Properties

Label 169.14.a.c.1.9
Level $169$
Weight $14$
Character 169.1
Self dual yes
Analytic conductor $181.220$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [169,14,Mod(1,169)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(169, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("169.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-65] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(181.220269929\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5 x^{13} - 83806 x^{12} + 371578 x^{11} + 2652253571 x^{10} - 14037350343 x^{9} + \cdots - 28\!\cdots\!92 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: multiple of \( 2^{24}\cdot 3^{3}\cdot 5\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(27.4573\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+22.4573 q^{2} +2284.08 q^{3} -7687.67 q^{4} -17999.0 q^{5} +51294.3 q^{6} +563042. q^{7} -356614. q^{8} +3.62272e6 q^{9} -404209. q^{10} -6.98942e6 q^{11} -1.75593e7 q^{12} +1.26444e7 q^{14} -4.11113e7 q^{15} +5.49688e7 q^{16} -3.79357e7 q^{17} +8.13565e7 q^{18} -6.56105e7 q^{19} +1.38370e8 q^{20} +1.28604e9 q^{21} -1.56963e8 q^{22} -9.97845e8 q^{23} -8.14537e8 q^{24} -8.96739e8 q^{25} +4.63303e9 q^{27} -4.32848e9 q^{28} -3.48340e9 q^{29} -9.23248e8 q^{30} -2.61380e9 q^{31} +4.15583e9 q^{32} -1.59644e10 q^{33} -8.51932e8 q^{34} -1.01342e10 q^{35} -2.78503e10 q^{36} -8.62981e8 q^{37} -1.47343e9 q^{38} +6.41870e9 q^{40} -1.77509e9 q^{41} +2.88809e10 q^{42} +6.99718e8 q^{43} +5.37324e10 q^{44} -6.52054e10 q^{45} -2.24089e10 q^{46} -4.91139e10 q^{47} +1.25553e11 q^{48} +2.20128e11 q^{49} -2.01383e10 q^{50} -8.66483e10 q^{51} +3.91615e10 q^{53} +1.04045e11 q^{54} +1.25803e11 q^{55} -2.00789e11 q^{56} -1.49860e11 q^{57} -7.82278e10 q^{58} +2.32206e11 q^{59} +3.16050e11 q^{60} +3.05574e10 q^{61} -5.86988e10 q^{62} +2.03975e12 q^{63} -3.56976e11 q^{64} -3.58518e11 q^{66} -8.74899e11 q^{67} +2.91637e11 q^{68} -2.27916e12 q^{69} -2.27587e11 q^{70} +9.60262e11 q^{71} -1.29191e12 q^{72} -8.68862e11 q^{73} -1.93802e10 q^{74} -2.04823e12 q^{75} +5.04392e11 q^{76} -3.93534e12 q^{77} -7.23289e11 q^{79} -9.89384e11 q^{80} +4.80645e12 q^{81} -3.98637e10 q^{82} +2.62815e12 q^{83} -9.88663e12 q^{84} +6.82804e11 q^{85} +1.57138e10 q^{86} -7.95639e12 q^{87} +2.49253e12 q^{88} +4.90223e12 q^{89} -1.46434e12 q^{90} +7.67110e12 q^{92} -5.97014e12 q^{93} -1.10296e12 q^{94} +1.18092e12 q^{95} +9.49228e12 q^{96} -6.50670e12 q^{97} +4.94347e12 q^{98} -2.53207e13 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 65 q^{2} - 728 q^{3} + 53249 q^{4} - 20930 q^{5} + 143910 q^{6} - 173992 q^{7} - 1308489 q^{8} + 5231838 q^{9} - 2769243 q^{10} + 10986144 q^{11} - 22602732 q^{12} - 11865878 q^{14} - 75354448 q^{15}+ \cdots - 16619904586272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 22.4573 0.248120 0.124060 0.992275i \(-0.460408\pi\)
0.124060 + 0.992275i \(0.460408\pi\)
\(3\) 2284.08 1.80894 0.904470 0.426538i \(-0.140267\pi\)
0.904470 + 0.426538i \(0.140267\pi\)
\(4\) −7687.67 −0.938436
\(5\) −17999.0 −0.515162 −0.257581 0.966257i \(-0.582925\pi\)
−0.257581 + 0.966257i \(0.582925\pi\)
\(6\) 51294.3 0.448835
\(7\) 563042. 1.80886 0.904428 0.426627i \(-0.140298\pi\)
0.904428 + 0.426627i \(0.140298\pi\)
\(8\) −356614. −0.480965
\(9\) 3.62272e6 2.27226
\(10\) −404209. −0.127822
\(11\) −6.98942e6 −1.18957 −0.594783 0.803886i \(-0.702762\pi\)
−0.594783 + 0.803886i \(0.702762\pi\)
\(12\) −1.75593e7 −1.69757
\(13\) 0 0
\(14\) 1.26444e7 0.448814
\(15\) −4.11113e7 −0.931896
\(16\) 5.49688e7 0.819099
\(17\) −3.79357e7 −0.381180 −0.190590 0.981670i \(-0.561040\pi\)
−0.190590 + 0.981670i \(0.561040\pi\)
\(18\) 8.13565e7 0.563794
\(19\) −6.56105e7 −0.319944 −0.159972 0.987122i \(-0.551140\pi\)
−0.159972 + 0.987122i \(0.551140\pi\)
\(20\) 1.38370e8 0.483446
\(21\) 1.28604e9 3.27211
\(22\) −1.56963e8 −0.295156
\(23\) −9.97845e8 −1.40550 −0.702752 0.711435i \(-0.748046\pi\)
−0.702752 + 0.711435i \(0.748046\pi\)
\(24\) −8.14537e8 −0.870037
\(25\) −8.96739e8 −0.734608
\(26\) 0 0
\(27\) 4.63303e9 2.30145
\(28\) −4.32848e9 −1.69750
\(29\) −3.48340e9 −1.08747 −0.543734 0.839257i \(-0.682990\pi\)
−0.543734 + 0.839257i \(0.682990\pi\)
\(30\) −9.23248e8 −0.231222
\(31\) −2.61380e9 −0.528958 −0.264479 0.964391i \(-0.585200\pi\)
−0.264479 + 0.964391i \(0.585200\pi\)
\(32\) 4.15583e9 0.684201
\(33\) −1.59644e10 −2.15185
\(34\) −8.51932e8 −0.0945784
\(35\) −1.01342e10 −0.931853
\(36\) −2.78503e10 −2.13237
\(37\) −8.62981e8 −0.0552955 −0.0276477 0.999618i \(-0.508802\pi\)
−0.0276477 + 0.999618i \(0.508802\pi\)
\(38\) −1.47343e9 −0.0793847
\(39\) 0 0
\(40\) 6.41870e9 0.247775
\(41\) −1.77509e9 −0.0583613 −0.0291807 0.999574i \(-0.509290\pi\)
−0.0291807 + 0.999574i \(0.509290\pi\)
\(42\) 2.88809e10 0.811877
\(43\) 6.99718e8 0.0168802 0.00844011 0.999964i \(-0.497313\pi\)
0.00844011 + 0.999964i \(0.497313\pi\)
\(44\) 5.37324e10 1.11633
\(45\) −6.52054e10 −1.17058
\(46\) −2.24089e10 −0.348734
\(47\) −4.91139e10 −0.664612 −0.332306 0.943172i \(-0.607827\pi\)
−0.332306 + 0.943172i \(0.607827\pi\)
\(48\) 1.25553e11 1.48170
\(49\) 2.20128e11 2.27196
\(50\) −2.01383e10 −0.182271
\(51\) −8.66483e10 −0.689531
\(52\) 0 0
\(53\) 3.91615e10 0.242698 0.121349 0.992610i \(-0.461278\pi\)
0.121349 + 0.992610i \(0.461278\pi\)
\(54\) 1.04045e11 0.571036
\(55\) 1.25803e11 0.612819
\(56\) −2.00789e11 −0.869997
\(57\) −1.49860e11 −0.578760
\(58\) −7.82278e10 −0.269823
