Properties

Label 2-13e2-1.1-c13-0-51
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $181.220$
Root an. cond. $13.4618$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 131.·2-s − 395.·3-s + 9.05e3·4-s + 3.44e4·5-s + 5.18e4·6-s + 3.74e5·7-s − 1.13e5·8-s − 1.43e6·9-s − 4.52e6·10-s + 6.52e6·11-s − 3.57e6·12-s − 4.92e7·14-s − 1.36e7·15-s − 5.92e7·16-s − 1.13e8·17-s + 1.88e8·18-s − 7.26e7·19-s + 3.11e8·20-s − 1.48e8·21-s − 8.56e8·22-s − 2.61e8·23-s + 4.47e7·24-s − 3.50e7·25-s + 1.19e9·27-s + 3.39e9·28-s − 4.36e9·29-s + 1.78e9·30-s + ⋯
L(s)  = 1  − 1.45·2-s − 0.312·3-s + 1.10·4-s + 0.985·5-s + 0.454·6-s + 1.20·7-s − 0.152·8-s − 0.902·9-s − 1.43·10-s + 1.11·11-s − 0.345·12-s − 1.74·14-s − 0.308·15-s − 0.883·16-s − 1.13·17-s + 1.30·18-s − 0.354·19-s + 1.08·20-s − 0.376·21-s − 1.61·22-s − 0.368·23-s + 0.0478·24-s − 0.0286·25-s + 0.595·27-s + 1.33·28-s − 1.36·29-s + 0.447·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(181.220\)
Root analytic conductor: \(13.4618\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(1.084274288\)
\(L(\frac12)\) \(\approx\) \(1.084274288\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 131.T + 8.19e3T^{2} \)
3 \( 1 + 395.T + 1.59e6T^{2} \)
5 \( 1 - 3.44e4T + 1.22e9T^{2} \)
7 \( 1 - 3.74e5T + 9.68e10T^{2} \)
11 \( 1 - 6.52e6T + 3.45e13T^{2} \)
17 \( 1 + 1.13e8T + 9.90e15T^{2} \)
19 \( 1 + 7.26e7T + 4.20e16T^{2} \)
23 \( 1 + 2.61e8T + 5.04e17T^{2} \)
29 \( 1 + 4.36e9T + 1.02e19T^{2} \)
31 \( 1 + 2.46e9T + 2.44e19T^{2} \)
37 \( 1 - 1.21e10T + 2.43e20T^{2} \)
41 \( 1 + 3.26e10T + 9.25e20T^{2} \)
43 \( 1 - 1.89e10T + 1.71e21T^{2} \)
47 \( 1 - 1.30e11T + 5.46e21T^{2} \)
53 \( 1 - 9.35e10T + 2.60e22T^{2} \)
59 \( 1 - 3.85e11T + 1.04e23T^{2} \)
61 \( 1 - 1.30e11T + 1.61e23T^{2} \)
67 \( 1 + 1.00e12T + 5.48e23T^{2} \)
71 \( 1 + 1.79e12T + 1.16e24T^{2} \)
73 \( 1 - 1.44e12T + 1.67e24T^{2} \)
79 \( 1 + 1.00e12T + 4.66e24T^{2} \)
83 \( 1 - 4.32e12T + 8.87e24T^{2} \)
89 \( 1 - 9.30e11T + 2.19e25T^{2} \)
97 \( 1 - 9.20e12T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33489479574596603997136240500, −9.140153225920176225124149954472, −8.775723074623973310349022379971, −7.64048230153423503764198383915, −6.49743982242921808547447400804, −5.51944831841184912465136539668, −4.23438064606849692429910680613, −2.22805537141379520003796694391, −1.67804326106117589659761135441, −0.57507440345579771256979244586, 0.57507440345579771256979244586, 1.67804326106117589659761135441, 2.22805537141379520003796694391, 4.23438064606849692429910680613, 5.51944831841184912465136539668, 6.49743982242921808547447400804, 7.64048230153423503764198383915, 8.775723074623973310349022379971, 9.140153225920176225124149954472, 10.33489479574596603997136240500

Graph of the $Z$-function along the critical line