Properties

Label 1682.4.a.k.1.6
Level $1682$
Weight $4$
Character 1682.1
Self dual yes
Analytic conductor $99.241$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,4,Mod(1,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.2412126297\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 97x^{4} - 87x^{3} + 1809x^{2} + 1890x - 1620 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-5.84101\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +7.45095 q^{3} +4.00000 q^{4} -7.82664 q^{5} -14.9019 q^{6} +2.70016 q^{7} -8.00000 q^{8} +28.5167 q^{9} +15.6533 q^{10} +27.6893 q^{11} +29.8038 q^{12} +19.8389 q^{13} -5.40031 q^{14} -58.3159 q^{15} +16.0000 q^{16} -105.283 q^{17} -57.0333 q^{18} +119.879 q^{19} -31.3066 q^{20} +20.1187 q^{21} -55.3787 q^{22} -77.4698 q^{23} -59.6076 q^{24} -63.7437 q^{25} -39.6777 q^{26} +11.3006 q^{27} +10.8006 q^{28} +116.632 q^{30} -294.938 q^{31} -32.0000 q^{32} +206.312 q^{33} +210.566 q^{34} -21.1331 q^{35} +114.067 q^{36} -97.3759 q^{37} -239.757 q^{38} +147.818 q^{39} +62.6131 q^{40} -69.2556 q^{41} -40.2374 q^{42} -537.409 q^{43} +110.757 q^{44} -223.190 q^{45} +154.940 q^{46} +168.858 q^{47} +119.215 q^{48} -335.709 q^{49} +127.487 q^{50} -784.459 q^{51} +79.3555 q^{52} -109.193 q^{53} -22.6012 q^{54} -216.714 q^{55} -21.6012 q^{56} +893.211 q^{57} +416.074 q^{59} -233.264 q^{60} +626.162 q^{61} +589.875 q^{62} +76.9994 q^{63} +64.0000 q^{64} -155.272 q^{65} -412.624 q^{66} +286.046 q^{67} -421.133 q^{68} -577.224 q^{69} +42.2663 q^{70} +1066.48 q^{71} -228.133 q^{72} +132.201 q^{73} +194.752 q^{74} -474.951 q^{75} +479.515 q^{76} +74.7655 q^{77} -295.637 q^{78} -206.432 q^{79} -125.226 q^{80} -685.750 q^{81} +138.511 q^{82} +762.855 q^{83} +80.4749 q^{84} +824.013 q^{85} +1074.82 q^{86} -221.515 q^{88} +722.523 q^{89} +446.379 q^{90} +53.5680 q^{91} -309.879 q^{92} -2197.57 q^{93} -337.715 q^{94} -938.248 q^{95} -238.430 q^{96} -647.151 q^{97} +671.418 q^{98} +789.607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} - 10 q^{3} + 24 q^{4} - 10 q^{5} + 20 q^{6} - 26 q^{7} - 48 q^{8} + 54 q^{9} + 20 q^{10} + 89 q^{11} - 40 q^{12} - 86 q^{13} + 52 q^{14} - 89 q^{15} + 96 q^{16} + 95 q^{17} - 108 q^{18} + 30 q^{19}+ \cdots + 3854 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 7.45095 1.43394 0.716968 0.697106i \(-0.245529\pi\)
0.716968 + 0.697106i \(0.245529\pi\)
\(4\) 4.00000 0.500000
\(5\) −7.82664 −0.700036 −0.350018 0.936743i \(-0.613825\pi\)
−0.350018 + 0.936743i \(0.613825\pi\)
\(6\) −14.9019 −1.01395
\(7\) 2.70016 0.145795 0.0728973 0.997339i \(-0.476775\pi\)
0.0728973 + 0.997339i \(0.476775\pi\)
\(8\) −8.00000 −0.353553
\(9\) 28.5167 1.05617
\(10\) 15.6533 0.495000
\(11\) 27.6893 0.758968 0.379484 0.925198i \(-0.376102\pi\)
0.379484 + 0.925198i \(0.376102\pi\)