\(59\) 2.32206e11 0.716697 0.358349 0.933588i \(-0.383340\pi\)
0.358349 + 0.933588i \(0.383340\pi\)
\(60\) 3.16050e11 0.874525
\(61\) 3.05574e10 0.0759403 0.0379701 0.999279i \(-0.487911\pi\)
0.0379701 + 0.999279i \(0.487911\pi\)
\(62\) −5.86988e10 −0.131245
\(63\) 2.03975e12 4.11019
\(64\) −3.56976e11 −0.649335
\(65\) 0 0
\(66\) −3.58518e11 −0.533919
\(67\) −8.74899e11 −1.18160 −0.590802 0.806817i \(-0.701188\pi\)
−0.590802 + 0.806817i \(0.701188\pi\)
\(68\) 2.91637e11 0.357713
\(69\) −2.27916e12 −2.54247
\(70\) −2.27587e11 −0.231212
\(71\) 9.60262e11 0.889632 0.444816 0.895622i \(-0.353269\pi\)
0.444816 + 0.895622i \(0.353269\pi\)
\(72\) −1.29191e12 −1.09288
\(73\) −8.68862e11 −0.671974 −0.335987 0.941867i \(-0.609070\pi\)
−0.335987 + 0.941867i \(0.609070\pi\)
\(74\) −1.93802e10 −0.0137199
\(75\) −2.04823e12 −1.32886
\(76\) 5.04392e11 0.300248
\(77\) −3.93534e12 −2.15175
\(78\) 0 0
\(79\) −7.23289e11 −0.334762 −0.167381 0.985892i \(-0.553531\pi\)
−0.167381 + 0.985892i \(0.553531\pi\)
\(80\) −9.89384e11 −0.421968
\(81\) 4.80645e12 1.89091
\(82\) −3.98637e10 −0.0144806
\(83\) 2.62815e12 0.882353 0.441176 0.897420i \(-0.354561\pi\)
0.441176 + 0.897420i \(0.354561\pi\)
\(84\) −9.88663e12 −3.07067
\(85\) 6.82804e11 0.196369
\(86\) 1.57138e10 0.00418833
\(87\) −7.95639e12 −1.96717
\(88\) 2.49253e12 0.572141
\(89\) 4.90223e12 1.04558 0.522792 0.852460i \(-0.324891\pi\)
0.522792 + 0.852460i \(0.324891\pi\)
\(90\) −1.46434e12 −0.290445
\(91\) 0 0
\(92\) 7.67110e12 1.31898
\(93\) −5.97014e12 −0.956853
\(94\) −1.10296e12 −0.164904
\(95\) 1.18092e12 0.164823
\(96\) 9.49228e12 1.23768
\(97\) −6.50670e12 −0.793130 −0.396565 0.918007i \(-0.629798\pi\)
−0.396565 + 0.918007i \(0.629798\pi\)
\(98\) 4.94347e12 0.563719
\(99\) −2.53207e13 −2.70301
\(100\) 6.89383e12 0.689383
\(101\) −7.33753e12 −0.687798 −0.343899 0.939007i \(-0.611748\pi\)
−0.343899 + 0.939007i \(0.611748\pi\)
\(102\) −1.94588e12 −0.171087
\(103\) −1.44084e13 −1.18898 −0.594489 0.804103i \(-0.702646\pi\)
−0.594489 + 0.804103i \(0.702646\pi\)
\(104\) 0 0
\(105\) −2.31474e13 −1.68567
\(106\) 8.79461e11 0.0602183
\(107\) −2.66271e13 −1.71526 −0.857628 0.514271i \(-0.828063\pi\)
−0.857628 + 0.514271i \(0.828063\pi\)
\(108\) −3.56172e13 −2.15976
\(109\) −6.54899e12 −0.374026 −0.187013 0.982357i \(-0.559881\pi\)
−0.187013 + 0.982357i \(0.559881\pi\)
\(110\) 2.82519e12 0.152053
\(111\) −1.97112e12 −0.100026
\(112\) 3.09498e13 1.48163
\(113\) −2.94436e13 −1.33040 −0.665198 0.746667i \(-0.731653\pi\)
−0.665198 + 0.746667i \(0.731653\pi\)
\(114\) −3.36545e12 −0.143602
\(115\) 1.79602e13 0.724062
\(116\) 2.67793e13 1.02052
\(117\) 0 0
\(118\) 5.21472e12 0.177827
\(119\) −2.13594e13 −0.689499
\(120\) 1.46609e13 0.448210
\(121\) 1.43293e13 0.415070
\(122\) 6.86236e11 0.0188423
\(123\) −4.05445e12 −0.105572
\(124\) 2.00940e13 0.496393
\(125\) 3.81119e13 0.893604
\(126\) 4.58071e13 1.01982
\(127\) 3.00703e13 0.635935 0.317968 0.948102i \(-0.397000\pi\)
0.317968 + 0.948102i \(0.397000\pi\)
\(128\) −4.20613e13 −0.845314
\(129\) 1.59822e12 0.0305353
\(130\) 0 0
\(131\) 3.69868e12 0.0639416 0.0319708 0.999489i \(-0.489822\pi\)
0.0319708 + 0.999489i \(0.489822\pi\)
\(132\) 1.22729e14 2.01938
\(133\) −3.69415e13 −0.578733
\(134\) −1.96479e13 −0.293180
\(135\) −8.33900e13 −1.18562
\(136\) 1.35284e13 0.183334
\(137\) 1.60146e13 0.206934 0.103467 0.994633i \(-0.467006\pi\)
0.103467 + 0.994633i \(0.467006\pi\)
\(138\) −5.11838e13 −0.630839
\(139\) −9.87981e11 −0.0116186 −0.00580928 0.999983i \(-0.501849\pi\)
−0.00580928 + 0.999983i \(0.501849\pi\)
\(140\) 7.79084e13 0.874485
\(141\) −1.12180e14 −1.20224
\(142\) 2.15649e13 0.220736
\(143\) 0 0
\(144\) 1.99137e14 1.86121
\(145\) 6.26978e13 0.560222
\(146\) −1.95123e13 −0.166730
\(147\) 5.02790e14 4.10983
\(148\) 6.63431e12 0.0518913
\(149\) 1.28340e14 0.960842 0.480421 0.877038i \(-0.340484\pi\)
0.480421 + 0.877038i \(0.340484\pi\)
\(150\) −4.59976e13 −0.329718
\(151\) 3.79463e13 0.260507 0.130253 0.991481i \(-0.458421\pi\)
0.130253 + 0.991481i \(0.458421\pi\)
\(152\) 2.33976e13 0.153882
\(153\) −1.37430e14 −0.866140
\(154\) −8.83771e13 −0.533894
\(155\) 4.70458e13 0.272499
\(156\) 0 0
\(157\) −2.24267e14 −1.19513 −0.597567 0.801819i \(-0.703866\pi\)
−0.597567 + 0.801819i \(0.703866\pi\)
\(158\) −1.62431e13 −0.0830612
\(159\) 8.94482e13 0.439026
\(160\) −7.48009e13 −0.352474
\(161\) −5.61829e14 −2.54235
\(162\) 1.07940e14 0.469174
\(163\) −1.58288e12 −0.00661042 −0.00330521 0.999995i \(-0.501052\pi\)
−0.00330521 + 0.999995i \(0.501052\pi\)
\(164\) 1.36463e13 0.0547684
\(165\) 2.87344e14 1.10855
\(166\) 5.90211e13 0.218930
\(167\) −3.83958e14 −1.36970 −0.684852 0.728682i \(-0.740133\pi\)
−0.684852 + 0.728682i \(0.740133\pi\)
\(168\) −4.58619e14 −1.57377
\(169\) 0 0
\(170\) 1.53339e13 0.0487232
\(171\) −2.37688e14 −0.726998
\(172\) −5.37920e12 −0.0158410
\(173\) −6.48567e14 −1.83931 −0.919655 0.392728i \(-0.871532\pi\)
−0.919655 + 0.392728i \(0.871532\pi\)
\(174\) −1.78679e14 −0.488094
\(175\) −5.04902e14 −1.32880
\(176\) −3.84200e14 −0.974373
\(177\) 5.30379e14 1.29646
\(178\) 1.10091e14 0.259430
\(179\) −2.94991e14 −0.670293 −0.335147 0.942166i \(-0.608786\pi\)
−0.335147 + 0.942166i \(0.608786\pi\)
\(180\) 5.01277e14 1.09852
\(181\) 3.58502e14 0.757846 0.378923 0.925428i \(-0.376294\pi\)
0.378923 + 0.925428i \(0.376294\pi\)
\(182\) 0 0
\(183\) 6.97956e13 0.137371
