Properties

Label 169.14.a.e.1.6
Level $169$
Weight $14$
Character 169.1
Self dual yes
Analytic conductor $181.220$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,14,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,65] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(181.220269929\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5 x^{13} - 83806 x^{12} + 371578 x^{11} + 2652253571 x^{10} - 14037350343 x^{9} + \cdots - 28\!\cdots\!92 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: multiple of \( 2^{24}\cdot 3^{3}\cdot 5\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(27.4573\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-22.4573 q^{2} +2284.08 q^{3} -7687.67 q^{4} +17999.0 q^{5} -51294.3 q^{6} -563042. q^{7} +356614. q^{8} +3.62272e6 q^{9} -404209. q^{10} +6.98942e6 q^{11} -1.75593e7 q^{12} +1.26444e7 q^{14} +4.11113e7 q^{15} +5.49688e7 q^{16} -3.79357e7 q^{17} -8.13565e7 q^{18} +6.56105e7 q^{19} -1.38370e8 q^{20} -1.28604e9 q^{21} -1.56963e8 q^{22} -9.97845e8 q^{23} +8.14537e8 q^{24} -8.96739e8 q^{25} +4.63303e9 q^{27} +4.32848e9 q^{28} -3.48340e9 q^{29} -9.23248e8 q^{30} +2.61380e9 q^{31} -4.15583e9 q^{32} +1.59644e10 q^{33} +8.51932e8 q^{34} -1.01342e10 q^{35} -2.78503e10 q^{36} +8.62981e8 q^{37} -1.47343e9 q^{38} +6.41870e9 q^{40} +1.77509e9 q^{41} +2.88809e10 q^{42} +6.99718e8 q^{43} -5.37324e10 q^{44} +6.52054e10 q^{45} +2.24089e10 q^{46} +4.91139e10 q^{47} +1.25553e11 q^{48} +2.20128e11 q^{49} +2.01383e10 q^{50} -8.66483e10 q^{51} +3.91615e10 q^{53} -1.04045e11 q^{54} +1.25803e11 q^{55} -2.00789e11 q^{56} +1.49860e11 q^{57} +7.82278e10 q^{58} -2.32206e11 q^{59} -3.16050e11 q^{60} +3.05574e10 q^{61} -5.86988e10 q^{62} -2.03975e12 q^{63} -3.56976e11 q^{64} -3.58518e11 q^{66} +8.74899e11 q^{67} +2.91637e11 q^{68} -2.27916e12 q^{69} +2.27587e11 q^{70} -9.60262e11 q^{71} +1.29191e12 q^{72} +8.68862e11 q^{73} -1.93802e10 q^{74} -2.04823e12 q^{75} -5.04392e11 q^{76} -3.93534e12 q^{77} -7.23289e11 q^{79} +9.89384e11 q^{80} +4.80645e12 q^{81} -3.98637e10 q^{82} -2.62815e12 q^{83} +9.88663e12 q^{84} -6.82804e11 q^{85} -1.57138e10 q^{86} -7.95639e12 q^{87} +2.49253e12 q^{88} -4.90223e12 q^{89} -1.46434e12 q^{90} +7.67110e12 q^{92} +5.97014e12 q^{93} -1.10296e12 q^{94} +1.18092e12 q^{95} -9.49228e12 q^{96} +6.50670e12 q^{97} -4.94347e12 q^{98} +2.53207e13 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 65 q^{2} - 728 q^{3} + 53249 q^{4} + 20930 q^{5} - 143910 q^{6} + 173992 q^{7} + 1308489 q^{8} + 5231838 q^{9} - 2769243 q^{10} - 10986144 q^{11} - 22602732 q^{12} - 11865878 q^{14} + 75354448 q^{15}+ \cdots + 16619904586272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −22.4573 −0.248120 −0.124060 0.992275i \(-0.539592\pi\)
−0.124060 + 0.992275i \(0.539592\pi\)
\(3\) 2284.08 1.80894 0.904470 0.426538i \(-0.140267\pi\)
0.904470 + 0.426538i \(0.140267\pi\)
\(4\) −7687.67 −0.938436
\(5\) 17999.0 0.515162 0.257581 0.966257i \(-0.417075\pi\)
0.257581 + 0.966257i \(0.417075\pi\)
\(6\) −51294.3 −0.448835
\(7\) −563042. −1.80886 −0.904428 0.426627i \(-0.859702\pi\)
−0.904428 + 0.426627i \(0.859702\pi\)
\(8\) 356614. 0.480965
\(9\) 3.62272e6 2.27226
\(10\) −404209. −0.127822
\(11\) 6.98942e6 1.18957 0.594783 0.803886i \(-0.297238\pi\)
0.594783 + 0.803886i \(0.297238\pi\)
\(12\) −1.75593e7 −1.69757
\(13\) 0 0
\(14\) 1.26444e7 0.448814
\(15\) 4.11113e7 0.931896
\(16\) 5.49688e7 0.819099
\(17\) −3.79357e7 −0.381180 −0.190590 0.981670i \(-0.561040\pi\)
−0.190590 + 0.981670i \(0.561040\pi\)
\(18\) −8.13565e7 −0.563794
\(19\) 6.56105e7 0.319944 0.159972 0.987122i \(-0.448860\pi\)
0.159972 + 0.987122i \(0.448860\pi\)
\(20\) −1.38370e8 −0.483446
\(21\) −1.28604e9 −3.27211
\(22\) −1.56963e8 −0.295156
\(23\) −9.97845e8 −1.40550 −0.702752 0.711435i \(-0.748046\pi\)
−0.702752 + 0.711435i \(0.748046\pi\)
\(24\) 8.14537e8 0.870037
\(25\) −8.96739e8 −0.734608
\(26\) 0 0
\(27\) 4.63303e9 2.30145
\(28\) 4.32848e9 1.69750
\(29\) −3.48340e9 −1.08747 −0.543734 0.839257i \(-0.682990\pi\)
−0.543734 + 0.839257i \(0.682990\pi\)
\(30\) −9.23248e8 −0.231222
\(31\) 2.61380e9 0.528958 0.264479 0.964391i \(-0.414800\pi\)
0.264479 + 0.964391i \(0.414800\pi\)
\(32\) −4.15583e9 −0.684201
\(33\) 1.59644e10 2.15185
\(34\) 8.51932e8 0.0945784
\(35\) −1.01342e10 −0.931853
\(36\) −2.78503e10 −2.13237
\(37\) 8.62981e8 0.0552955 0.0276477 0.999618i \(-0.491198\pi\)
0.0276477 + 0.999618i \(0.491198\pi\)
\(38\) −1.47343e9 −0.0793847
\(39\) 0 0
\(40\) 6.41870e9 0.247775
\(41\) 1.77509e9 0.0583613 0.0291807 0.999574i \(-0.490710\pi\)
0.0291807 + 0.999574i \(0.490710\pi\)
\(42\) 2.88809e10 0.811877
\(43\) 6.99718e8 0.0168802 0.00844011 0.999964i \(-0.497313\pi\)
0.00844011 + 0.999964i \(0.497313\pi\)
\(44\) −5.37324e10 −1.11633
\(45\) 6.52054e10 1.17058
\(46\) 2.24089e10 0.348734
\(47\) 4.91139e10 0.664612 0.332306 0.943172i \(-0.392173\pi\)
0.332306 + 0.943172i \(0.392173\pi\)
\(48\) 1.25553e11 1.48170
\(49\) 2.20128e11 2.27196
\(50\) 2.01383e10 0.182271
\(51\) −8.66483e10 −0.689531
\(52\) 0 0
\(53\) 3.91615e10 0.242698 0.121349 0.992610i \(-0.461278\pi\)
0.121349 + 0.992610i \(0.461278\pi\)
\(54\) −1.04045e11 −0.571036
\(55\) 1.25803e11 0.612819
\(56\) −2.00789e11 −0.869997
\(57\) 1.49860e11 0.578760
\(58\) 7.82278e10 0.269823
\(59\) −2.32206e11 −0.716697 −0.358349 0.933588i \(-0.616660\pi\)
−0.358349 + 0.933588i \(0.616660\pi\)
\(60\) −3.16050e11 −0.874525