\(12\) 29.8038 0.716968
\(13\) 19.8389 0.423255 0.211627 0.977350i \(-0.432124\pi\)
0.211627 + 0.977350i \(0.432124\pi\)
\(14\) −5.40031 −0.103092
\(15\) −58.3159 −1.00381
\(16\) 16.0000 0.250000
\(17\) −105.283 −1.50205 −0.751027 0.660272i \(-0.770441\pi\)
−0.751027 + 0.660272i \(0.770441\pi\)
\(18\) −57.0333 −0.746827
\(19\) 119.879 1.44748 0.723739 0.690074i \(-0.242422\pi\)
0.723739 + 0.690074i \(0.242422\pi\)
\(20\) −31.3066 −0.350018
\(21\) 20.1187 0.209060
\(22\) −55.3787 −0.536671
\(23\) −77.4698 −0.702330 −0.351165 0.936314i \(-0.614214\pi\)
−0.351165 + 0.936314i \(0.614214\pi\)
\(24\) −59.6076 −0.506973
\(25\) −63.7437 −0.509950
\(26\) −39.6777 −0.299286
\(27\) 11.3006 0.0805480
\(28\) 10.8006 0.0728973
\(29\) 0 0
\(30\) 116.632 0.709799
\(31\) −294.938 −1.70879 −0.854393 0.519628i \(-0.826071\pi\)
−0.854393 + 0.519628i \(0.826071\pi\)
\(32\) −32.0000 −0.176777
\(33\) 206.312 1.08831
\(34\) 210.566 1.06211
\(35\) −21.1331 −0.102062
\(36\) 114.067 0.528086
\(37\) −97.3759 −0.432662 −0.216331 0.976320i \(-0.569409\pi\)
−0.216331 + 0.976320i \(0.569409\pi\)
\(38\) −239.757 −1.02352
\(39\) 147.818 0.606920
\(40\) 62.6131 0.247500
\(41\) −69.2556 −0.263803 −0.131901 0.991263i \(-0.542108\pi\)
−0.131901 + 0.991263i \(0.542108\pi\)
\(42\) −40.2374 −0.147828
\(43\) −537.409 −1.90591 −0.952955 0.303113i \(-0.901974\pi\)
−0.952955 + 0.303113i \(0.901974\pi\)
\(44\) 110.757 0.379484
\(45\) −223.190 −0.739359
\(46\) 154.940 0.496622
\(47\) 168.858 0.524052 0.262026 0.965061i \(-0.415609\pi\)
0.262026 + 0.965061i \(0.415609\pi\)
\(48\) 119.215 0.358484
\(49\) −335.709 −0.978744
\(50\) 127.487 0.360589
\(51\) −784.459 −2.15385
\(52\) 79.3555 0.211627
\(53\) −109.193 −0.282997 −0.141499 0.989938i \(-0.545192\pi\)
−0.141499 + 0.989938i \(0.545192\pi\)
\(54\) −22.6012 −0.0569561
\(55\) −216.714 −0.531305
\(56\) −21.6012 −0.0515462
\(57\) 893.211 2.07559
\(58\) 0 0
\(59\) 416.074 0.918105 0.459052 0.888409i \(-0.348189\pi\)
0.459052 + 0.888409i \(0.348189\pi\)
\(60\) −233.264 −0.501903
\(61\) 626.162 1.31429 0.657146 0.753764i \(-0.271764\pi\)
0.657146 + 0.753764i \(0.271764\pi\)
\(62\) 589.875 1.20829
\(63\) 76.9994 0.153984
\(64\) 64.0000 0.125000
\(65\) −155.272 −0.296294
\(66\) −412.624 −0.769552
\(67\) 286.046 0.521583 0.260792 0.965395i \(-0.416016\pi\)
0.260792 + 0.965395i \(0.416016\pi\)
\(68\) −421.133 −0.751027
\(69\) −577.224 −1.00710
\(70\) 42.2663 0.0721684
\(71\) 1066.48 1.78265 0.891325 0.453365i \(-0.149777\pi\)
0.891325 + 0.453365i \(0.149777\pi\)
\(72\) −228.133 −0.373413
\(73\) 132.201 0.211958 0.105979 0.994368i \(-0.466202\pi\)
0.105979 + 0.994368i \(0.466202\pi\)
\(74\) 194.752 0.305938
\(75\) −474.951 −0.731235
\(76\) 479.515 0.723739
\(77\) 74.7655 0.110653
\(78\) −295.637 −0.429157