\(184\) 3.55846e14 0.675999
\(185\) 1.55328e13 0.0284861
\(186\) −1.34073e14 −0.237415
\(187\) 2.65148e14 0.453439
\(188\) 3.77571e14 0.623696
\(189\) 2.60859e15 4.16298
\(190\) 2.65203e13 0.0408960
\(191\) −5.71145e14 −0.851196 −0.425598 0.904912i \(-0.639936\pi\)
−0.425598 + 0.904912i \(0.639936\pi\)
\(192\) −8.15363e14 −1.17461
\(193\) 9.65742e14 1.34505 0.672525 0.740074i \(-0.265210\pi\)
0.672525 + 0.740074i \(0.265210\pi\)
\(194\) −1.46123e14 −0.196792
\(195\) 0 0
\(196\) −1.69227e15 −2.13209
\(197\) 8.80676e14 1.07346 0.536730 0.843754i \(-0.319660\pi\)
0.536730 + 0.843754i \(0.319660\pi\)
\(198\) −5.68635e14 −0.670671
\(199\) −6.69730e14 −0.764460 −0.382230 0.924067i \(-0.624844\pi\)
−0.382230 + 0.924067i \(0.624844\pi\)
\(200\) 3.19790e14 0.353321
\(201\) −1.99834e15 −2.13745
\(202\) −1.64781e14 −0.170657
\(203\) −1.96130e15 −1.96707
\(204\) 6.66123e14 0.647081
\(205\) 3.19498e13 0.0300655
\(206\) −3.23574e14 −0.295010
\(207\) −3.61491e15 −3.19367
\(208\) 0 0
\(209\) 4.58579e14 0.380595
\(210\) −5.19828e14 −0.418248
\(211\) −3.94506e14 −0.307764 −0.153882 0.988089i \(-0.549178\pi\)
−0.153882 + 0.988089i \(0.549178\pi\)
\(212\) −3.01061e14 −0.227757
\(213\) 2.19332e15 1.60929
\(214\) −5.97972e14 −0.425590
\(215\) −1.25942e13 −0.00869604
\(216\) −1.65221e15 −1.10692
\(217\) −1.47168e15 −0.956808
\(218\) −1.47073e14 −0.0928035
\(219\) −1.98456e15 −1.21556
\(220\) −9.67130e14 −0.575092
\(221\) 0 0
\(222\) −4.42660e13 −0.0248185
\(223\) 1.25180e15 0.681639 0.340820 0.940129i \(-0.389295\pi\)
0.340820 + 0.940129i \(0.389295\pi\)
\(224\) 2.33991e15 1.23762
\(225\) −3.24863e15 −1.66922
\(226\) −6.61223e14 −0.330098
\(227\) −9.93356e14 −0.481878 −0.240939 0.970540i \(-0.577455\pi\)
−0.240939 + 0.970540i \(0.577455\pi\)
\(228\) 1.15207e15 0.543130
\(229\) 3.21076e15 1.47122 0.735610 0.677406i \(-0.236896\pi\)
0.735610 + 0.677406i \(0.236896\pi\)
\(230\) 4.03338e14 0.179654
\(231\) −8.98865e15 −3.89239
\(232\) 1.24223e15 0.523035
\(233\) −2.86663e15 −1.17370 −0.586852 0.809694i \(-0.699633\pi\)
−0.586852 + 0.809694i \(0.699633\pi\)
\(234\) 0 0
\(235\) 8.84001e14 0.342382
\(236\) −1.78513e15 −0.672575
\(237\) −1.65205e15 −0.605564
\(238\) −4.79674e14 −0.171079
\(239\) −1.30135e15 −0.451656 −0.225828 0.974167i \(-0.572509\pi\)
−0.225828 + 0.974167i \(0.572509\pi\)
\(240\) −2.25984e15 −0.763315
\(241\) 3.70381e15 1.21769 0.608847 0.793287i \(-0.291632\pi\)
0.608847 + 0.793287i \(0.291632\pi\)
\(242\) 3.21798e14 0.102987
\(243\) 3.59179e15 1.11910
\(244\) −2.34915e14 −0.0712651
\(245\) −3.96208e15 −1.17043
\(246\) −9.10520e13 −0.0261946
\(247\) 0 0
\(248\) 9.32118e14 0.254410
\(249\) 6.00291e15 1.59612
\(250\) 8.55889e14 0.221721
\(251\) 7.03934e14 0.177686 0.0888429 0.996046i \(-0.471683\pi\)
0.0888429 + 0.996046i \(0.471683\pi\)
\(252\) −1.56809e16 −3.85716
\(253\) 6.97436e15 1.67194
\(254\) 6.75296e14 0.157788
\(255\) 1.55958e15 0.355220
\(256\) 1.97976e15 0.439595
\(257\) 6.73444e15 1.45793 0.728965 0.684551i \(-0.240002\pi\)
0.728965 + 0.684551i \(0.240002\pi\)
\(258\) 3.58916e13 0.00757643
\(259\) −4.85895e14 −0.100022
\(260\) 0 0
\(261\) −1.26194e16 −2.47101
\(262\) 8.30623e13 0.0158652
\(263\) −1.05856e16 −1.97244 −0.986218 0.165449i \(-0.947093\pi\)
−0.986218 + 0.165449i \(0.947093\pi\)
\(264\) 5.69315e15 1.03497
\(265\) −7.04869e14 −0.125029
\(266\) −8.29605e14 −0.143595
\(267\) 1.11971e16 1.89140
\(268\) 6.72593e15 1.10886
\(269\) 9.26365e15 1.49071 0.745354 0.666669i \(-0.232281\pi\)
0.745354 + 0.666669i \(0.232281\pi\)
\(270\) −1.87271e15 −0.294176
\(271\) 2.06693e15 0.316975 0.158487 0.987361i \(-0.449338\pi\)
0.158487 + 0.987361i \(0.449338\pi\)
\(272\) −2.08528e15 −0.312224
\(273\) 0 0
\(274\) 3.59645e14 0.0513446
\(275\) 6.26769e15 0.873866
\(276\) 1.75214e16 2.38595
\(277\) 1.01472e16 1.34967 0.674833 0.737970i \(-0.264216\pi\)
0.674833 + 0.737970i \(0.264216\pi\)
\(278\) −2.21874e13 −0.00288280
\(279\) −9.46906e15 −1.20193
\(280\) 3.61400e15 0.448189
\(281\) −9.99465e15 −1.21109 −0.605545 0.795811i \(-0.707045\pi\)
−0.605545 + 0.795811i \(0.707045\pi\)
\(282\) −2.51926e15 −0.298301
\(283\) −2.14952e14 −0.0248731 −0.0124365 0.999923i \(-0.503959\pi\)
−0.0124365 + 0.999923i \(0.503959\pi\)
\(284\) −7.38218e15 −0.834863
\(285\) 2.69733e15 0.298155
\(286\) 0 0
\(287\) −9.99450e14 −0.105567
\(288\) 1.50554e16 1.55468
\(289\) −8.46546e15 −0.854702
\(290\) 1.40802e15 0.139003
\(291\) −1.48618e16 −1.43472
\(292\) 6.67953e15 0.630605
\(293\) −5.38906e15 −0.497592 −0.248796 0.968556i \(-0.580035\pi\)
−0.248796 + 0.968556i \(0.580035\pi\)
\(294\) 1.12913e16 1.01973
\(295\) −4.17948e15 −0.369215
\(296\) 3.07751e14 0.0265952
\(297\) −3.23822e16 −2.73772
\(298\) 2.88217e15 0.238405
\(299\) 0 0
\(300\) 1.57461e16 1.24705
\(301\) 3.93971e14 0.0305339
\(302\) 8.52171e14 0.0646371
\(303\) −1.67595e16 −1.24419
\(304\) −3.60653e15 −0.262066
\(305\) −5.50002e14 −0.0391215
\(306\) −3.08631e15 −0.214907
\(307\) −8.55076e15 −0.582915 −0.291458 0.956584i \(-0.594140\pi\)
−0.291458 + 0.956584i \(0.594140\pi\)
\(308\) 3.02536e16 2.01928
\(309\) −3.29100e16 −2.15079
\(310\) 1.05652e15 0.0676125
\(311\) −2.68661e16 −1.68369 −0.841846 0.539719i \(-0.818531\pi\)
−0.841846 + 0.539719i \(0.818531\pi\)
\(312\) 0 0
\(313\) 1.98404e16 1.19265 0.596325 0.802743i \(-0.296627\pi\)
0.596325 + 0.802743i \(0.296627\pi\)
\(314\) −5.03642e15 −0.296537
\(315\) −3.67134e16 −2.11741
\(316\) 5.56041e15 0.314153