\(61\) 3.05574e10 0.0759403 0.0379701 0.999279i \(-0.487911\pi\)
0.0379701 + 0.999279i \(0.487911\pi\)
\(62\) −5.86988e10 −0.131245
\(63\) −2.03975e12 −4.11019
\(64\) −3.56976e11 −0.649335
\(65\) 0 0
\(66\) −3.58518e11 −0.533919
\(67\) 8.74899e11 1.18160 0.590802 0.806817i \(-0.298812\pi\)
0.590802 + 0.806817i \(0.298812\pi\)
\(68\) 2.91637e11 0.357713
\(69\) −2.27916e12 −2.54247
\(70\) 2.27587e11 0.231212
\(71\) −9.60262e11 −0.889632 −0.444816 0.895622i \(-0.646731\pi\)
−0.444816 + 0.895622i \(0.646731\pi\)
\(72\) 1.29191e12 1.09288
\(73\) 8.68862e11 0.671974 0.335987 0.941867i \(-0.390930\pi\)
0.335987 + 0.941867i \(0.390930\pi\)
\(74\) −1.93802e10 −0.0137199
\(75\) −2.04823e12 −1.32886
\(76\) −5.04392e11 −0.300248
\(77\) −3.93534e12 −2.15175
\(78\) 0 0
\(79\) −7.23289e11 −0.334762 −0.167381 0.985892i \(-0.553531\pi\)
−0.167381 + 0.985892i \(0.553531\pi\)
\(80\) 9.89384e11 0.421968
\(81\) 4.80645e12 1.89091
\(82\) −3.98637e10 −0.0144806
\(83\) −2.62815e12 −0.882353 −0.441176 0.897420i \(-0.645439\pi\)
−0.441176 + 0.897420i \(0.645439\pi\)
\(84\) 9.88663e12 3.07067
\(85\) −6.82804e11 −0.196369
\(86\) −1.57138e10 −0.00418833
\(87\) −7.95639e12 −1.96717
\(88\) 2.49253e12 0.572141
\(89\) −4.90223e12 −1.04558 −0.522792 0.852460i \(-0.675109\pi\)
−0.522792 + 0.852460i \(0.675109\pi\)
\(90\) −1.46434e12 −0.290445
\(91\) 0 0
\(92\) 7.67110e12 1.31898
\(93\) 5.97014e12 0.956853
\(94\) −1.10296e12 −0.164904
\(95\) 1.18092e12 0.164823
\(96\) −9.49228e12 −1.23768
\(97\) 6.50670e12 0.793130 0.396565 0.918007i \(-0.370202\pi\)
0.396565 + 0.918007i \(0.370202\pi\)
\(98\) −4.94347e12 −0.563719
\(99\) 2.53207e13 2.70301
\(100\) 6.89383e12 0.689383
\(101\) −7.33753e12 −0.687798 −0.343899 0.939007i \(-0.611748\pi\)
−0.343899 + 0.939007i \(0.611748\pi\)
\(102\) 1.94588e12 0.171087
\(103\) −1.44084e13 −1.18898 −0.594489 0.804103i \(-0.702646\pi\)
−0.594489 + 0.804103i \(0.702646\pi\)
\(104\) 0 0
\(105\) −2.31474e13 −1.68567
\(106\) −8.79461e11 −0.0602183
\(107\) −2.66271e13 −1.71526 −0.857628 0.514271i \(-0.828063\pi\)
−0.857628 + 0.514271i \(0.828063\pi\)
\(108\) −3.56172e13 −2.15976
\(109\) 6.54899e12 0.374026 0.187013 0.982357i \(-0.440119\pi\)
0.187013 + 0.982357i \(0.440119\pi\)
\(110\) −2.82519e12 −0.152053
\(111\) 1.97112e12 0.100026
\(112\) −3.09498e13 −1.48163
\(113\) −2.94436e13 −1.33040 −0.665198 0.746667i \(-0.731653\pi\)
−0.665198 + 0.746667i \(0.731653\pi\)
\(114\) −3.36545e12 −0.143602
\(115\) −1.79602e13 −0.724062
\(116\) 2.67793e13 1.02052
\(117\) 0 0
\(118\) 5.21472e12 0.177827
\(119\) 2.13594e13 0.689499
\(120\) 1.46609e13 0.448210
\(121\) 1.43293e13 0.415070
\(122\) −6.86236e11 −0.0188423
\(123\) 4.05445e12 0.105572
\(124\) −2.00940e13 −0.496393
\(125\) −3.81119e13 −0.893604
\(126\) 4.58071e13 1.01982
\(127\) 3.00703e13 0.635935 0.317968 0.948102i \(-0.397000\pi\)
0.317968 + 0.948102i \(0.397000\pi\)
\(128\) 4.20613e13 0.845314
\(129\) 1.59822e12 0.0305353
\(130\) 0 0
\(131\) 3.69868e12 0.0639416 0.0319708 0.999489i \(-0.489822\pi\)
0.0319708 + 0.999489i \(0.489822\pi\)
\(132\) −1.22729e14 −2.01938
\(133\) −3.69415e13 −0.578733
\(134\) −1.96479e13 −0.293180
\(135\) 8.33900e13 1.18562
\(136\) −1.35284e13 −0.183334
\(137\) −1.60146e13 −0.206934 −0.103467 0.994633i \(-0.532994\pi\)
−0.103467 + 0.994633i \(0.532994\pi\)
\(138\) 5.11838e13 0.630839
\(139\) −9.87981e11 −0.0116186 −0.00580928 0.999983i \(-0.501849\pi\)
−0.00580928 + 0.999983i \(0.501849\pi\)
\(140\) 7.79084e13 0.874485
\(141\) 1.12180e14 1.20224
\(142\) 2.15649e13 0.220736
\(143\) 0 0
\(144\) 1.99137e14 1.86121
\(145\) −6.26978e13 −0.560222
\(146\) −1.95123e13 −0.166730
\(147\) 5.02790e14 4.10983
\(148\) −6.63431e12 −0.0518913
\(149\) −1.28340e14 −0.960842 −0.480421 0.877038i \(-0.659516\pi\)
−0.480421 + 0.877038i \(0.659516\pi\)
\(150\) 4.59976e13 0.329718
\(151\) −3.79463e13 −0.260507 −0.130253 0.991481i \(-0.541579\pi\)
−0.130253 + 0.991481i \(0.541579\pi\)
\(152\) 2.33976e13 0.153882
\(153\) −1.37430e14 −0.866140
\(154\) 8.83771e13 0.533894
\(155\) 4.70458e13 0.272499
\(156\) 0 0
\(157\) −2.24267e14 −1.19513 −0.597567 0.801819i \(-0.703866\pi\)
−0.597567 + 0.801819i \(0.703866\pi\)
\(158\) 1.62431e13 0.0830612
\(159\) 8.94482e13 0.439026
\(160\) −7.48009e13 −0.352474
\(161\) 5.61829e14 2.54235
\(162\) −1.07940e14 −0.469174
\(163\) 1.58288e12 0.00661042 0.00330521 0.999995i \(-0.498948\pi\)
0.00330521 + 0.999995i \(0.498948\pi\)
\(164\) −1.36463e13 −0.0547684
\(165\) 2.87344e14 1.10855
\(166\) 5.90211e13 0.218930
\(167\) 3.83958e14 1.36970 0.684852 0.728682i \(-0.259867\pi\)
0.684852 + 0.728682i \(0.259867\pi\)
\(168\) −4.58619e14 −1.57377
\(169\) 0 0
\(170\) 1.53339e13 0.0487232
\(171\) 2.37688e14 0.726998
\(172\) −5.37920e12 −0.0158410
\(173\) −6.48567e14 −1.83931 −0.919655 0.392728i \(-0.871532\pi\)
−0.919655 + 0.392728i \(0.871532\pi\)
\(174\) 1.78679e14 0.488094
\(175\) 5.04902e14 1.32880
\(176\) 3.84200e14 0.974373
\(177\) −5.30379e14 −1.29646
\(178\) 1.10091e14 0.259430
\(179\) −2.94991e14 −0.670293 −0.335147 0.942166i \(-0.608786\pi\)
−0.335147 + 0.942166i \(0.608786\pi\)
\(180\) −5.01277e14 −1.09852
\(181\) 3.58502e14 0.757846 0.378923 0.925428i \(-0.376294\pi\)
0.378923 + 0.925428i \(0.376294\pi\)
\(182\) 0 0
\(183\) 6.97956e13 0.137371
\(184\) −3.55846e14 −0.675999
\(185\) 1.55328e13 0.0284861
\(186\) −1.34073e14 −0.237415
\(187\) −2.65148e14 −0.453439
\(188\) −3.77571e14 −0.623696