\(79\) −206.432 −0.293993 −0.146997 0.989137i \(-0.546961\pi\)
−0.146997 + 0.989137i \(0.546961\pi\)
\(80\) −125.226 −0.175009
\(81\) −685.750 −0.940672
\(82\) 138.511 0.186537
\(83\) 762.855 1.00885 0.504423 0.863457i \(-0.331705\pi\)
0.504423 + 0.863457i \(0.331705\pi\)
\(84\) 80.4749 0.104530
\(85\) 824.013 1.05149
\(86\) 1074.82 1.34768
\(87\) 0 0
\(88\) −221.515 −0.268336
\(89\) 722.523 0.860532 0.430266 0.902702i \(-0.358420\pi\)
0.430266 + 0.902702i \(0.358420\pi\)
\(90\) 446.379 0.522806
\(91\) 53.5680 0.0617083
\(92\) −309.879 −0.351165
\(93\) −2197.57 −2.45029
\(94\) −337.715 −0.370560
\(95\) −938.248 −1.01329
\(96\) −238.430 −0.253486
\(97\) −647.151 −0.677404 −0.338702 0.940894i \(-0.609988\pi\)
−0.338702 + 0.940894i \(0.609988\pi\)
\(98\) 671.418 0.692076
\(99\) 789.607 0.801601
\(100\) −254.975 −0.254975
\(101\) −630.176 −0.620840 −0.310420 0.950600i \(-0.600470\pi\)
−0.310420 + 0.950600i \(0.600470\pi\)
\(102\) 1568.92 1.52300
\(103\) −1988.72 −1.90247 −0.951233 0.308473i \(-0.900182\pi\)
−0.951233 + 0.308473i \(0.900182\pi\)
\(104\) −158.711 −0.149643
\(105\) −157.462 −0.146350
\(106\) 218.387 0.200109
\(107\) −2045.12 −1.84775 −0.923876 0.382693i \(-0.874997\pi\)
−0.923876 + 0.382693i \(0.874997\pi\)
\(108\) 45.2023 0.0402740
\(109\) −2182.87 −1.91817 −0.959086 0.283115i \(-0.908632\pi\)
−0.959086 + 0.283115i \(0.908632\pi\)
\(110\) 433.429 0.375689
\(111\) −725.543 −0.620410
\(112\) 43.2025 0.0364487
\(113\) 543.377 0.452360 0.226180 0.974086i \(-0.427376\pi\)
0.226180 + 0.974086i \(0.427376\pi\)
\(114\) −1786.42 −1.46766
\(115\) 606.329 0.491656
\(116\) 0 0
\(117\) 565.738 0.447030
\(118\) −832.147 −0.649198
\(119\) −284.281 −0.218991
\(120\) 466.527 0.354899
\(121\) −564.301 −0.423968
\(122\) −1252.32 −0.929344
\(123\) −516.020 −0.378276
\(124\) −1179.75 −0.854393
\(125\) 1477.23 1.05702
\(126\) −153.999 −0.108883
\(127\) −1410.18 −0.985300 −0.492650 0.870228i \(-0.663972\pi\)
−0.492650 + 0.870228i \(0.663972\pi\)
\(128\) −128.000 −0.0883883
\(129\) −4004.21 −2.73295
\(130\) 310.543 0.209511
\(131\) 2398.82 1.59989 0.799946 0.600072i \(-0.204861\pi\)
0.799946 + 0.600072i \(0.204861\pi\)
\(132\) 825.247 0.544156
\(133\) 323.691 0.211034
\(134\) −572.092 −0.368815
\(135\) −88.4456 −0.0563865
\(136\) 842.265 0.531056
\(137\) 1246.70 0.777466 0.388733 0.921351i \(-0.372913\pi\)
0.388733 + 0.921351i \(0.372913\pi\)
\(138\) 1154.45 0.712124
\(139\) 918.664 0.560576 0.280288 0.959916i \(-0.409570\pi\)
0.280288 + 0.959916i \(0.409570\pi\)
\(140\) −84.5326 −0.0510308
\(141\) 1258.15 0.751456
\(142\) −2132.96 −1.26052
\(143\) 549.325 0.321237
\(144\) 456.267 0.264043
\(145\) 0 0
\(146\) −264.401 −0.149877
\(147\) −2501.35 −1.40346
\(148\) −389.503 −0.216331
\(149\) −2383.79 −1.31065 −0.655327 0.755345i \(-0.727469\pi\)