\(317\) 5.96403e15 0.330107 0.165053 0.986285i \(-0.447220\pi\)
0.165053 + 0.986285i \(0.447220\pi\)
\(318\) 2.00876e15 0.108931
\(319\) 2.43470e16 1.29362
\(320\) 6.42521e15 0.334513
\(321\) −6.08185e16 −3.10279
\(322\) −1.26172e16 −0.630810
\(323\) 2.48898e15 0.121956
\(324\) −3.69504e16 −1.77450
\(325\) 0 0
\(326\) −3.55472e13 −0.00164018
\(327\) −1.49584e16 −0.676591
\(328\) 6.33022e14 0.0280698
\(329\) −2.76532e16 −1.20219
\(330\) 6.45297e15 0.275055
\(331\) −3.64400e16 −1.52299 −0.761495 0.648171i \(-0.775534\pi\)
−0.761495 + 0.648171i \(0.775534\pi\)
\(332\) −2.02043e16 −0.828032
\(333\) −3.12634e15 −0.125646
\(334\) −8.62266e15 −0.339852
\(335\) 1.57473e16 0.608717
\(336\) 7.06919e16 2.68018
\(337\) 2.45702e16 0.913723 0.456861 0.889538i \(-0.348974\pi\)
0.456861 + 0.889538i \(0.348974\pi\)
\(338\) 0 0
\(339\) −6.72516e16 −2.40660
\(340\) −5.24917e15 −0.184280
\(341\) 1.82689e16 0.629231
\(342\) −5.33784e15 −0.180383
\(343\) 6.93886e16 2.30079
\(344\) −2.49529e14 −0.00811880
\(345\) 4.10227e16 1.30978
\(346\) −1.45650e16 −0.456370
\(347\) 2.75785e16 0.848065 0.424033 0.905647i \(-0.360614\pi\)
0.424033 + 0.905647i \(0.360614\pi\)
\(348\) 6.11661e16 1.84606
\(349\) −1.26995e16 −0.376202 −0.188101 0.982150i \(-0.560233\pi\)
−0.188101 + 0.982150i \(0.560233\pi\)
\(350\) −1.13387e16 −0.329702
\(351\) 0 0
\(352\) −2.90469e16 −0.813902
\(353\) 1.96015e15 0.0539205 0.0269603 0.999637i \(-0.491417\pi\)
0.0269603 + 0.999637i \(0.491417\pi\)
\(354\) 1.19109e16 0.321679
\(355\) −1.72838e16 −0.458305
\(356\) −3.76867e16 −0.981213
\(357\) −4.87866e16 −1.24726
\(358\) −6.62471e15 −0.166313
\(359\) −7.65438e16 −1.88710 −0.943552 0.331223i \(-0.892539\pi\)
−0.943552 + 0.331223i \(0.892539\pi\)
\(360\) 2.32532e16 0.563010
\(361\) −3.77483e16 −0.897636
\(362\) 8.05099e15 0.188037
\(363\) 3.27294e16 0.750836
\(364\) 0 0
\(365\) 1.56387e16 0.346175
\(366\) 1.56742e15 0.0340846
\(367\) 7.32195e16 1.56422 0.782109 0.623142i \(-0.214144\pi\)
0.782109 + 0.623142i \(0.214144\pi\)
\(368\) −5.48503e16 −1.15125
\(369\) −6.43065e15 −0.132612
\(370\) 3.48824e14 0.00706799
\(371\) 2.20496e16 0.439006
\(372\) 4.58964e16 0.897945
\(373\) −4.05086e16 −0.778825 −0.389413 0.921063i \(-0.627322\pi\)
−0.389413 + 0.921063i \(0.627322\pi\)
\(374\) 5.95451e15 0.112507
\(375\) 8.70507e16 1.61648
\(376\) 1.75147e16 0.319655
\(377\) 0 0
\(378\) 5.85819e16 1.03292
\(379\) −1.46494e16 −0.253901 −0.126950 0.991909i \(-0.540519\pi\)
−0.126950 + 0.991909i \(0.540519\pi\)
\(380\) −9.07855e15 −0.154676
\(381\) 6.86830e16 1.15037
\(382\) −1.28264e16 −0.211199
\(383\) −3.91996e16 −0.634585 −0.317292 0.948328i \(-0.602774\pi\)
−0.317292 + 0.948328i \(0.602774\pi\)
\(384\) −9.60716e16 −1.52912
\(385\) 7.08323e16 1.10850
\(386\) 2.16879e16 0.333734
\(387\) 2.53488e15 0.0383563
\(388\) 5.00213e16 0.744302
\(389\) 1.62572e16 0.237888 0.118944 0.992901i \(-0.462049\pi\)
0.118944 + 0.992901i \(0.462049\pi\)
\(390\) 0 0
\(391\) 3.78539e16 0.535749
\(392\) −7.85007e16 −1.09273
\(393\) 8.44810e15 0.115666
\(394\) 1.97776e16 0.266347
\(395\) 1.30185e16 0.172456
\(396\) 1.94657e17 2.53660
\(397\) −1.38532e17 −1.77587 −0.887933 0.459972i \(-0.847859\pi\)
−0.887933 + 0.459972i \(0.847859\pi\)
\(398\) −1.50403e16 −0.189678
\(399\) −8.43774e16 −1.04689
\(400\) −4.92927e16 −0.601717
\(401\) −1.60746e17 −1.93064 −0.965320 0.261068i \(-0.915925\pi\)
−0.965320 + 0.261068i \(0.915925\pi\)
\(402\) −4.48774e16 −0.530345
\(403\) 0 0
\(404\) 5.64085e16 0.645455
\(405\) −8.65114e16 −0.974127
\(406\) −4.40456e16 −0.488071
\(407\) 6.03174e15 0.0657777
\(408\) 3.09000e16 0.331641
\(409\) 1.78081e17 1.88112 0.940560 0.339629i \(-0.110301\pi\)
0.940560 + 0.339629i \(0.110301\pi\)
\(410\) 7.17507e14 0.00745987
\(411\) 3.65787e16 0.374332
\(412\) 1.10767e17 1.11578
\(413\) 1.30742e17 1.29640
\(414\) −8.11811e16 −0.792415
\(415\) −4.73041e16 −0.454554
\(416\) 0 0
\(417\) −2.25663e15 −0.0210173
\(418\) 1.02984e16 0.0944334
\(419\) −1.16067e17 −1.04789 −0.523945 0.851752i \(-0.675540\pi\)
−0.523945 + 0.851752i \(0.675540\pi\)
\(420\) 1.77949e17 1.58189
\(421\) 8.56586e16 0.749786 0.374893 0.927068i \(-0.377679\pi\)
0.374893 + 0.927068i \(0.377679\pi\)
\(422\) −8.85954e15 −0.0763625
\(423\) −1.77926e17 −1.51017
\(424\) −1.39656e16 −0.116729
\(425\) 3.40184e16 0.280018
\(426\) 4.92560e16 0.399298
\(427\) 1.72051e16 0.137365
\(428\) 2.04700e17 1.60966
\(429\) 0 0
\(430\) −2.82832e14 −0.00215767
\(431\) 1.96830e17 1.47907 0.739537 0.673115i \(-0.235044\pi\)
0.739537 + 0.673115i \(0.235044\pi\)
\(432\) 2.54672e17 1.88511
\(433\) 1.74834e17 1.27483 0.637417 0.770519i \(-0.280003\pi\)
0.637417 + 0.770519i \(0.280003\pi\)
\(434\) −3.30499e16 −0.237404
\(435\) 1.43207e17 1.01341
\(436\) 5.03465e16 0.351000
\(437\) 6.54691e16 0.449683
\(438\) −4.45677e16 −0.301605
\(439\) 1.19887e17 0.799377 0.399689 0.916651i \(-0.369118\pi\)
0.399689 + 0.916651i \(0.369118\pi\)
\(440\) −4.48630e16 −0.294745
\(441\) 7.97461e17 5.16248
\(442\) 0 0
\(443\) 1.17204e17 0.736745 0.368372 0.929678i \(-0.379915\pi\)
0.368372 + 0.929678i \(0.379915\pi\)
\(444\) 1.51533e16 0.0938682
\(445\) −8.82353e16 −0.538645
\(446\) 2.81121e16 0.169129
\(447\) 2.93140e17 1.73811
\(448\) −2.00992e17 −1.17455
\(449\) 1.80445e17 1.03930 0.519652 0.854378i \(-0.326062\pi\)
0.519652 + 0.854378i \(0.326062\pi\)
\(450\) −7.29555e16 −0.414168
\(451\) 1.24068e16 0.0694247
\(452\) 2.26352e17 1.24849