\(189\) −2.60859e15 −4.16298
\(190\) −2.65203e13 −0.0408960
\(191\) −5.71145e14 −0.851196 −0.425598 0.904912i \(-0.639936\pi\)
−0.425598 + 0.904912i \(0.639936\pi\)
\(192\) −8.15363e14 −1.17461
\(193\) −9.65742e14 −1.34505 −0.672525 0.740074i \(-0.734790\pi\)
−0.672525 + 0.740074i \(0.734790\pi\)
\(194\) −1.46123e14 −0.196792
\(195\) 0 0
\(196\) −1.69227e15 −2.13209
\(197\) −8.80676e14 −1.07346 −0.536730 0.843754i \(-0.680340\pi\)
−0.536730 + 0.843754i \(0.680340\pi\)
\(198\) −5.68635e14 −0.670671
\(199\) −6.69730e14 −0.764460 −0.382230 0.924067i \(-0.624844\pi\)
−0.382230 + 0.924067i \(0.624844\pi\)
\(200\) −3.19790e14 −0.353321
\(201\) 1.99834e15 2.13745
\(202\) 1.64781e14 0.170657
\(203\) 1.96130e15 1.96707
\(204\) 6.66123e14 0.647081
\(205\) 3.19498e13 0.0300655
\(206\) 3.23574e14 0.295010
\(207\) −3.61491e15 −3.19367
\(208\) 0 0
\(209\) 4.58579e14 0.380595
\(210\) 5.19828e14 0.418248
\(211\) −3.94506e14 −0.307764 −0.153882 0.988089i \(-0.549178\pi\)
−0.153882 + 0.988089i \(0.549178\pi\)
\(212\) −3.01061e14 −0.227757
\(213\) −2.19332e15 −1.60929
\(214\) 5.97972e14 0.425590
\(215\) 1.25942e13 0.00869604
\(216\) 1.65221e15 1.10692
\(217\) −1.47168e15 −0.956808
\(218\) −1.47073e14 −0.0928035
\(219\) 1.98456e15 1.21556
\(220\) −9.67130e14 −0.575092
\(221\) 0 0
\(222\) −4.42660e13 −0.0248185
\(223\) −1.25180e15 −0.681639 −0.340820 0.940129i \(-0.610705\pi\)
−0.340820 + 0.940129i \(0.610705\pi\)
\(224\) 2.33991e15 1.23762
\(225\) −3.24863e15 −1.66922
\(226\) 6.61223e14 0.330098
\(227\) 9.93356e14 0.481878 0.240939 0.970540i \(-0.422545\pi\)
0.240939 + 0.970540i \(0.422545\pi\)
\(228\) −1.15207e15 −0.543130
\(229\) −3.21076e15 −1.47122 −0.735610 0.677406i \(-0.763104\pi\)
−0.735610 + 0.677406i \(0.763104\pi\)
\(230\) 4.03338e14 0.179654
\(231\) −8.98865e15 −3.89239
\(232\) −1.24223e15 −0.523035
\(233\) −2.86663e15 −1.17370 −0.586852 0.809694i \(-0.699633\pi\)
−0.586852 + 0.809694i \(0.699633\pi\)
\(234\) 0 0
\(235\) 8.84001e14 0.342382
\(236\) 1.78513e15 0.672575
\(237\) −1.65205e15 −0.605564
\(238\) −4.79674e14 −0.171079
\(239\) 1.30135e15 0.451656 0.225828 0.974167i \(-0.427491\pi\)
0.225828 + 0.974167i \(0.427491\pi\)
\(240\) 2.25984e15 0.763315
\(241\) −3.70381e15 −1.21769 −0.608847 0.793287i \(-0.708368\pi\)
−0.608847 + 0.793287i \(0.708368\pi\)
\(242\) −3.21798e14 −0.102987
\(243\) 3.59179e15 1.11910
\(244\) −2.34915e14 −0.0712651
\(245\) 3.96208e15 1.17043
\(246\) −9.10520e13 −0.0261946
\(247\) 0 0
\(248\) 9.32118e14 0.254410
\(249\) −6.00291e15 −1.59612
\(250\) 8.55889e14 0.221721
\(251\) 7.03934e14 0.177686 0.0888429 0.996046i \(-0.471683\pi\)
0.0888429 + 0.996046i \(0.471683\pi\)
\(252\) 1.56809e16 3.85716
\(253\) −6.97436e15 −1.67194
\(254\) −6.75296e14 −0.157788
\(255\) −1.55958e15 −0.355220
\(256\) 1.97976e15 0.439595
\(257\) 6.73444e15 1.45793 0.728965 0.684551i \(-0.240002\pi\)
0.728965 + 0.684551i \(0.240002\pi\)
\(258\) −3.58916e13 −0.00757643
\(259\) −4.85895e14 −0.100022
\(260\) 0 0
\(261\) −1.26194e16 −2.47101
\(262\) −8.30623e13 −0.0158652
\(263\) −1.05856e16 −1.97244 −0.986218 0.165449i \(-0.947093\pi\)
−0.986218 + 0.165449i \(0.947093\pi\)
\(264\) 5.69315e15 1.03497
\(265\) 7.04869e14 0.125029
\(266\) 8.29605e14 0.143595
\(267\) −1.11971e16 −1.89140
\(268\) −6.72593e15 −1.10886
\(269\) 9.26365e15 1.49071 0.745354 0.666669i \(-0.232281\pi\)
0.745354 + 0.666669i \(0.232281\pi\)
\(270\) −1.87271e15 −0.294176
\(271\) −2.06693e15 −0.316975 −0.158487 0.987361i \(-0.550662\pi\)
−0.158487 + 0.987361i \(0.550662\pi\)
\(272\) −2.08528e15 −0.312224
\(273\) 0 0
\(274\) 3.59645e14 0.0513446
\(275\) −6.26769e15 −0.873866
\(276\) 1.75214e16 2.38595
\(277\) 1.01472e16 1.34967 0.674833 0.737970i \(-0.264216\pi\)
0.674833 + 0.737970i \(0.264216\pi\)
\(278\) 2.21874e13 0.00288280
\(279\) 9.46906e15 1.20193
\(280\) −3.61400e15 −0.448189
\(281\) 9.99465e15 1.21109 0.605545 0.795811i \(-0.292955\pi\)
0.605545 + 0.795811i \(0.292955\pi\)
\(282\) −2.51926e15 −0.298301
\(283\) −2.14952e14 −0.0248731 −0.0124365 0.999923i \(-0.503959\pi\)
−0.0124365 + 0.999923i \(0.503959\pi\)
\(284\) 7.38218e15 0.834863
\(285\) 2.69733e15 0.298155
\(286\) 0 0
\(287\) −9.99450e14 −0.105567
\(288\) −1.50554e16 −1.55468
\(289\) −8.46546e15 −0.854702
\(290\) 1.40802e15 0.139003
\(291\) 1.48618e16 1.43472
\(292\) −6.67953e15 −0.630605
\(293\) 5.38906e15 0.497592 0.248796 0.968556i \(-0.419965\pi\)
0.248796 + 0.968556i \(0.419965\pi\)
\(294\) −1.12913e16 −1.01973
\(295\) −4.17948e15 −0.369215
\(296\) 3.07751e14 0.0265952
\(297\) 3.23822e16 2.73772
\(298\) 2.88217e15 0.238405
\(299\) 0 0
\(300\) 1.57461e16 1.24705
\(301\) −3.93971e14 −0.0305339
\(302\) 8.52171e14 0.0646371
\(303\) −1.67595e16 −1.24419
\(304\) 3.60653e15 0.262066
\(305\) 5.50002e14 0.0391215
\(306\) 3.08631e15 0.214907
\(307\) 8.55076e15 0.582915 0.291458 0.956584i \(-0.405860\pi\)
0.291458 + 0.956584i \(0.405860\pi\)
\(308\) 3.02536e16 2.01928
\(309\) −3.29100e16 −2.15079
\(310\) −1.05652e15 −0.0676125
\(311\) −2.68661e16 −1.68369 −0.841846 0.539719i \(-0.818531\pi\)
−0.841846 + 0.539719i \(0.818531\pi\)
\(312\) 0 0
\(313\) 1.98404e16 1.19265 0.596325 0.802743i \(-0.296627\pi\)
0.596325 + 0.802743i \(0.296627\pi\)
\(314\) 5.03642e15 0.296537
\(315\) −3.67134e16 −2.11741
\(316\) 5.56041e15 0.314153
\(317\) −5.96403e15 −0.330107 −0.165053 0.986285i \(-0.552780\pi\)
−0.165053 + 0.986285i \(0.552780\pi\)