−0.655327 + 0.755345i \(0.727469\pi\)
\(150\) 949.902 0.517061
\(151\) 867.644 0.467602 0.233801 0.972284i \(-0.424884\pi\)
0.233801 + 0.972284i \(0.424884\pi\)
\(152\) −959.030 −0.511760
\(153\) −3002.32 −1.58643
\(154\) −149.531 −0.0782438
\(155\) 2308.37 1.19621
\(156\) 591.274 0.303460
\(157\) −1167.80 −0.593636 −0.296818 0.954934i \(-0.595926\pi\)
−0.296818 + 0.954934i \(0.595926\pi\)
\(158\) 412.865 0.207885
\(159\) −813.595 −0.405800
\(160\) 250.452 0.123750
\(161\) −209.181 −0.102396
\(162\) 1371.50 0.665156
\(163\) −205.787 −0.0988863 −0.0494432 0.998777i \(-0.515745\pi\)
−0.0494432 + 0.998777i \(0.515745\pi\)
\(164\) −277.022 −0.131901
\(165\) −1614.73 −0.761857
\(166\) −1525.71 −0.713362
\(167\) −1143.63 −0.529919 −0.264960 0.964259i \(-0.585359\pi\)
−0.264960 + 0.964259i \(0.585359\pi\)
\(168\) −160.950 −0.0739140
\(169\) −1803.42 −0.820855
\(170\) −1648.03 −0.743517
\(171\) 3418.54 1.52879
\(172\) −2149.64 −0.952955
\(173\) −812.968 −0.357276 −0.178638 0.983915i \(-0.557169\pi\)
−0.178638 + 0.983915i \(0.557169\pi\)
\(174\) 0 0
\(175\) −172.118 −0.0743479
\(176\) 443.029 0.189742
\(177\) 3100.14 1.31650
\(178\) −1445.05 −0.608488
\(179\) −2131.38 −0.889981 −0.444991 0.895535i \(-0.646793\pi\)
−0.444991 + 0.895535i \(0.646793\pi\)
\(180\) −892.759 −0.369679
\(181\) −3490.64 −1.43346 −0.716732 0.697348i \(-0.754363\pi\)
−0.716732 + 0.697348i \(0.754363\pi\)
\(182\) −107.136 −0.0436344
\(183\) 4665.50 1.88461
\(184\) 619.759 0.248311
\(185\) 762.126 0.302879
\(186\) 4395.13 1.73262
\(187\) −2915.22 −1.14001
\(188\) 675.431 0.262026
\(189\) 30.5133 0.0117435
\(190\) 1876.50 0.716502
\(191\) −1260.70 −0.477596 −0.238798 0.971069i \(-0.576753\pi\)
−0.238798 + 0.971069i \(0.576753\pi\)
\(192\) 476.861 0.179242
\(193\) −4972.54 −1.85457 −0.927283 0.374361i \(-0.877862\pi\)
−0.927283 + 0.374361i \(0.877862\pi\)
\(194\) 1294.30 0.478997
\(195\) −1156.92 −0.424866
\(196\) −1342.84 −0.489372
\(197\) 1255.57 0.454089 0.227044 0.973884i \(-0.427094\pi\)
0.227044 + 0.973884i \(0.427094\pi\)
\(198\) −1579.21 −0.566818
\(199\) 318.115 0.113319 0.0566596 0.998394i \(-0.481955\pi\)
0.0566596 + 0.998394i \(0.481955\pi\)
\(200\) 509.950 0.180294
\(201\) 2131.32 0.747917
\(202\) 1260.35 0.439000
\(203\) 0 0
\(204\) −3137.84 −1.07692
\(205\) 542.039 0.184671
\(206\) 3977.43 1.34525
\(207\) −2209.18 −0.741781
\(208\) 317.422 0.105814
\(209\) 3319.36 1.09859
\(210\) 314.924 0.103485
\(211\) 4006.23 1.30711 0.653555 0.756879i \(-0.273277\pi\)
0.653555 + 0.756879i \(0.273277\pi\)
\(212\) −436.774 −0.141499
\(213\) 7946.30 2.55621
\(214\) 4090.24 1.30656
\(215\) 4206.11 1.33421
\(216\) −90.4046 −0.0284780
\(217\) −796.377 −0.249132
\(218\) 4365.73 1.35635
\(219\) 985.021 0.303934
\(220\) −866.858 −0.265652
\(221\) −2088.70 −0.635751