\(453\) 8.66726e16 0.471241
\(454\) −2.23081e16 −0.119564
\(455\) 0 0
\(456\) 5.34422e16 0.278364
\(457\) 2.28310e17 1.17238 0.586191 0.810173i \(-0.300627\pi\)
0.586191 + 0.810173i \(0.300627\pi\)
\(458\) 7.21050e16 0.365039
\(459\) −1.75757e17 −0.877264
\(460\) −1.38072e17 −0.679486
\(461\) 7.32739e16 0.355544 0.177772 0.984072i \(-0.443111\pi\)
0.177772 + 0.984072i \(0.443111\pi\)
\(462\) −2.01861e17 −0.965782
\(463\) −1.35914e17 −0.641190 −0.320595 0.947216i \(-0.603883\pi\)
−0.320595 + 0.947216i \(0.603883\pi\)
\(464\) −1.91479e17 −0.890745
\(465\) 1.07457e17 0.492934
\(466\) −6.43768e16 −0.291220
\(467\) −1.92016e17 −0.856600 −0.428300 0.903637i \(-0.640887\pi\)
−0.428300 + 0.903637i \(0.640887\pi\)
\(468\) 0 0
\(469\) −4.92605e17 −2.13735
\(470\) 1.98523e16 0.0849521
\(471\) −5.12244e17 −2.16193
\(472\) −8.28081e16 −0.344707
\(473\) −4.89063e15 −0.0200802
\(474\) −3.71006e16 −0.150253
\(475\) 5.88354e16 0.235034
\(476\) 1.64204e17 0.647051
\(477\) 1.41871e17 0.551474
\(478\) −2.92248e16 −0.112065
\(479\) 1.95441e17 0.739323 0.369662 0.929166i \(-0.379474\pi\)
0.369662 + 0.929166i \(0.379474\pi\)
\(480\) −1.70852e17 −0.637604
\(481\) 0 0
\(482\) 8.31776e16 0.302135
\(483\) −1.28327e18 −4.59896
\(484\) −1.10159e17 −0.389516
\(485\) 1.17114e17 0.408590
\(486\) 8.06619e16 0.277672
\(487\) 4.86993e17 1.65419 0.827094 0.562064i \(-0.189993\pi\)
0.827094 + 0.562064i \(0.189993\pi\)
\(488\) −1.08972e16 −0.0365246
\(489\) −3.61544e15 −0.0119578
\(490\) −8.89776e16 −0.290406
\(491\) −5.90247e16 −0.190110 −0.0950549 0.995472i \(-0.530303\pi\)
−0.0950549 + 0.995472i \(0.530303\pi\)
\(492\) 3.11693e16 0.0990727
\(493\) 1.32145e17 0.414521
\(494\) 0 0
\(495\) 4.55748e17 1.39249
\(496\) −1.43677e17 −0.433269
\(497\) 5.40668e17 1.60922
\(498\) 1.34809e17 0.396030
\(499\) 4.34707e17 1.26050 0.630250 0.776392i \(-0.282952\pi\)
0.630250 + 0.776392i \(0.282952\pi\)
\(500\) −2.92991e17 −0.838590
\(501\) −8.76993e17 −2.47771
\(502\) 1.58084e16 0.0440875
\(503\) −6.61219e17 −1.82035 −0.910173 0.414229i \(-0.864051\pi\)
−0.910173 + 0.414229i \(0.864051\pi\)
\(504\) −7.27402e17 −1.97686
\(505\) 1.32068e17 0.354327
\(506\) 1.56625e17 0.414843
\(507\) 0 0
\(508\) −2.31170e17 −0.596785
\(509\) 5.88159e17 1.49909 0.749547 0.661951i \(-0.230271\pi\)
0.749547 + 0.661951i \(0.230271\pi\)
\(510\) 3.50240e16 0.0881373
\(511\) −4.89206e17 −1.21550
\(512\) 3.89026e17 0.954386
\(513\) −3.03975e17 −0.736335
\(514\) 1.51237e17 0.361742
\(515\) 2.59337e17 0.612516
\(516\) −1.22866e16 −0.0286554
\(517\) 3.43278e17 0.790600
\(518\) −1.09119e16 −0.0248174
\(519\) −1.48138e18 −3.32720
\(520\) 0 0
\(521\) 5.46350e17 1.19681 0.598405 0.801193i \(-0.295801\pi\)
0.598405 + 0.801193i \(0.295801\pi\)
\(522\) −2.83397e17 −0.613109
\(523\) 4.55097e17 0.972397 0.486198 0.873849i \(-0.338383\pi\)
0.486198 + 0.873849i \(0.338383\pi\)
\(524\) −2.84342e16 −0.0600051
\(525\) −1.15324e18 −2.40372
\(526\) −2.37724e17 −0.489402
\(527\) 9.91561e16 0.201628
\(528\) −8.77546e17 −1.76258
\(529\) 4.91658e17 0.975442
\(530\) −1.58294e16 −0.0310222
\(531\) 8.41218e17 1.62852
\(532\) 2.83994e17 0.543104
\(533\) 0 0
\(534\) 2.51457e17 0.469294
\(535\) 4.79261e17 0.883634
\(536\) 3.12001e17 0.568310
\(537\) −6.73785e17 −1.21252
\(538\) 2.08036e17 0.369875
\(539\) −1.53857e18 −2.70265
\(540\) 6.41075e17 1.11263
\(541\) −1.13354e18 −1.94381 −0.971904 0.235377i \(-0.924367\pi\)
−0.971904 + 0.235377i \(0.924367\pi\)
\(542\) 4.64176e16 0.0786479
\(543\) 8.18850e17 1.37090
\(544\) −1.57654e17 −0.260803
\(545\) 1.17875e17 0.192684
\(546\) 0 0
\(547\) −2.31128e17 −0.368922 −0.184461 0.982840i \(-0.559054\pi\)
−0.184461 + 0.982840i \(0.559054\pi\)
\(548\) −1.23115e17 −0.194195
\(549\) 1.10701e17 0.172556
\(550\) 1.40755e17 0.216824
\(551\) 2.28548e17 0.347930
\(552\) 8.12782e17 1.22284
\(553\) −4.07242e17 −0.605535
\(554\) 2.27878e17 0.334880
\(555\) 3.54782e16 0.0515297
\(556\) 7.59527e15 0.0109033
\(557\) 7.29742e17 1.03541 0.517703 0.855560i \(-0.326787\pi\)
0.517703 + 0.855560i \(0.326787\pi\)
\(558\) −2.12649e17 −0.298223
\(559\) 0 0
\(560\) −5.57065e17 −0.763280
\(561\) 6.05621e17 0.820243
\(562\) −2.24453e17 −0.300496
\(563\) 1.01773e18 1.34688 0.673441 0.739241i \(-0.264816\pi\)
0.673441 + 0.739241i \(0.264816\pi\)
\(564\) 8.62404e17 1.12823
\(565\) 5.29955e17 0.685369
\(566\) −4.82723e15 −0.00617151
\(567\) 2.70624e18 3.42039
\(568\) −3.42443e17 −0.427882
\(569\) −6.60459e17 −0.815861 −0.407931 0.913013i \(-0.633749\pi\)
−0.407931 + 0.913013i \(0.633749\pi\)
\(570\) 6.05747e16 0.0739783
\(571\) −3.91758e16 −0.0473024 −0.0236512 0.999720i \(-0.507529\pi\)
−0.0236512 + 0.999720i \(0.507529\pi\)
\(572\) 0 0
\(573\) −1.30454e18 −1.53976
\(574\) −2.24449e16 −0.0261934
\(575\) 8.94806e17 1.03250
\(576\) −1.29322e18 −1.47546
\(577\) −1.66029e18 −1.87302 −0.936508 0.350645i \(-0.885962\pi\)
−0.936508 + 0.350645i \(0.885962\pi\)
\(578\) −1.90111e17 −0.212069
\(579\) 2.20584e18 2.43311
\(580\) −4.82000e17 −0.525733
\(581\) 1.47976e18 1.59605
\(582\) −3.33757e17 −0.355984
\(583\) −2.73716e17 −0.288706
\(584\) 3.09849e17 0.323196
\(585\) 0 0
\(586\) −1.21024e17 −0.123463
\(587\) 1.25872e17 0.126994 0.0634969 0.997982i \(-0.479775\pi\)
0.0634969 + 0.997982i \(0.479775\pi\)
\(588\) −3.86529e18 −3.85682
\(589\) 1.71492e17 0.169237
\(590\) −9.38599e16 −0.0916098
\(591\) 2.01154e18 1.94182
\(592\) −4.74370e16 −0.0452925