\(318\) −2.00876e15 −0.108931
\(319\) −2.43470e16 −1.29362
\(320\) −6.42521e15 −0.334513
\(321\) −6.08185e16 −3.10279
\(322\) −1.26172e16 −0.630810
\(323\) −2.48898e15 −0.121956
\(324\) −3.69504e16 −1.77450
\(325\) 0 0
\(326\) −3.55472e13 −0.00164018
\(327\) 1.49584e16 0.676591
\(328\) 6.33022e14 0.0280698
\(329\) −2.76532e16 −1.20219
\(330\) −6.45297e15 −0.275055
\(331\) 3.64400e16 1.52299 0.761495 0.648171i \(-0.224466\pi\)
0.761495 + 0.648171i \(0.224466\pi\)
\(332\) 2.02043e16 0.828032
\(333\) 3.12634e15 0.125646
\(334\) −8.62266e15 −0.339852
\(335\) 1.57473e16 0.608717
\(336\) −7.06919e16 −2.68018
\(337\) 2.45702e16 0.913723 0.456861 0.889538i \(-0.348974\pi\)
0.456861 + 0.889538i \(0.348974\pi\)
\(338\) 0 0
\(339\) −6.72516e16 −2.40660
\(340\) 5.24917e15 0.184280
\(341\) 1.82689e16 0.629231
\(342\) −5.33784e15 −0.180383
\(343\) −6.93886e16 −2.30079
\(344\) 2.49529e14 0.00811880
\(345\) −4.10227e16 −1.30978
\(346\) 1.45650e16 0.456370
\(347\) 2.75785e16 0.848065 0.424033 0.905647i \(-0.360614\pi\)
0.424033 + 0.905647i \(0.360614\pi\)
\(348\) 6.11661e16 1.84606
\(349\) 1.26995e16 0.376202 0.188101 0.982150i \(-0.439767\pi\)
0.188101 + 0.982150i \(0.439767\pi\)
\(350\) −1.13387e16 −0.329702
\(351\) 0 0
\(352\) −2.90469e16 −0.813902
\(353\) −1.96015e15 −0.0539205 −0.0269603 0.999637i \(-0.508583\pi\)
−0.0269603 + 0.999637i \(0.508583\pi\)
\(354\) 1.19109e16 0.321679
\(355\) −1.72838e16 −0.458305
\(356\) 3.76867e16 0.981213
\(357\) 4.87866e16 1.24726
\(358\) 6.62471e15 0.166313
\(359\) 7.65438e16 1.88710 0.943552 0.331223i \(-0.107461\pi\)
0.943552 + 0.331223i \(0.107461\pi\)
\(360\) 2.32532e16 0.563010
\(361\) −3.77483e16 −0.897636
\(362\) −8.05099e15 −0.188037
\(363\) 3.27294e16 0.750836
\(364\) 0 0
\(365\) 1.56387e16 0.346175
\(366\) −1.56742e15 −0.0340846
\(367\) 7.32195e16 1.56422 0.782109 0.623142i \(-0.214144\pi\)
0.782109 + 0.623142i \(0.214144\pi\)
\(368\) −5.48503e16 −1.15125
\(369\) 6.43065e15 0.132612
\(370\) −3.48824e14 −0.00706799
\(371\) −2.20496e16 −0.439006
\(372\) −4.58964e16 −0.897945
\(373\) −4.05086e16 −0.778825 −0.389413 0.921063i \(-0.627322\pi\)
−0.389413 + 0.921063i \(0.627322\pi\)
\(374\) 5.95451e15 0.112507
\(375\) −8.70507e16 −1.61648
\(376\) 1.75147e16 0.319655
\(377\) 0 0
\(378\) 5.85819e16 1.03292
\(379\) 1.46494e16 0.253901 0.126950 0.991909i \(-0.459481\pi\)
0.126950 + 0.991909i \(0.459481\pi\)
\(380\) −9.07855e15 −0.154676
\(381\) 6.86830e16 1.15037
\(382\) 1.28264e16 0.211199
\(383\) 3.91996e16 0.634585 0.317292 0.948328i \(-0.397226\pi\)
0.317292 + 0.948328i \(0.397226\pi\)
\(384\) 9.60716e16 1.52912
\(385\) −7.08323e16 −1.10850
\(386\) 2.16879e16 0.333734
\(387\) 2.53488e15 0.0383563
\(388\) −5.00213e16 −0.744302
\(389\) 1.62572e16 0.237888 0.118944 0.992901i \(-0.462049\pi\)
0.118944 + 0.992901i \(0.462049\pi\)
\(390\) 0 0
\(391\) 3.78539e16 0.535749
\(392\) 7.85007e16 1.09273
\(393\) 8.44810e15 0.115666
\(394\) 1.97776e16 0.266347
\(395\) −1.30185e16 −0.172456
\(396\) −1.94657e17 −2.53660
\(397\) 1.38532e17 1.77587 0.887933 0.459972i \(-0.152141\pi\)
0.887933 + 0.459972i \(0.152141\pi\)
\(398\) 1.50403e16 0.189678
\(399\) −8.43774e16 −1.04689
\(400\) −4.92927e16 −0.601717
\(401\) 1.60746e17 1.93064 0.965320 0.261068i \(-0.0840748\pi\)
0.965320 + 0.261068i \(0.0840748\pi\)
\(402\) −4.48774e16 −0.530345
\(403\) 0 0
\(404\) 5.64085e16 0.645455
\(405\) 8.65114e16 0.974127
\(406\) −4.40456e16 −0.488071
\(407\) 6.03174e15 0.0657777
\(408\) −3.09000e16 −0.331641
\(409\) −1.78081e17 −1.88112 −0.940560 0.339629i \(-0.889699\pi\)
−0.940560 + 0.339629i \(0.889699\pi\)
\(410\) −7.17507e14 −0.00745987
\(411\) −3.65787e16 −0.374332
\(412\) 1.10767e17 1.11578
\(413\) 1.30742e17 1.29640
\(414\) 8.11811e16 0.792415
\(415\) −4.73041e16 −0.454554
\(416\) 0 0
\(417\) −2.25663e15 −0.0210173
\(418\) −1.02984e16 −0.0944334
\(419\) −1.16067e17 −1.04789 −0.523945 0.851752i \(-0.675540\pi\)
−0.523945 + 0.851752i \(0.675540\pi\)
\(420\) 1.77949e17 1.58189
\(421\) −8.56586e16 −0.749786 −0.374893 0.927068i \(-0.622321\pi\)
−0.374893 + 0.927068i \(0.622321\pi\)
\(422\) 8.85954e15 0.0763625
\(423\) 1.77926e17 1.51017
\(424\) 1.39656e16 0.116729
\(425\) 3.40184e16 0.280018
\(426\) 4.92560e16 0.399298
\(427\) −1.72051e16 −0.137365
\(428\) 2.04700e17 1.60966
\(429\) 0 0
\(430\) −2.82832e14 −0.00215767
\(431\) −1.96830e17 −1.47907 −0.739537 0.673115i \(-0.764956\pi\)
−0.739537 + 0.673115i \(0.764956\pi\)
\(432\) 2.54672e17 1.88511
\(433\) 1.74834e17 1.27483 0.637417 0.770519i \(-0.280003\pi\)
0.637417 + 0.770519i \(0.280003\pi\)
\(434\) 3.30499e16 0.237404
\(435\) −1.43207e17 −1.01341
\(436\) −5.03465e16 −0.351000
\(437\) −6.54691e16 −0.449683
\(438\) −4.45677e16 −0.301605
\(439\) 1.19887e17 0.799377 0.399689 0.916651i \(-0.369118\pi\)
0.399689 + 0.916651i \(0.369118\pi\)
\(440\) 4.48630e16 0.294745
\(441\) 7.97461e17 5.16248
\(442\) 0 0
\(443\) 1.17204e17 0.736745 0.368372 0.929678i \(-0.379915\pi\)
0.368372 + 0.929678i \(0.379915\pi\)
\(444\) −1.51533e16 −0.0938682
\(445\) −8.82353e16 −0.538645
\(446\) 2.81121e16 0.169129
\(447\) −2.93140e17 −1.73811
\(448\) 2.00992e17 1.17455
\(449\) −1.80445e17 −1.03930 −0.519652 0.854378i \(-0.673938\pi\)
−0.519652 + 0.854378i \(0.673938\pi\)
\(450\) 7.29555e16 0.414168
\(451\) 1.24068e16 0.0694247
\(452\) 2.26352e17 1.24849
\(453\) −8.66726e16 −0.471241
\(454\) −2.23081e16 −0.119564
\(455\) 0 0
\(456\) 5.34422e16 0.278364