\(222\) 1451.09 0.438696
\(223\) 1037.20 0.311463 0.155731 0.987799i \(-0.450227\pi\)
0.155731 + 0.987799i \(0.450227\pi\)
\(224\) −86.4050 −0.0257731
\(225\) −1817.76 −0.538595
\(226\) −1086.75 −0.319867
\(227\) −4530.34 −1.32462 −0.662311 0.749229i \(-0.730424\pi\)
−0.662311 + 0.749229i \(0.730424\pi\)
\(228\) 3572.84 1.03779
\(229\) 4748.77 1.37034 0.685169 0.728384i \(-0.259728\pi\)
0.685169 + 0.728384i \(0.259728\pi\)
\(230\) −1212.66 −0.347653
\(231\) 557.074 0.158670
\(232\) 0 0
\(233\) −4354.21 −1.22427 −0.612133 0.790755i \(-0.709688\pi\)
−0.612133 + 0.790755i \(0.709688\pi\)
\(234\) −1131.48 −0.316098
\(235\) −1321.59 −0.366855
\(236\) 1664.29 0.459052
\(237\) −1538.12 −0.421567
\(238\) 568.562 0.154850
\(239\) −1279.38 −0.346261 −0.173130 0.984899i \(-0.555388\pi\)
−0.173130 + 0.984899i \(0.555388\pi\)
\(240\) −933.055 −0.250952
\(241\) −3967.87 −1.06055 −0.530276 0.847825i \(-0.677912\pi\)
−0.530276 + 0.847825i \(0.677912\pi\)
\(242\) 1128.60 0.299790
\(243\) −5414.60 −1.42941
\(244\) 2504.65 0.657146
\(245\) 2627.47 0.685156
\(246\) 1032.04 0.267482
\(247\) 2378.26 0.612652
\(248\) 2359.50 0.604147
\(249\) 5683.99 1.44662
\(250\) −2954.46 −0.747425
\(251\) −1819.29 −0.457500 −0.228750 0.973485i \(-0.573464\pi\)
−0.228750 + 0.973485i \(0.573464\pi\)
\(252\) 307.998 0.0769922
\(253\) −2145.09 −0.533046
\(254\) 2820.36 0.696712
\(255\) 6139.68 1.50777
\(256\) 256.000 0.0625000
\(257\) 2589.18 0.628439 0.314219 0.949350i \(-0.398257\pi\)
0.314219 + 0.949350i \(0.398257\pi\)
\(258\) 8008.41 1.93249
\(259\) −262.930 −0.0630798
\(260\) −621.087 −0.148147
\(261\) 0 0
\(262\) −4797.64 −1.13129
\(263\) −5085.92 −1.19244 −0.596219 0.802822i \(-0.703331\pi\)
−0.596219 + 0.802822i \(0.703331\pi\)
\(264\) −1650.49 −0.384776
\(265\) 854.617 0.198108
\(266\) −647.382 −0.149224
\(267\) 5383.49 1.23395
\(268\) 1144.18 0.260792
\(269\) 5503.30 1.24737 0.623684 0.781677i \(-0.285635\pi\)
0.623684 + 0.781677i \(0.285635\pi\)
\(270\) 176.891 0.0398713
\(271\) 4290.11 0.961644 0.480822 0.876818i \(-0.340338\pi\)
0.480822 + 0.876818i \(0.340338\pi\)
\(272\) −1684.53 −0.375513
\(273\) 399.133 0.0884858
\(274\) −2493.40 −0.549751
\(275\) −1765.02 −0.387035
\(276\) −2308.90 −0.503548
\(277\) −2858.15 −0.619963 −0.309982 0.950743i \(-0.600323\pi\)
−0.309982 + 0.950743i \(0.600323\pi\)
\(278\) −1837.33 −0.396387
\(279\) −8410.64 −1.80477
\(280\) 169.065 0.0360842
\(281\) 3597.56 0.763746 0.381873 0.924215i \(-0.375279\pi\)
0.381873 + 0.924215i \(0.375279\pi\)
\(282\) −2516.30 −0.531360
\(283\) 5914.47 1.24233 0.621164 0.783681i \(-0.286660\pi\)
0.621164 + 0.783681i \(0.286660\pi\)
\(284\) 4265.93 0.891325
\(285\) −6990.84 −1.45299
\(286\) −1098.65 −0.227149
\(287\) −187.001 −0.0384610
\(288\) −912.533 −0.186707
\(289\) 6171.54 1.25616