\(593\) 8.66609e17 0.818404 0.409202 0.912444i \(-0.365807\pi\)
0.409202 + 0.912444i \(0.365807\pi\)
\(594\) −7.27217e17 −0.679285
\(595\) 3.84448e17 0.355203
\(596\) −9.86638e17 −0.901689
\(597\) −1.52972e18 −1.38286
\(598\) 0 0
\(599\) 5.85295e17 0.517727 0.258863 0.965914i \(-0.416652\pi\)
0.258863 + 0.965914i \(0.416652\pi\)
\(600\) 7.30427e17 0.639137
\(601\) 8.85402e16 0.0766402 0.0383201 0.999266i \(-0.487799\pi\)
0.0383201 + 0.999266i \(0.487799\pi\)
\(602\) 8.84752e15 0.00757608
\(603\) −3.16951e18 −2.68491
\(604\) −2.91719e17 −0.244469
\(605\) −2.57914e17 −0.213828
\(606\) −3.76374e17 −0.308708
\(607\) 1.67753e18 1.36127 0.680634 0.732624i \(-0.261704\pi\)
0.680634 + 0.732624i \(0.261704\pi\)
\(608\) −2.72666e17 −0.218906
\(609\) −4.47978e18 −3.55832
\(610\) −1.23516e16 −0.00970684
\(611\) 0 0
\(612\) 1.05652e18 0.812817
\(613\) −2.30593e17 −0.175531 −0.0877654 0.996141i \(-0.527973\pi\)
−0.0877654 + 0.996141i \(0.527973\pi\)
\(614\) −1.92027e17 −0.144633
\(615\) 7.29762e16 0.0543867
\(616\) 1.40340e18 1.03492
\(617\) −2.01416e18 −1.46974 −0.734870 0.678208i \(-0.762757\pi\)
−0.734870 + 0.678208i \(0.762757\pi\)
\(618\) −7.39070e17 −0.533655
\(619\) −1.59377e18 −1.13877 −0.569387 0.822070i \(-0.692819\pi\)
−0.569387 + 0.822070i \(0.692819\pi\)
\(620\) −3.61672e17 −0.255723
\(621\) −4.62305e18 −3.23469
\(622\) −6.03340e17 −0.417758
\(623\) 2.76016e18 1.89131
\(624\) 0 0
\(625\) 4.08676e17 0.274258
\(626\) 4.45562e17 0.295921
\(627\) 1.04743e18 0.688474
\(628\) 1.72409e18 1.12156
\(629\) 3.27377e16 0.0210775
\(630\) −8.24483e17 −0.525374
\(631\) 1.97321e18 1.24446 0.622232 0.782833i \(-0.286226\pi\)
0.622232 + 0.782833i \(0.286226\pi\)
\(632\) 2.57935e17 0.161009
\(633\) −9.01086e17 −0.556727
\(634\) 1.33936e17 0.0819063
\(635\) −5.41235e17 −0.327610
\(636\) −6.87648e17 −0.411998
\(637\) 0 0
\(638\) 5.46767e17 0.320973
\(639\) 3.47876e18 2.02148
\(640\) 7.57062e17 0.435473
\(641\) 1.84756e18 1.05201 0.526007 0.850481i \(-0.323689\pi\)
0.526007 + 0.850481i \(0.323689\pi\)
\(642\) −1.36582e18 −0.769866
\(643\) −1.87154e17 −0.104431 −0.0522153 0.998636i \(-0.516628\pi\)
−0.0522153 + 0.998636i \(0.516628\pi\)
\(644\) 4.31916e18 2.38584
\(645\) −2.87663e16 −0.0157306
\(646\) 5.58956e16 0.0302598
\(647\) 1.99668e18 1.07011 0.535057 0.844816i \(-0.320290\pi\)
0.535057 + 0.844816i \(0.320290\pi\)
\(648\) −1.71405e18 −0.909464
\(649\) −1.62299e18 −0.852560
\(650\) 0 0
\(651\) −3.36144e18 −1.73081
\(652\) 1.21687e16 0.00620346
\(653\) 9.77373e16 0.0493315 0.0246658 0.999696i \(-0.492148\pi\)
0.0246658 + 0.999696i \(0.492148\pi\)
\(654\) −3.35926e17 −0.167876
\(655\) −6.65726e16 −0.0329402
\(656\) −9.75745e16 −0.0478037
\(657\) −3.14764e18 −1.52690
\(658\) −6.21016e17 −0.298287
\(659\) −1.76709e18 −0.840432 −0.420216 0.907424i \(-0.638046\pi\)
−0.420216 + 0.907424i \(0.638046\pi\)
\(660\) −2.20901e18 −1.04031
\(661\) −2.10933e17 −0.0983636 −0.0491818 0.998790i \(-0.515661\pi\)
−0.0491818 + 0.998790i \(0.515661\pi\)
\(662\) −8.18345e17 −0.377885
\(663\) 0 0
\(664\) −9.37235e17 −0.424381
\(665\) 6.64910e17 0.298141
\(666\) −7.02091e16 −0.0311753
\(667\) 3.47590e18 1.52844
\(668\) 2.95174e18 1.28538
\(669\) 2.85922e18 1.23304
\(670\) 3.53642e17 0.151035
\(671\) −2.13578e17 −0.0903360
\(672\) 5.34456e18 2.23878
\(673\) 2.57489e18 1.06822 0.534111 0.845415i \(-0.320647\pi\)
0.534111 + 0.845415i \(0.320647\pi\)
\(674\) 5.51780e17 0.226713
\(675\) −4.15462e18 −1.69066
\(676\) 0 0
\(677\) −1.54014e18 −0.614801 −0.307401 0.951580i \(-0.599459\pi\)
−0.307401 + 0.951580i \(0.599459\pi\)
\(678\) −1.51029e18 −0.597127
\(679\) −3.66355e18 −1.43466
\(680\) −2.43498e17 −0.0944468
\(681\) −2.26891e18 −0.871688
\(682\) 4.10271e17 0.156125
\(683\) 1.70025e18 0.640882 0.320441 0.947268i \(-0.396169\pi\)
0.320441 + 0.947268i \(0.396169\pi\)
\(684\) 1.82727e18 0.682241
\(685\) −2.88247e17 −0.106605
\(686\) 1.55828e18 0.570872
\(687\) 7.33365e18 2.66135
\(688\) 3.84627e16 0.0138266
\(689\) 0 0
\(690\) 9.21258e17 0.324984
\(691\) −2.53772e18 −0.886821 −0.443411 0.896319i \(-0.646232\pi\)
−0.443411 + 0.896319i \(0.646232\pi\)
\(692\) 4.98597e18 1.72608
\(693\) −1.42566e19 −4.88935
\(694\) 6.19339e17 0.210422
\(695\) 1.77827e16 0.00598544
\(696\) 2.83736e18 0.946139
\(697\) 6.73392e16 0.0222461
\(698\) −2.85196e17 −0.0933433
\(699\) −6.54763e18 −2.12316
\(700\) 3.88152e18 1.24699
\(701\) −6.08102e17 −0.193557 −0.0967786 0.995306i \(-0.530854\pi\)
−0.0967786 + 0.995306i \(0.530854\pi\)
\(702\) 0 0
\(703\) 5.66205e16 0.0176915
\(704\) 2.49505e18 0.772427
\(705\) 2.01913e18 0.619349
\(706\) 4.40197e16 0.0133788
\(707\) −4.13134e18 −1.24413
\(708\) −4.07738e18 −1.21665
\(709\) −1.31120e17 −0.0387676 −0.0193838 0.999812i \(-0.506170\pi\)
−0.0193838 + 0.999812i \(0.506170\pi\)
\(710\) −3.88147e17 −0.113715
\(711\) −2.62027e18 −0.760666
\(712\) −1.74821e18 −0.502889
\(713\) 2.60816e18 0.743452
\(714\) −1.09562e18 −0.309471
\(715\) 0 0
\(716\) 2.26780e18 0.629027
\(717\) −2.97239e18 −0.817018
\(718\) −1.71897e18 −0.468229
\(719\) −1.65987e18 −0.448060 −0.224030 0.974582i \(-0.571921\pi\)
−0.224030 + 0.974582i \(0.571921\pi\)
\(720\) −3.58426e18 −0.958823
\(721\) −8.11255e18 −2.15069
\(722\) −8.47723e17 −0.222722
\(723\) 8.45982e18 2.20274
\(724\) −2.75605e18 −0.711191
\(725\) 3.12370e18 0.798864
\(726\) 7.35013e17 0.186298
\(727\) −4.82210e17 −0.121133 −0.0605666 0.998164i \(-0.519291\pi\)
−0.0605666 + 0.998164i \(0.519291\pi\)