\(457\) −2.28310e17 −1.17238 −0.586191 0.810173i \(-0.699373\pi\)
−0.586191 + 0.810173i \(0.699373\pi\)
\(458\) 7.21050e16 0.365039
\(459\) −1.75757e17 −0.877264
\(460\) 1.38072e17 0.679486
\(461\) −7.32739e16 −0.355544 −0.177772 0.984072i \(-0.556889\pi\)
−0.177772 + 0.984072i \(0.556889\pi\)
\(462\) 2.01861e17 0.965782
\(463\) 1.35914e17 0.641190 0.320595 0.947216i \(-0.396117\pi\)
0.320595 + 0.947216i \(0.396117\pi\)
\(464\) −1.91479e17 −0.890745
\(465\) 1.07457e17 0.492934
\(466\) 6.43768e16 0.291220
\(467\) −1.92016e17 −0.856600 −0.428300 0.903637i \(-0.640887\pi\)
−0.428300 + 0.903637i \(0.640887\pi\)
\(468\) 0 0
\(469\) −4.92605e17 −2.13735
\(470\) −1.98523e16 −0.0849521
\(471\) −5.12244e17 −2.16193
\(472\) −8.28081e16 −0.344707
\(473\) 4.89063e15 0.0200802
\(474\) 3.71006e16 0.150253
\(475\) −5.88354e16 −0.235034
\(476\) −1.64204e17 −0.647051
\(477\) 1.41871e17 0.551474
\(478\) −2.92248e16 −0.112065
\(479\) −1.95441e17 −0.739323 −0.369662 0.929166i \(-0.620526\pi\)
−0.369662 + 0.929166i \(0.620526\pi\)
\(480\) −1.70852e17 −0.637604
\(481\) 0 0
\(482\) 8.31776e16 0.302135
\(483\) 1.28327e18 4.59896
\(484\) −1.10159e17 −0.389516
\(485\) 1.17114e17 0.408590
\(486\) −8.06619e16 −0.277672
\(487\) −4.86993e17 −1.65419 −0.827094 0.562064i \(-0.810007\pi\)
−0.827094 + 0.562064i \(0.810007\pi\)
\(488\) 1.08972e16 0.0365246
\(489\) 3.61544e15 0.0119578
\(490\) −8.89776e16 −0.290406
\(491\) −5.90247e16 −0.190110 −0.0950549 0.995472i \(-0.530303\pi\)
−0.0950549 + 0.995472i \(0.530303\pi\)
\(492\) −3.11693e16 −0.0990727
\(493\) 1.32145e17 0.414521
\(494\) 0 0
\(495\) 4.55748e17 1.39249
\(496\) 1.43677e17 0.433269
\(497\) 5.40668e17 1.60922
\(498\) 1.34809e17 0.396030
\(499\) −4.34707e17 −1.26050 −0.630250 0.776392i \(-0.717048\pi\)
−0.630250 + 0.776392i \(0.717048\pi\)
\(500\) 2.92991e17 0.838590
\(501\) 8.76993e17 2.47771
\(502\) −1.58084e16 −0.0440875
\(503\) −6.61219e17 −1.82035 −0.910173 0.414229i \(-0.864051\pi\)
−0.910173 + 0.414229i \(0.864051\pi\)
\(504\) −7.27402e17 −1.97686
\(505\) −1.32068e17 −0.354327
\(506\) 1.56625e17 0.414843
\(507\) 0 0
\(508\) −2.31170e17 −0.596785
\(509\) −5.88159e17 −1.49909 −0.749547 0.661951i \(-0.769729\pi\)
−0.749547 + 0.661951i \(0.769729\pi\)
\(510\) 3.50240e16 0.0881373
\(511\) −4.89206e17 −1.21550
\(512\) −3.89026e17 −0.954386
\(513\) 3.03975e17 0.736335
\(514\) −1.51237e17 −0.361742
\(515\) −2.59337e17 −0.612516
\(516\) −1.22866e16 −0.0286554
\(517\) 3.43278e17 0.790600
\(518\) 1.09119e16 0.0248174
\(519\) −1.48138e18 −3.32720
\(520\) 0 0
\(521\) 5.46350e17 1.19681 0.598405 0.801193i \(-0.295801\pi\)
0.598405 + 0.801193i \(0.295801\pi\)
\(522\) 2.83397e17 0.613109
\(523\) 4.55097e17 0.972397 0.486198 0.873849i \(-0.338383\pi\)
0.486198 + 0.873849i \(0.338383\pi\)
\(524\) −2.84342e16 −0.0600051
\(525\) 1.15324e18 2.40372
\(526\) 2.37724e17 0.489402
\(527\) −9.91561e16 −0.201628
\(528\) 8.77546e17 1.76258
\(529\) 4.91658e17 0.975442
\(530\) −1.58294e16 −0.0310222
\(531\) −8.41218e17 −1.62852
\(532\) 2.83994e17 0.543104
\(533\) 0 0
\(534\) 2.51457e17 0.469294
\(535\) −4.79261e17 −0.883634
\(536\) 3.12001e17 0.568310
\(537\) −6.73785e17 −1.21252
\(538\) −2.08036e17 −0.369875
\(539\) 1.53857e18 2.70265
\(540\) −6.41075e17 −1.11263
\(541\) 1.13354e18 1.94381 0.971904 0.235377i \(-0.0756326\pi\)
0.971904 + 0.235377i \(0.0756326\pi\)
\(542\) 4.64176e16 0.0786479
\(543\) 8.18850e17 1.37090
\(544\) 1.57654e17 0.260803
\(545\) 1.17875e17 0.192684
\(546\) 0 0
\(547\) −2.31128e17 −0.368922 −0.184461 0.982840i \(-0.559054\pi\)
−0.184461 + 0.982840i \(0.559054\pi\)
\(548\) 1.23115e17 0.194195
\(549\) 1.10701e17 0.172556
\(550\) 1.40755e17 0.216824
\(551\) −2.28548e17 −0.347930
\(552\) −8.12782e17 −1.22284
\(553\) 4.07242e17 0.605535
\(554\) −2.27878e17 −0.334880
\(555\) 3.54782e16 0.0515297
\(556\) 7.59527e15 0.0109033
\(557\) −7.29742e17 −1.03541 −0.517703 0.855560i \(-0.673213\pi\)
−0.517703 + 0.855560i \(0.673213\pi\)
\(558\) −2.12649e17 −0.298223
\(559\) 0 0
\(560\) −5.57065e17 −0.763280
\(561\) −6.05621e17 −0.820243
\(562\) −2.24453e17 −0.300496
\(563\) 1.01773e18 1.34688 0.673441 0.739241i \(-0.264816\pi\)
0.673441 + 0.739241i \(0.264816\pi\)
\(564\) −8.62404e17 −1.12823
\(565\) −5.29955e17 −0.685369
\(566\) 4.82723e15 0.00617151
\(567\) −2.70624e18 −3.42039
\(568\) −3.42443e17 −0.427882
\(569\) −6.60459e17 −0.815861 −0.407931 0.913013i \(-0.633749\pi\)
−0.407931 + 0.913013i \(0.633749\pi\)
\(570\) −6.05747e16 −0.0739783
\(571\) −3.91758e16 −0.0473024 −0.0236512 0.999720i \(-0.507529\pi\)
−0.0236512 + 0.999720i \(0.507529\pi\)
\(572\) 0 0
\(573\) −1.30454e18 −1.53976
\(574\) 2.24449e16 0.0261934
\(575\) 8.94806e17 1.03250
\(576\) −1.29322e18 −1.47546
\(577\) 1.66029e18 1.87302 0.936508 0.350645i \(-0.114038\pi\)
0.936508 + 0.350645i \(0.114038\pi\)
\(578\) 1.90111e17 0.212069
\(579\) −2.20584e18 −2.43311
\(580\) 4.82000e17 0.525733
\(581\) 1.47976e18 1.59605
\(582\) −3.33757e17 −0.355984
\(583\) 2.73716e17 0.288706
\(584\) 3.09849e17 0.323196
\(585\) 0 0
\(586\) −1.21024e17 −0.123463
\(587\) −1.25872e17 −0.126994 −0.0634969 0.997982i \(-0.520225\pi\)
−0.0634969 + 0.997982i \(0.520225\pi\)
\(588\) −3.86529e18 −3.85682
\(589\) 1.71492e17 0.169237
\(590\) 9.38599e16 0.0916098
\(591\) −2.01154e18 −1.94182
\(592\) 4.74370e16 0.0452925
\(593\) −8.66609e17 −0.818404 −0.409202 0.912444i \(-0.634193\pi\)