\(290\) 0 0
\(291\) −4821.89 −0.971355
\(292\) 528.803 0.105979
\(293\) 1978.09 0.394408 0.197204 0.980363i \(-0.436814\pi\)
0.197204 + 0.980363i \(0.436814\pi\)
\(294\) 5002.70 0.992393
\(295\) −3256.46 −0.642706
\(296\) 779.007 0.152969
\(297\) 312.905 0.0611334
\(298\) 4767.58 0.926773
\(299\) −1536.91 −0.297264
\(300\) −1899.80 −0.365618
\(301\) −1451.09 −0.277871
\(302\) −1735.29 −0.330644
\(303\) −4695.41 −0.890245
\(304\) 1918.06 0.361869
\(305\) −4900.74 −0.920051
\(306\) 6004.65 1.12177
\(307\) 1536.32 0.285610 0.142805 0.989751i \(-0.454388\pi\)
0.142805 + 0.989751i \(0.454388\pi\)
\(308\) 299.062 0.0553267
\(309\) −14817.8 −2.72801
\(310\) −4616.74 −0.845849
\(311\) 5510.16 1.00467 0.502335 0.864673i \(-0.332474\pi\)
0.502335 + 0.864673i \(0.332474\pi\)
\(312\) −1182.55 −0.214579
\(313\) −2183.22 −0.394259 −0.197130 0.980377i \(-0.563162\pi\)
−0.197130 + 0.980377i \(0.563162\pi\)
\(314\) 2335.61 0.419764
\(315\) −602.647 −0.107795
\(316\) −825.730 −0.146997
\(317\) −4983.23 −0.882921 −0.441460 0.897281i \(-0.645539\pi\)
−0.441460 + 0.897281i \(0.645539\pi\)
\(318\) 1627.19 0.286944
\(319\) 0 0
\(320\) −500.905 −0.0875045
\(321\) −15238.1 −2.64956
\(322\) 418.361 0.0724048
\(323\) −12621.2 −2.17419
\(324\) −2743.00 −0.470336
\(325\) −1264.60 −0.215839
\(326\) 411.574 0.0699232
\(327\) −16264.4 −2.75054
\(328\) 554.045 0.0932683
\(329\) 455.942 0.0764039
\(330\) 3229.46 0.538714
\(331\) 7707.45 1.27988 0.639939 0.768426i \(-0.278960\pi\)
0.639939 + 0.768426i \(0.278960\pi\)
\(332\) 3051.42 0.504423
\(333\) −2776.83 −0.456966
\(334\) 2287.25 0.374710
\(335\) −2238.78 −0.365127
\(336\) 321.900 0.0522651
\(337\) −1078.53 −0.174337 −0.0871685 0.996194i \(-0.527782\pi\)
−0.0871685 + 0.996194i \(0.527782\pi\)
\(338\) 3606.84 0.580432
\(339\) 4048.68 0.648655
\(340\) 3296.05 0.525746
\(341\) −8166.62 −1.29691
\(342\) −6837.08 −1.08101
\(343\) −1832.62 −0.288490
\(344\) 4299.27 0.673841
\(345\) 4517.72 0.705003
\(346\) 1625.94 0.252633
\(347\) 579.489 0.0896501 0.0448250 0.998995i \(-0.485727\pi\)
0.0448250 + 0.998995i \(0.485727\pi\)
\(348\) 0 0
\(349\) −6151.86 −0.943558 −0.471779 0.881717i \(-0.656388\pi\)
−0.471779 + 0.881717i \(0.656388\pi\)
\(350\) 344.236 0.0525719
\(351\) 224.191 0.0340923
\(352\) −886.059 −0.134168
\(353\) −453.612 −0.0683947 −0.0341973 0.999415i \(-0.510887\pi\)
−0.0341973 + 0.999415i \(0.510887\pi\)
\(354\) −6200.29 −0.930909
\(355\) −8346.97 −1.24792
\(356\) 2890.09 0.430266
\(357\) −2118.16 −0.314020
\(358\) 4262.76 0.629312
\(359\) −6543.18 −0.961938 −0.480969 0.876738i \(-0.659715\pi\)
−0.480969 + 0.876738i \(0.659715\pi\)
\(360\) 1785.52 0.261403
\(361\) 7511.91 1.09519
\(362\) 6981.28 1.01361
\(363\) −4204.58 −0.607943
\(364\) 214.272 0.0308541
\(365\) −1034.69 −0.148378
\(366\) −9331.00 −1.33262
