.80323e18 −0.172064
\(904\) −4.21165e18 −0.256660
\(905\) 1.74468e19 1.05560
\(906\) 8.15757e18 0.490035
\(907\) 2.56355e19 1.52895 0.764476 0.644652i \(-0.222998\pi\)
0.764476 + 0.644652i \(0.222998\pi\)
\(908\) 3.09455e19 1.83248
\(909\) 1.78163e18 0.104750
\(910\) 0 0
\(911\) 1.54584e19 0.895972 0.447986 0.894040i \(-0.352141\pi\)
0.447986 + 0.894040i \(0.352141\pi\)
\(912\) −1.70111e18 −0.0978960
\(913\) 2.81843e19 1.61045
\(914\) −4.17653e19 −2.36955
\(915\) −1.77907e18 −0.100220
\(916\) 1.19582e19 0.668876
\(917\) −1.43551e19 −0.797272
\(918\) 1.78335e19 0.983466
\(919\) −1.30782e19 −0.716139 −0.358070 0.933695i \(-0.616565\pi\)
−0.358070 + 0.933695i \(0.616565\pi\)
\(920\) 1.01996e18 0.0554577
\(921\) −2.86581e18 −0.154725
\(922\) 2.40044e19 1.28688
\(923\) 0 0
\(924\) −8.74693e18 −0.462368
\(925\) −4.26557e17 −0.0223901
\(926\) −2.49822e19 −1.30215
\(927\) 1.58130e18 0.0818459
\(928\) −3.80660e19 −1.95648
\(929\) −2.64343e18 −0.134917 −0.0674584 0.997722i \(-0.521489\pi\)
−0.0674584 + 0.997722i \(0.521489\pi\)
\(930\) −4.39553e18 −0.222778
\(931\) −3.16764e18 −0.159427
\(932\) −4.30091e18 −0.214960
\(933\) −4.04345e18 −0.200688
\(934\) −3.51793e19 −1.73394
\(935\) −2.54510e19 −1.24575
\(936\) 0 0
\(937\) −1.80007e19 −0.868926 −0.434463 0.900690i \(-0.643062\pi\)
−0.434463 + 0.900690i \(0.643062\pi\)
\(938\) 4.92709e19 2.36196
\(939\) 1.23703e19 0.588915
\(940\) 4.06099e19 1.92000
\(941\) −2.55731e19 −1.20075 −0.600374 0.799720i \(-0.704981\pi\)
−0.600374 + 0.799720i \(0.704981\pi\)
\(942\) −1.17452e18 −0.0547685
\(943\) 8.52226e18 0.394665
\(944\) −2.28462e19 −1.05074
\(945\) 1.54660e19 0.706433
\(946\) −1.62107e19 −0.735376
\(947\) 3.17471e19 1.43031 0.715154 0.698967i \(-0.246356\pi\)
0.715154 + 0.698967i \(0.246356\pi\)
\(948\) 3.58379e18 0.160357
\(949\) 0 0
\(950\) −3.34037e17 −0.0147432
\(951\) −3.29067e18 −0.144248
\(952\) 4.81480e18 0.209623
\(953\) 1.42575e19 0.616508 0.308254 0.951304i \(-0.400255\pi\)
0.308254 + 0.951304i \(0.400255\pi\)
\(954\) 1.76621e19 0.758537
\(955\) 1.94185e19 0.828313
\(956\) −6.54857e18 −0.277441
\(957\) 1.12552e19 0.473614
\(958\) −3.82072e19 −1.59687
\(959\) −4.45099e19 −1.84772
\(960\) 8.96382e18 0.369598
\(961\) −1.83657e19 −0.752153
\(962\) 0 0
\(963\) 4.03389e19 1.62987
\(964\) −1.48840e19 −0.597338
\(965\) 4.37193e19 1.74279
\(966\) −5.08367e18 −0.201292
\(967\) −4.77797e19 −1.87919 −0.939596 0.342284i \(-0.888799\pi\)
−0.939596 + 0.342284i \(0.888799\pi\)
\(968\) −9.08153e17 −0.0354788
\(969\) −3.25135e18 −0.126171
\(970\) −4.16451e19 −1.60527
\(971\) 1.16863e18 0.0447457 0.0223728 0.999750i \(-0.492878\pi\)
0.0223728 + 0.999750i \(0.492878\pi\)
\(972\) −2.38080e19 −0.905509
\(973\) 3.79390e18 0.143335
\(974\) 1.97146e19 0.739868
\(975\) 0 0
\(976\) −7.75344e18 −0.287125
\(977\) 1.43892e19 0.529324 0.264662 0.964341i \(-0.414740\pi\)
0.264662 + 0.964341i \(0.414740\pi\)
\(978\) 6.43459e18 0.235135
\(979\) 6.07154e18 0.220400
\(980\) 1.36025e19 0.490510
\(981\) −4.27076e19 −1.52988
\(982\) 5.30706e19 1.88855
\(983\) −3.13740e19 −1.10910 −0.554551 0.832150i \(-0.687110\pi\)
−0.554551 + 0.832150i \(0.687110\pi\)
\(984\) −1.46024e18 −0.0512811
\(985\) 3.91479e19 1.36575
\(986\) −6.50055e19 −2.25294
\(987\) −1.92909e19 −0.664187
\(988\) 0 0
\(989\) −4.94650e18 −0.168082
\(990\) 4.24166e19 1.43188
\(991\) −2.67695e19 −0.897762 −0.448881 0.893592i \(-0.648177\pi\)
−0.448881 + 0.893592i \(0.648177\pi\)
\(992\) −2.14404e19 −0.714343
\(993\) 3.81317e18 0.126217
\(994\) 8.82517e19 2.90209
\(995\) −4.38182e19 −1.43154
\(996\) −1.54614e19 −0.501838
\(997\) 2.26280e19 0.729672 0.364836 0.931072i \(-0.381125\pi\)
0.364836 + 0.931072i \(0.381125\pi\)
\(998\) −2.14809e19 −0.688183
\(999\) 1.45902e19 0.464393
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.14.a.f.1.5 30
13.6 odd 12 13.14.e.a.10.13 yes 30
13.11 odd 12 13.14.e.a.4.13 30
13.12 even 2 inner 169.14.a.f.1.26 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.14.e.a.4.13 30 13.11 odd 12
13.14.e.a.10.13 yes 30 13.6 odd 12
169.14.a.f.1.5 30 1.1 even 1 trivial
169.14.a.f.1.26 30 13.12 even 2 inner