−0.409202 + 0.912444i \(0.634193\pi\)
\(594\) −7.27217e17 −0.679285
\(595\) 3.84448e17 0.355203
\(596\) 9.86638e17 0.901689
\(597\) −1.52972e18 −1.38286
\(598\) 0 0
\(599\) 5.85295e17 0.517727 0.258863 0.965914i \(-0.416652\pi\)
0.258863 + 0.965914i \(0.416652\pi\)
\(600\) −7.30427e17 −0.639137
\(601\) 8.85402e16 0.0766402 0.0383201 0.999266i \(-0.487799\pi\)
0.0383201 + 0.999266i \(0.487799\pi\)
\(602\) 8.84752e15 0.00757608
\(603\) 3.16951e18 2.68491
\(604\) 2.91719e17 0.244469
\(605\) 2.57914e17 0.213828
\(606\) 3.76374e17 0.308708
\(607\) 1.67753e18 1.36127 0.680634 0.732624i \(-0.261704\pi\)
0.680634 + 0.732624i \(0.261704\pi\)
\(608\) −2.72666e17 −0.218906
\(609\) 4.47978e18 3.55832
\(610\) −1.23516e16 −0.00970684
\(611\) 0 0
\(612\) 1.05652e18 0.812817
\(613\) 2.30593e17 0.175531 0.0877654 0.996141i \(-0.472027\pi\)
0.0877654 + 0.996141i \(0.472027\pi\)
\(614\) −1.92027e17 −0.144633
\(615\) 7.29762e16 0.0543867
\(616\) −1.40340e18 −1.03492
\(617\) 2.01416e18 1.46974 0.734870 0.678208i \(-0.237243\pi\)
0.734870 + 0.678208i \(0.237243\pi\)
\(618\) 7.39070e17 0.533655
\(619\) 1.59377e18 1.13877 0.569387 0.822070i \(-0.307181\pi\)
0.569387 + 0.822070i \(0.307181\pi\)
\(620\) −3.61672e17 −0.255723
\(621\) −4.62305e18 −3.23469
\(622\) 6.03340e17 0.417758
\(623\) 2.76016e18 1.89131
\(624\) 0 0
\(625\) 4.08676e17 0.274258
\(626\) −4.45562e17 −0.295921
\(627\) 1.04743e18 0.688474
\(628\) 1.72409e18 1.12156
\(629\) −3.27377e16 −0.0210775
\(630\) 8.24483e17 0.525374
\(631\) −1.97321e18 −1.24446 −0.622232 0.782833i \(-0.713774\pi\)
−0.622232 + 0.782833i \(0.713774\pi\)
\(632\) −2.57935e17 −0.161009
\(633\) −9.01086e17 −0.556727
\(634\) 1.33936e17 0.0819063
\(635\) 5.41235e17 0.327610
\(636\) −6.87648e17 −0.411998
\(637\) 0 0
\(638\) 5.46767e17 0.320973
\(639\) −3.47876e18 −2.02148
\(640\) 7.57062e17 0.435473
\(641\) 1.84756e18 1.05201 0.526007 0.850481i \(-0.323689\pi\)
0.526007 + 0.850481i \(0.323689\pi\)
\(642\) 1.36582e18 0.769866
\(643\) 1.87154e17 0.104431 0.0522153 0.998636i \(-0.483372\pi\)
0.0522153 + 0.998636i \(0.483372\pi\)
\(644\) −4.31916e18 −2.38584
\(645\) 2.87663e16 0.0157306
\(646\) 5.58956e16 0.0302598
\(647\) 1.99668e18 1.07011 0.535057 0.844816i \(-0.320290\pi\)
0.535057 + 0.844816i \(0.320290\pi\)
\(648\) 1.71405e18 0.909464
\(649\) −1.62299e18 −0.852560
\(650\) 0 0
\(651\) −3.36144e18 −1.73081
\(652\) −1.21687e16 −0.00620346
\(653\) 9.77373e16 0.0493315 0.0246658 0.999696i \(-0.492148\pi\)
0.0246658 + 0.999696i \(0.492148\pi\)
\(654\) −3.35926e17 −0.167876
\(655\) 6.65726e16 0.0329402
\(656\) 9.75745e16 0.0478037
\(657\) 3.14764e18 1.52690
\(658\) 6.21016e17 0.298287
\(659\) −1.76709e18 −0.840432 −0.420216 0.907424i \(-0.638046\pi\)
−0.420216 + 0.907424i \(0.638046\pi\)
\(660\) −2.20901e18 −1.04031
\(661\) 2.10933e17 0.0983636 0.0491818 0.998790i \(-0.484339\pi\)
0.0491818 + 0.998790i \(0.484339\pi\)
\(662\) −8.18345e17 −0.377885
\(663\) 0 0
\(664\) −9.37235e17 −0.424381
\(665\) −6.64910e17 −0.298141
\(666\) −7.02091e16 −0.0311753
\(667\) 3.47590e18 1.52844
\(668\) −2.95174e18 −1.28538
\(669\) −2.85922e18 −1.23304
\(670\) −3.53642e17 −0.151035
\(671\) 2.13578e17 0.0903360
\(672\) 5.34456e18 2.23878
\(673\) 2.57489e18 1.06822 0.534111 0.845415i \(-0.320647\pi\)
0.534111 + 0.845415i \(0.320647\pi\)
\(674\) −5.51780e17 −0.226713
\(675\) −4.15462e18 −1.69066
\(676\) 0 0
\(677\) −1.54014e18 −0.614801 −0.307401 0.951580i \(-0.599459\pi\)
−0.307401 + 0.951580i \(0.599459\pi\)
\(678\) 1.51029e18 0.597127
\(679\) −3.66355e18 −1.43466
\(680\) −2.43498e17 −0.0944468
\(681\) 2.26891e18 0.871688
\(682\) −4.10271e17 −0.156125
\(683\) −1.70025e18 −0.640882 −0.320441 0.947268i \(-0.603831\pi\)
−0.320441 + 0.947268i \(0.603831\pi\)
\(684\) −1.82727e18 −0.682241
\(685\) −2.88247e17 −0.106605
\(686\) 1.55828e18 0.570872
\(687\) −7.33365e18 −2.66135
\(688\) 3.84627e16 0.0138266
\(689\) 0 0
\(690\) 9.21258e17 0.324984
\(691\) 2.53772e18 0.886821 0.443411 0.896319i \(-0.353768\pi\)
0.443411 + 0.896319i \(0.353768\pi\)
\(692\) 4.98597e18 1.72608
\(693\) −1.42566e19 −4.88935
\(694\) −6.19339e17 −0.210422
\(695\) −1.77827e16 −0.00598544
\(696\) −2.83736e18 −0.946139
\(697\) −6.73392e16 −0.0222461
\(698\) −2.85196e17 −0.0933433
\(699\) −6.54763e18 −2.12316
\(700\) −3.88152e18 −1.24699
\(701\) −6.08102e17 −0.193557 −0.0967786 0.995306i \(-0.530854\pi\)
−0.0967786 + 0.995306i \(0.530854\pi\)
\(702\) 0 0
\(703\) 5.66205e16 0.0176915
\(704\) −2.49505e18 −0.772427
\(705\) 2.01913e18 0.619349
\(706\) 4.40197e16 0.0133788
\(707\) 4.13134e18 1.24413
\(708\) 4.07738e18 1.21665
\(709\) 1.31120e17 0.0387676 0.0193838 0.999812i \(-0.493830\pi\)
0.0193838 + 0.999812i \(0.493830\pi\)
\(710\) 3.88147e17 0.113715
\(711\) −2.62027e18 −0.760666
\(712\) −1.74821e18 −0.502889
\(713\) −2.60816e18 −0.743452
\(714\) −1.09562e18 −0.309471
\(715\) 0 0
\(716\) 2.26780e18 0.629027
\(717\) 2.97239e18 0.817018
\(718\) −1.71897e18 −0.468229
\(719\) −1.65987e18 −0.448060 −0.224030 0.974582i \(-0.571921\pi\)
−0.224030 + 0.974582i \(0.571921\pi\)
\(720\) 3.58426e18 0.958823
\(721\) 8.11255e18 2.15069
\(722\) 8.47723e17 0.222722
\(723\) −8.45982e18 −2.20274
\(724\) −2.75605e18 −0.711191
\(725\) 3.12370e18 0.798864
\(726\) −7.35013e17 −0.186298
\(727\) −4.82210e17 −0.121133 −0.0605666 0.998164i \(-0.519291\pi\)
−0.0605666 + 0.998164i \(0.519291\pi\)
\(728\) 0 0
\(729\) 5.40923e17 0.133477
\(730\) −3.51202e17 −0.0858931