\(728\) 0 0
\(729\) 5.40923e17 0.133477
\(730\) 3.51202e17 0.0858931
\(731\) −2.65443e16 −0.00643440
\(732\) −5.36566e17 −0.128914
\(733\) 8.09696e18 1.92817 0.964086 0.265589i \(-0.0855663\pi\)
0.964086 + 0.265589i \(0.0855663\pi\)
\(734\) 1.64431e18 0.388114
\(735\) −9.04973e18 −2.11723
\(736\) −4.14688e18 −0.961647
\(737\) 6.11504e18 1.40560
\(738\) −1.44415e17 −0.0329038
\(739\) −3.32783e18 −0.751575 −0.375787 0.926706i \(-0.622628\pi\)
−0.375787 + 0.926706i \(0.622628\pi\)
\(740\) −1.19411e17 −0.0267324
\(741\) 0 0
\(742\) 4.95174e17 0.108926
\(743\) 5.92753e18 1.29255 0.646273 0.763106i \(-0.276327\pi\)
0.646273 + 0.763106i \(0.276327\pi\)
\(744\) 2.12904e18 0.460213
\(745\) −2.31000e18 −0.494989
\(746\) −9.09714e17 −0.193242
\(747\) 9.52104e18 2.00494
\(748\) −2.03837e18 −0.425523
\(749\) −1.49922e19 −3.10265
\(750\) 1.95492e18 0.401080
\(751\) 4.59644e18 0.934893 0.467447 0.884021i \(-0.345174\pi\)
0.467447 + 0.884021i \(0.345174\pi\)
\(752\) −2.69973e18 −0.544383
\(753\) 1.60784e18 0.321423
\(754\) 0 0
\(755\) −6.82996e17 −0.134203
\(756\) −2.00540e19 −3.90669
\(757\) 3.48373e18 0.672855 0.336428 0.941709i \(-0.390781\pi\)
0.336428 + 0.941709i \(0.390781\pi\)
\(758\) −3.28985e17 −0.0629980
\(759\) 1.59300e19 3.02444
\(760\) −4.21134e17 −0.0792742
\(761\) 2.55323e18 0.476530 0.238265 0.971200i \(-0.423421\pi\)
0.238265 + 0.971200i \(0.423421\pi\)
\(762\) 1.54243e18 0.285430
\(763\) −3.68736e18 −0.676559
\(764\) 4.39078e18 0.798793
\(765\) 2.47361e18 0.446202
\(766\) −8.80317e17 −0.157453
\(767\) 0 0
\(768\) 4.52194e18 0.795202
\(769\) 8.61810e18 1.50276 0.751381 0.659869i \(-0.229388\pi\)
0.751381 + 0.659869i \(0.229388\pi\)
\(770\) 1.59070e18 0.275042
\(771\) 1.53820e19 2.63731
\(772\) −7.42431e18 −1.26224
\(773\) −1.02044e19 −1.72037 −0.860183 0.509986i \(-0.829650\pi\)
−0.860183 + 0.509986i \(0.829650\pi\)
\(774\) 5.69266e16 0.00951698
\(775\) 2.34389e18 0.388577
\(776\) 2.32038e18 0.381468
\(777\) −1.10982e18 −0.180933
\(778\) 3.65092e17 0.0590249
\(779\) 1.16464e17 0.0186724
\(780\) 0 0
\(781\) −6.71168e18 −1.05828
\(782\) 8.50096e17 0.132930
\(783\) −1.61387e19 −2.50275
\(784\) 1.21002e19 1.86096
\(785\) 4.03658e18 0.615687
\(786\) 1.89721e17 0.0286992
\(787\) −3.89958e18 −0.585036 −0.292518 0.956260i \(-0.594493\pi\)
−0.292518 + 0.956260i \(0.594493\pi\)
\(788\) −6.77035e18 −1.00737
\(789\) −2.41784e19 −3.56802
\(790\) 2.92360e17 0.0427899
\(791\) −1.65780e19 −2.40649
\(792\) 9.02973e18 1.30005
\(793\) 0 0
\(794\) −3.11104e18 −0.440629
\(795\) −1.60998e18 −0.226169
\(796\) 5.14866e18 0.717397
\(797\) −1.04786e17 −0.0144819 −0.00724093 0.999974i \(-0.502305\pi\)
−0.00724093 + 0.999974i \(0.502305\pi\)
\(798\) −1.89489e18 −0.259756
\(799\) 1.86317e18 0.253336
\(800\) −3.72670e18 −0.502619
\(801\) 1.77594e19 2.37584
\(802\) −3.60992e18 −0.479031
\(803\) 6.07285e18 0.799358
\(804\) 1.53626e19 2.00586
\(805\) 1.01124e19 1.30972
\(806\) 0 0
\(807\) 2.11590e19 2.69660
\(808\) 2.61667e18 0.330807
\(809\) −6.69922e18 −0.840154 −0.420077 0.907488i \(-0.637997\pi\)
−0.420077 + 0.907488i \(0.637997\pi\)
\(810\) −1.94281e18 −0.241701
\(811\) −6.00687e18 −0.741332 −0.370666 0.928766i \(-0.620871\pi\)
−0.370666 + 0.928766i \(0.620871\pi\)
\(812\) 1.50779e19 1.84597
\(813\) 4.72104e18 0.573389
\(814\) 1.35456e17 0.0163208
\(815\) 2.84903e16 0.00340543
\(816\) −4.76295e18 −0.564794
\(817\) −4.59088e16 −0.00540073
\(818\) 3.99922e18 0.466744
\(819\) 0 0
\(820\) −2.45620e17 −0.0282146
\(821\) −3.67403e18 −0.418708 −0.209354 0.977840i \(-0.567136\pi\)
−0.209354 + 0.977840i \(0.567136\pi\)
\(822\) 8.21459e17 0.0928793
\(823\) −2.94489e18 −0.330347 −0.165173 0.986265i \(-0.552818\pi\)
−0.165173 + 0.986265i \(0.552818\pi\)
\(824\) 5.13825e18 0.571858
\(825\) 1.43159e19 1.58077
\(826\) 2.93611e18 0.321664
\(827\) −6.74405e18 −0.733053 −0.366526 0.930408i \(-0.619453\pi\)
−0.366526 + 0.930408i \(0.619453\pi\)
\(828\) 2.77903e19 2.99706
\(829\) 1.20906e19 1.29373 0.646864 0.762605i \(-0.276080\pi\)
0.646864 + 0.762605i \(0.276080\pi\)
\(830\) −1.06232e18 −0.112784
\(831\) 2.31770e19 2.44146
\(832\) 0 0
\(833\) −8.35069e18 −0.866024
\(834\) −5.06779e16 −0.00521481
\(835\) 6.91087e18 0.705619
\(836\) −3.52541e18 −0.357165
\(837\) −1.21098e19 −1.21737
\(838\) −2.60654e18 −0.260003
\(839\) −1.55156e19 −1.53574 −0.767868 0.640608i \(-0.778683\pi\)
−0.767868 + 0.640608i \(0.778683\pi\)
\(840\) 8.25469e18 0.810747
\(841\) 1.87347e18 0.182588
\(842\) 1.92366e18 0.186037
\(843\) −2.28286e19 −2.19079
\(844\) 3.03283e18 0.288817
\(845\) 0 0
\(846\) −3.99573e18 −0.374704
\(847\) 8.06802e18 0.750801
\(848\) 2.15266e18 0.198794
\(849\) −4.90968e17 −0.0449939
\(850\) 7.63960e17 0.0694781
\(851\) 8.61121e17 0.0777180
\(852\) −1.68615e19 −1.51022
\(853\) 8.08095e18 0.718280 0.359140 0.933284i \(-0.383070\pi\)
0.359140 + 0.933284i \(0.383070\pi\)
\(854\) 3.86380e17 0.0340830
\(855\) 4.27815e18 0.374521
\(856\) 9.49559e18 0.824979
\(857\) −9.56317e18 −0.824568 −0.412284 0.911055i \(-0.635269\pi\)
−0.412284 + 0.911055i \(0.635269\pi\)
\(858\) 0 0
\(859\) 5.20067e18 0.441676 0.220838 0.975311i \(-0.429121\pi\)
0.220838 + 0.975311i \(0.429121\pi\)
\(860\) 9.68203e16 0.00816068
\(861\) −2.28283e18 −0.190965
\(862\) 4.42028e18 0.366989
\(863\) 4.34228e18 0.357806 0.178903 0.983867i \(-0.442745\pi\)
0.178903 + 0.983867i \(0.442745\pi\)
\(864\) 1.92541e19 1.57465
\(865\) 1.16736e19 0.947542
\(866\) 3.92629e18 0.316312
\(867\) −1.93358e19 −1.54610
\(868\) 1.13138e19 0.897903
\(869\) 5.05537e18 0.398221
\(870\) 3.21604e18 0.251447
\(871\) 0 0
\(872\) 2.33546e18 0.179894
\(873\) −2.35719e19 −1.80220
\(874\) 1.47026e18 0.111576
\(875\) 2.14586e19 1.61640
\(876\) 1.52566e19 1.14073
\(877\) −1.11368e19 −0.826536 −0.413268 0.910610i \(-0.635613\pi\)
−0.413268 + 0.910610i \(0.635613\pi\)
\(878\) 2.69233e18 0.198342
\(879\) −1.23091e19 −0.900115
\(880\) 6.91522e18 0.501960
\(881\) 1.36399e18 0.0982806 0.0491403 0.998792i \(-0.484352\pi\)
0.0491403 + 0.998792i \(0.484352\pi\)
\(882\) 1.79088e19 1.28092
\(883\) 2.56255e19 1.81940 0.909700 0.415265i \(-0.136311\pi\)
0.909700 + 0.415265i \(0.136311\pi\)
\(884\) 0 0
\(885\) −9.54629e18 −0.667888
\(886\) 2.63208e18 0.182801
\(887\) −6.51789e18 −0.449369 −0.224685 0.974432i \(-0.572135\pi\)
−0.224685 + 0.974432i \(0.572135\pi\)
\(888\) 7.02930e17 0.0481092
\(889\) 1.69308e19 1.15031
\(890\) −1.98153e18 −0.133649
\(891\) −3.35943e19 −2.24937
\(892\) −9.62345e18 −0.639675
\(893\) 3.22238e18 0.212639
\(894\) 6.58313e18 0.431259
\(895\) 5.30955e18 0.345309
\(896\) −2.36823e19 −1.52905
\(897\) 0 0
\(898\) 4.05229e18 0.257872
\(899\) 9.10491e18 0.575225
\(900\) 2.49744e19 1.56646
\(901\) −1.48562e18 −0.0925116
\(902\) 2.78624e17 0.0172257
\(903\) 8.99863e17 0.0552339
\(904\) 1.05000e19 0.639874
\(905\) −6.45269e18 −0.390413
\(906\) 1.94643e18 0.116925
\(907\) 1.12237e19 0.669405 0.334702 0.942324i \(-0.391364\pi\)
0.334702 + 0.942324i \(0.391364\pi\)
\(908\) 7.63659e18 0.452212
\(909\) −2.65818e19 −1.56286
\(910\) 0 0
\(911\) −7.22046e18 −0.418500 −0.209250 0.977862i \(-0.567102\pi\)
−0.209250 + 0.977862i \(0.567102\pi\)
\(912\) −8.23762e18 −0.474062
\(913\) −1.83692e19 −1.04962
\(914\) 5.12722e18 0.290892
\(915\) −1.25625e18 −0.0707685
\(916\) −2.46833e19 −1.38065
\(917\) 2.08251e18 0.115661
\(918\) −3.94703e18 −0.217667
\(919\) 2.06326e18 0.112980 0.0564902 0.998403i \(-0.482009\pi\)
0.0564902 + 0.998403i \(0.482009\pi\)
\(920\) −6.40487e18 −0.348249
\(921\) −1.95307e19 −1.05446
\(922\) 1.64553e18 0.0882177
\(923\) 0 0
\(924\) 6.91018e19 3.65276
\(925\) 7.73868e17 0.0406205
\(926\) −3.05225e18 −0.159092
\(927\) −5.21976e19 −2.70167
\(928\) −1.44764e19 −0.744047
\(929\) 3.01912e18 0.154091 0.0770457 0.997028i \(-0.475451\pi\)
0.0770457 + 0.997028i \(0.475451\pi\)
\(930\) 2.41318e18 0.122307
\(931\) −1.44427e19 −0.726900
\(932\) 2.20377e19 1.10145
\(933\) −6.13645e19 −3.04570
\(934\) −4.31216e18 −0.212540
\(935\) −4.77241e18 −0.233594
\(936\) 0 0
\(937\) −1.50446e19 −0.726229 −0.363114 0.931745i \(-0.618287\pi\)
−0.363114 + 0.931745i \(0.618287\pi\)
\(938\) −1.10626e19 −0.530320
\(939\) 4.53172e19 2.15743
\(940\) −6.79591e18 −0.321304
\(941\) 4.24474e18 0.199305 0.0996526 0.995022i \(-0.468227\pi\)
0.0996526 + 0.995022i \(0.468227\pi\)
\(942\) −1.15036e19 −0.536418
\(943\) 1.77126e18 0.0820271
\(944\) 1.27641e19 0.587046
\(945\) −4.69521e19 −2.14461
\(946\) −1.09830e17 −0.00498229
\(947\) 3.99930e19 1.80181 0.900906 0.434015i \(-0.142904\pi\)
0.900906 + 0.434015i \(0.142904\pi\)
\(948\) 1.27004e19 0.568283
\(949\) 0 0
\(950\) 1.32128e18 0.0583167
\(951\) 1.36224e19 0.597144
\(952\) 7.61706e18 0.331625
\(953\) 1.66145e19 0.718427 0.359214 0.933255i \(-0.383045\pi\)
0.359214 + 0.933255i \(0.383045\pi\)
\(954\) 3.18604e18 0.136832
\(955\) 1.02800e19 0.438504
\(956\) 1.00043e19 0.423850
\(957\) 5.56106e19 2.34007
\(958\) 4.38907e18 0.183441
\(959\) 9.01690e18 0.374314
\(960\) 1.46757e19 0.605113
\(961\) −1.75856e19 −0.720204
\(962\) 0 0
\(963\) −9.64624e19 −3.89751
\(964\) −2.84737e19 −1.14273
\(965\) −1.73824e19 −0.692919
\(966\) −2.88187e19 −1.14110
\(967\) 3.07638e19 1.20995 0.604976 0.796244i \(-0.293183\pi\)
0.604976 + 0.796244i \(0.293183\pi\)
\(968\) −5.11004e18 −0.199634
\(969\) 5.68503e18 0.220612
\(970\) 2.63006e18 0.101380
\(971\) −2.54238e19 −0.973454 −0.486727 0.873554i \(-0.661809\pi\)
−0.486727 + 0.873554i \(0.661809\pi\)
\(972\) −2.76125e19 −1.05021
\(973\) −5.56275e17 −0.0210163
\(974\) 1.09365e19 0.410437
\(975\) 0 0
\(976\) 1.67970e18 0.0622026
\(977\) 2.79025e18 0.102643 0.0513214 0.998682i \(-0.483657\pi\)
0.0513214 + 0.998682i \(0.483657\pi\)
\(978\) −8.11929e16 −0.00296698
\(979\) −3.42638e19 −1.24379
\(980\) 3.04592e19 1.09837
\(981\) −2.37252e19 −0.849886
\(982\) −1.32554e18 −0.0471701
\(983\) −3.74867e19 −1.32519 −0.662596 0.748977i \(-0.730545\pi\)
−0.662596 + 0.748977i \(0.730545\pi\)
\(984\) 1.44588e18 0.0507765
\(985\) −1.58513e19 −0.553005
\(986\) 2.96762e18 0.102851
\(987\) −6.31622e19 −2.17468
\(988\) 0 0
\(989\) −6.98210e17 −0.0237252
\(990\) 1.02349e19 0.345504
\(991\) −5.01476e18 −0.168179 −0.0840895 0.996458i \(-0.526798\pi\)
−0.0840895 + 0.996458i \(0.526798\pi\)
\(992\) −1.08625e19 −0.361913
\(993\) −8.32321e19 −2.75500
\(994\) 1.21419e19 0.399279
\(995\) 1.20545e19 0.393820
\(996\) −4.61484e19 −1.49786
\(997\) 3.25426e19 1.04938 0.524691 0.851293i \(-0.324181\pi\)
0.524691 + 0.851293i \(0.324181\pi\)
\(998\) 9.76234e18 0.312756
\(999\) −3.99822e18 −0.127260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.14.a.c.1.9 14
13.4 even 6 13.14.c.a.3.9 28
13.10 even 6 13.14.c.a.9.9 yes 28
13.12 even 2 169.14.a.e.1.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.14.c.a.3.9 28 13.4 even 6
13.14.c.a.9.9 yes 28 13.10 even 6
169.14.a.c.1.9 14 1.1 even 1 trivial
169.14.a.e.1.6 14 13.12 even 2