\(731\) −2.65443e16 −0.00643440
\(732\) −5.36566e17 −0.128914
\(733\) −8.09696e18 −1.92817 −0.964086 0.265589i \(-0.914434\pi\)
−0.964086 + 0.265589i \(0.914434\pi\)
\(734\) −1.64431e18 −0.388114
\(735\) 9.04973e18 2.11723
\(736\) 4.14688e18 0.961647
\(737\) 6.11504e18 1.40560
\(738\) −1.44415e17 −0.0329038
\(739\) 3.32783e18 0.751575 0.375787 0.926706i \(-0.377372\pi\)
0.375787 + 0.926706i \(0.377372\pi\)
\(740\) −1.19411e17 −0.0267324
\(741\) 0 0
\(742\) 4.95174e17 0.108926
\(743\) −5.92753e18 −1.29255 −0.646273 0.763106i \(-0.723673\pi\)
−0.646273 + 0.763106i \(0.723673\pi\)
\(744\) 2.12904e18 0.460213
\(745\) −2.31000e18 −0.494989
\(746\) 9.09714e17 0.193242
\(747\) −9.52104e18 −2.00494
\(748\) 2.03837e18 0.425523
\(749\) 1.49922e19 3.10265
\(750\) 1.95492e18 0.401080
\(751\) 4.59644e18 0.934893 0.467447 0.884021i \(-0.345174\pi\)
0.467447 + 0.884021i \(0.345174\pi\)
\(752\) 2.69973e18 0.544383
\(753\) 1.60784e18 0.321423
\(754\) 0 0
\(755\) −6.82996e17 −0.134203
\(756\) 2.00540e19 3.90669
\(757\) 3.48373e18 0.672855 0.336428 0.941709i \(-0.390781\pi\)
0.336428 + 0.941709i \(0.390781\pi\)
\(758\) −3.28985e17 −0.0629980
\(759\) −1.59300e19 −3.02444
\(760\) 4.21134e17 0.0792742
\(761\) −2.55323e18 −0.476530 −0.238265 0.971200i \(-0.576579\pi\)
−0.238265 + 0.971200i \(0.576579\pi\)
\(762\) −1.54243e18 −0.285430
\(763\) −3.68736e18 −0.676559
\(764\) 4.39078e18 0.798793
\(765\) −2.47361e18 −0.446202
\(766\) −8.80317e17 −0.157453
\(767\) 0 0
\(768\) 4.52194e18 0.795202
\(769\) −8.61810e18 −1.50276 −0.751381 0.659869i \(-0.770612\pi\)
−0.751381 + 0.659869i \(0.770612\pi\)
\(770\) 1.59070e18 0.275042
\(771\) 1.53820e19 2.63731
\(772\) 7.42431e18 1.26224
\(773\) 1.02044e19 1.72037 0.860183 0.509986i \(-0.170350\pi\)
0.860183 + 0.509986i \(0.170350\pi\)
\(774\) −5.69266e16 −0.00951698
\(775\) −2.34389e18 −0.388577
\(776\) 2.32038e18 0.381468
\(777\) −1.10982e18 −0.180933
\(778\) −3.65092e17 −0.0590249
\(779\) 1.16464e17 0.0186724
\(780\) 0 0
\(781\) −6.71168e18 −1.05828
\(782\) −8.50096e17 −0.132930
\(783\) −1.61387e19 −2.50275
\(784\) 1.21002e19 1.86096
\(785\) −4.03658e18 −0.615687
\(786\) −1.89721e17 −0.0286992
\(787\) 3.89958e18 0.585036 0.292518 0.956260i \(-0.405507\pi\)
0.292518 + 0.956260i \(0.405507\pi\)
\(788\) 6.77035e18 1.00737
\(789\) −2.41784e19 −3.56802
\(790\) 2.92360e17 0.0427899
\(791\) 1.65780e19 2.40649
\(792\) 9.02973e18 1.30005
\(793\) 0 0
\(794\) −3.11104e18 −0.440629
\(795\) 1.60998e18 0.226169
\(796\) 5.14866e18 0.717397
\(797\) −1.04786e17 −0.0144819 −0.00724093 0.999974i \(-0.502305\pi\)
−0.00724093 + 0.999974i \(0.502305\pi\)
\(798\) 1.89489e18 0.259756
\(799\) −1.86317e18 −0.253336
\(800\) 3.72670e18 0.502619
\(801\) −1.77594e19 −2.37584
\(802\) −3.60992e18 −0.479031
\(803\) 6.07285e18 0.799358
\(804\) −1.53626e19 −2.00586
\(805\) 1.01124e19 1.30972
\(806\) 0 0
\(807\) 2.11590e19 2.69660
\(808\) −2.61667e18 −0.330807
\(809\) −6.69922e18 −0.840154 −0.420077 0.907488i \(-0.637997\pi\)
−0.420077 + 0.907488i \(0.637997\pi\)
\(810\) −1.94281e18 −0.241701
\(811\) 6.00687e18 0.741332 0.370666 0.928766i \(-0.379129\pi\)
0.370666 + 0.928766i \(0.379129\pi\)
\(812\) −1.50779e19 −1.84597
\(813\) −4.72104e18 −0.573389
\(814\) −1.35456e17 −0.0163208
\(815\) 2.84903e16 0.00340543
\(816\) −4.76295e18 −0.564794
\(817\) 4.59088e16 0.00540073
\(818\) 3.99922e18 0.466744
\(819\) 0 0
\(820\) −2.45620e17 −0.0282146
\(821\) 3.67403e18 0.418708 0.209354 0.977840i \(-0.432864\pi\)
0.209354 + 0.977840i \(0.432864\pi\)
\(822\) 8.21459e17 0.0928793
\(823\) −2.94489e18 −0.330347 −0.165173 0.986265i \(-0.552818\pi\)
−0.165173 + 0.986265i \(0.552818\pi\)
\(824\) −5.13825e18 −0.571858
\(825\) −1.43159e19 −1.58077
\(826\) −2.93611e18 −0.321664
\(827\) 6.74405e18 0.733053 0.366526 0.930408i \(-0.380547\pi\)
0.366526 + 0.930408i \(0.380547\pi\)
\(828\) 2.77903e19 2.99706
\(829\) 1.20906e19 1.29373 0.646864 0.762605i \(-0.276080\pi\)
0.646864 + 0.762605i \(0.276080\pi\)
\(830\) 1.06232e18 0.112784
\(831\) 2.31770e19 2.44146
\(832\) 0 0
\(833\) −8.35069e18 −0.866024
\(834\) 5.06779e16 0.00521481
\(835\) 6.91087e18 0.705619
\(836\) −3.52541e18 −0.357165
\(837\) 1.21098e19 1.21737
\(838\) 2.60654e18 0.260003
\(839\) 1.55156e19 1.53574 0.767868 0.640608i \(-0.221317\pi\)
0.767868 + 0.640608i \(0.221317\pi\)
\(840\) −8.25469e18 −0.810747
\(841\) 1.87347e18 0.182588
\(842\) 1.92366e18 0.186037
\(843\) 2.28286e19 2.19079
\(844\) 3.03283e18 0.288817
\(845\) 0 0
\(846\) −3.99573e18 −0.374704
\(847\) −8.06802e18 −0.750801
\(848\) 2.15266e18 0.198794
\(849\) −4.90968e17 −0.0449939
\(850\) −7.63960e17 −0.0694781
\(851\) −8.61121e17 −0.0777180
\(852\) 1.68615e19 1.51022
\(853\) −8.08095e18 −0.718280 −0.359140 0.933284i \(-0.616930\pi\)
−0.359140 + 0.933284i \(0.616930\pi\)
\(854\) 3.86380e17 0.0340830
\(855\) 4.27815e18 0.374521
\(856\) −9.49559e18 −0.824979
\(857\) −9.56317e18 −0.824568 −0.412284 0.911055i \(-0.635269\pi\)
−0.412284 + 0.911055i \(0.635269\pi\)
\(858\) 0 0
\(859\) 5.20067e18 0.441676 0.220838 0.975311i \(-0.429121\pi\)
0.220838 + 0.975311i \(0.429121\pi\)
\(860\) −9.68203e16 −0.00816068
\(861\) −2.28283e18 −0.190965
\(862\) 4.42028e18 0.366989
\(863\) −4.34228e18 −0.357806 −0.178903 0.983867i \(-0.557255\pi\)
−0.178903 + 0.983867i \(0.557255\pi\)
\(864\) −1.92541e19 −1.57465
\(865\) −1.16736e19 −0.947542
\(866\) −3.92629e18 −0.316312
\(867\) −1.93358e19 −1.54610
\(868\) 1.13138e19 0.897903
\(869\) −5.05537e18 −0.398221
\(870\) 3.21604e18 0.251447
\(871\) 0 0
\(872\) 2.33546e18 0.179894
\(873\) 2.35719e19 1.80220
\(874\) 1.47026e18 0.111576
\(875\) 2.14586e19 1.61640
\(876\) −1.52566e19 −1.14073
\(877\) 1.11368e19 0.826536 0.413268 0.910610i \(-0.364387\pi\)
0.413268 + 0.910610i \(0.364387\pi\)
\(878\) −2.69233e18 −0.198342
\(879\) 1.23091e19 0.900115
\(880\) 6.91522e18 0.501960
\(881\) 1.36399e18 0.0982806 0.0491403 0.998792i \(-0.484352\pi\)
0.0491403 + 0.998792i \(0.484352\pi\)
\(882\) −1.79088e19 −1.28092
\(883\) 2.56255e19 1.81940 0.909700 0.415265i \(-0.136311\pi\)
0.909700 + 0.415265i \(0.136311\pi\)
\(884\) 0 0
\(885\) −9.54629e18 −0.667888
\(886\) −2.63208e18 −0.182801
\(887\) −6.51789e18 −0.449369 −0.224685 0.974432i \(-0.572135\pi\)
−0.224685 + 0.974432i \(0.572135\pi\)
\(888\) 7.02930e17 0.0481092
\(889\) −1.69308e19 −1.15031
\(890\) 1.98153e18 0.133649
\(891\) 3.35943e19 2.24937
\(892\) 9.62345e18 0.639675
\(893\) 3.22238e18 0.212639
\(894\) 6.58313e18 0.431259
\(895\) −5.30955e18 −0.345309
\(896\) −2.36823e19 −1.52905
\(897\) 0 0
\(898\) 4.05229e18 0.257872
\(899\) −9.10491e18 −0.575225
\(900\) 2.49744e19 1.56646
\(901\) −1.48562e18 −0.0925116
\(902\) −2.78624e17 −0.0172257
\(903\) −8.99863e17 −0.0552339
\(904\) −1.05000e19 −0.639874
\(905\) 6.45269e18 0.390413
\(906\) 1.94643e18 0.116925
\(907\) 1.12237e19 0.669405 0.334702 0.942324i \(-0.391364\pi\)
0.334702 + 0.942324i \(0.391364\pi\)
\(908\) −7.63659e18 −0.452212
\(909\) −2.65818e19 −1.56286
\(910\) 0 0
\(911\) −7.22046e18 −0.418500 −0.209250 0.977862i \(-0.567102\pi\)
−0.209250 + 0.977862i \(0.567102\pi\)
\(912\) 8.23762e18 0.474062
\(913\) −1.83692e19 −1.04962
\(914\) 5.12722e18 0.290892
\(915\) 1.25625e18 0.0707685
\(916\) 2.46833e19 1.38065
\(917\) −2.08251e18 −0.115661
\(918\) 3.94703e18 0.217667
\(919\) 2.06326e18 0.112980 0.0564902 0.998403i \(-0.482009\pi\)
0.0564902 + 0.998403i \(0.482009\pi\)
\(920\) −6.40487e18 −0.348249
\(921\) 1.95307e19 1.05446
\(922\) 1.64553e18 0.0882177
\(923\) 0 0
\(924\) 6.91018e19 3.65276
\(925\) −7.73868e17 −0.0406205
\(926\) −3.05225e18 −0.159092
\(927\) −5.21976e19 −2.70167
\(928\) 1.44764e19 0.744047
\(929\) −3.01912e18 −0.154091 −0.0770457 0.997028i \(-0.524549\pi\)
−0.0770457 + 0.997028i \(0.524549\pi\)
\(930\) −2.41318e18 −0.122307
\(931\) 1.44427e19 0.726900
\(932\) 2.20377e19 1.10145
\(933\) −6.13645e19 −3.04570
\(934\) 4.31216e18 0.212540
\(935\) −4.77241e18 −0.233594
\(936\) 0 0
\(937\) −1.50446e19 −0.726229 −0.363114 0.931745i \(-0.618287\pi\)
−0.363114 + 0.931745i \(0.618287\pi\)
\(938\) 1.10626e19 0.530320
\(939\) 4.53172e19 2.15743
\(940\) −6.79591e18 −0.321304
\(941\) −4.24474e18 −0.199305 −0.0996526 0.995022i \(-0.531773\pi\)
−0.0996526 + 0.995022i \(0.531773\pi\)
\(942\) 1.15036e19 0.536418
\(943\) −1.77126e18 −0.0820271
\(944\) −1.27641e19 −0.587046
\(945\) −4.69521e19 −2.14461
\(946\) −1.09830e17 −0.00498229
\(947\) −3.99930e19 −1.80181 −0.900906 0.434015i \(-0.857096\pi\)
−0.900906 + 0.434015i \(0.857096\pi\)
\(948\) 1.27004e19 0.568283
\(949\) 0 0
\(950\) 1.32128e18 0.0583167
\(951\) −1.36224e19 −0.597144
\(952\) 7.61706e18 0.331625
\(953\) 1.66145e19 0.718427 0.359214 0.933255i \(-0.383045\pi\)
0.359214 + 0.933255i \(0.383045\pi\)
\(954\) −3.18604e18 −0.136832
\(955\) −1.02800e19 −0.438504
\(956\) −1.00043e19 −0.423850
\(957\) −5.56106e19 −2.34007
\(958\) 4.38907e18 0.183441
\(959\) 9.01690e18 0.374314
\(960\) −1.46757e19 −0.605113
\(961\) −1.75856e19 −0.720204
\(962\) 0 0
\(963\) −9.64624e19 −3.89751
\(964\) 2.84737e19 1.14273
\(965\) −1.73824e19 −0.692919
\(966\) −2.88187e19 −1.14110
\(967\) −3.07638e19 −1.20995 −0.604976 0.796244i \(-0.706817\pi\)
−0.604976 + 0.796244i \(0.706817\pi\)
\(968\) 5.11004e18 0.199634
\(969\) −5.68503e18 −0.220612
\(970\) −2.63006e18 −0.101380
\(971\) −2.54238e19 −0.973454 −0.486727 0.873554i \(-0.661809\pi\)
−0.486727 + 0.873554i \(0.661809\pi\)
\(972\) −2.76125e19 −1.05021
\(973\) 5.56275e17 0.0210163
\(974\) 1.09365e19 0.410437
\(975\) 0 0
\(976\) 1.67970e18 0.0622026
\(977\) −2.79025e18 −0.102643 −0.0513214 0.998682i \(-0.516343\pi\)
−0.0513214 + 0.998682i \(0.516343\pi\)
\(978\) −8.11929e16 −0.00296698
\(979\) −3.42638e19 −1.24379
\(980\) −3.04592e19 −1.09837
\(981\) 2.37252e19 0.849886
\(982\) 1.32554e18 0.0471701
\(983\) 3.74867e19 1.32519 0.662596 0.748977i \(-0.269455\pi\)
0.662596 + 0.748977i \(0.269455\pi\)
\(984\) 1.44588e18 0.0507765
\(985\) −1.58513e19 −0.553005
\(986\) −2.96762e18 −0.102851
\(987\) −6.31622e19 −2.17468
\(988\) 0 0
\(989\) −6.98210e17 −0.0237252
\(990\) −1.02349e19 −0.345504
\(991\) −5.01476e18 −0.168179 −0.0840895 0.996458i \(-0.526798\pi\)
−0.0840895 + 0.996458i \(0.526798\pi\)
\(992\) −1.08625e19 −0.361913
\(993\) 8.32321e19 2.75500
\(994\) −1.21419e19 −0.399279
\(995\) −1.20545e19 −0.393820
\(996\) 4.61484e19 1.49786
\(997\) 3.25426e19 1.04938 0.524691 0.851293i \(-0.324181\pi\)
0.524691 + 0.851293i \(0.324181\pi\)
\(998\) 9.76234e18 0.312756
\(999\) 3.99822e18 0.127260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.14.a.e.1.6 14
13.3 even 3 13.14.c.a.9.9 yes 28
13.9 even 3 13.14.c.a.3.9 28
13.12 even 2 169.14.a.c.1.9 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.14.c.a.3.9 28 13.9 even 3
13.14.c.a.9.9 yes 28 13.3 even 3
169.14.a.c.1.9 14 13.12 even 2
169.14.a.e.1.6 14 1.1 even 1 trivial