\(367\) 4378.09 0.622709 0.311355 0.950294i \(-0.399217\pi\)
0.311355 + 0.950294i \(0.399217\pi\)
\(368\) −1239.52 −0.175582
\(369\) −1974.94 −0.278621
\(370\) −1524.25 −0.214168
\(371\) −294.839 −0.0412595
\(372\) −8790.26 −1.22514
\(373\) −10463.6 −1.45251 −0.726253 0.687428i \(-0.758740\pi\)
−0.726253 + 0.687428i \(0.758740\pi\)
\(374\) 5830.44 0.806109
\(375\) 11006.8 1.51570
\(376\) −1350.86 −0.185280
\(377\) 0 0
\(378\) −61.0266 −0.00830389
\(379\) 353.637 0.0479291 0.0239646 0.999713i \(-0.492371\pi\)
0.0239646 + 0.999713i \(0.492371\pi\)
\(380\) −3752.99 −0.506643
\(381\) −10507.2 −1.41286
\(382\) 2521.39 0.337711
\(383\) 4249.67 0.566966 0.283483 0.958977i \(-0.408510\pi\)
0.283483 + 0.958977i \(0.408510\pi\)
\(384\) −953.722 −0.126743
\(385\) −585.163 −0.0774614
\(386\) 9945.08 1.31138
\(387\) −15325.1 −2.01297
\(388\) −2588.60 −0.338702
\(389\) −13792.1 −1.79766 −0.898828 0.438301i \(-0.855580\pi\)
−0.898828 + 0.438301i \(0.855580\pi\)
\(390\) 2313.84 0.300426
\(391\) 8156.27 1.05494
\(392\) 2685.67 0.346038
\(393\) 17873.5 2.29414
\(394\) −2511.13 −0.321089
\(395\) 1615.67 0.205806
\(396\) 3158.43 0.400801
\(397\) −13329.6 −1.68513 −0.842563 0.538598i \(-0.818954\pi\)
−0.842563 + 0.538598i \(0.818954\pi\)
\(398\) −636.229 −0.0801288
\(399\) 2411.81 0.302610
\(400\) −1019.90 −0.127487
\(401\) 14184.8 1.76647 0.883235 0.468930i \(-0.155360\pi\)
0.883235 + 0.468930i \(0.155360\pi\)
\(402\) −4262.63 −0.528857
\(403\) −5851.23 −0.723252
\(404\) −2520.70 −0.310420
\(405\) 5367.12 0.658504
\(406\) 0 0
\(407\) −2696.27 −0.328377
\(408\) 6275.67 0.761500
\(409\) 4863.90 0.588030 0.294015 0.955801i \(-0.405008\pi\)
0.294015 + 0.955801i \(0.405008\pi\)
\(410\) −1084.08 −0.130582
\(411\) 9289.10 1.11484
\(412\) −7954.86 −0.951233
\(413\) 1123.46 0.133855
\(414\) 4418.36 0.524519
\(415\) −5970.59 −0.706228
\(416\) −634.844 −0.0748216
\(417\) 6844.92 0.803830
\(418\) −6638.72 −0.776820
\(419\) −6829.43 −0.796275 −0.398138 0.917326i \(-0.630343\pi\)
−0.398138 + 0.917326i \(0.630343\pi\)
\(420\) −629.848 −0.0731748
\(421\) −1648.06 −0.190787 −0.0953935 0.995440i \(-0.530411\pi\)
−0.0953935 + 0.995440i \(0.530411\pi\)
\(422\) −8012.46 −0.924266
\(423\) 4815.26 0.553489
\(424\) 873.547 0.100055
\(425\) 6711.14 0.765972
\(426\) −15892.6 −1.80751
\(427\) 1690.73 0.191617
\(428\) −8180.49 −0.923876
\(429\) 4092.99 0.460633
\(430\) −8412.21 −0.943425
\(431\) 8779.43 0.981184 0.490592 0.871389i \(-0.336781\pi\)
0.490592 + 0.871389i \(0.336781\pi\)
\(432\) 180.809 0.0201370
\(433\) −1893.58 −0.210161 −0.105080 0.994464i \(-0.533510\pi\)
−0.105080 + 0.994464i \(0.533510\pi\)
\(434\) 1592.75 0.176163
\(435\) 0 0
\(436\) −8731.47 −0.959086
\(437\) −9286.99 −1.01661
\(438\) −1970.04 −0.214914
\(439\) 4926.54 0.535605 0.267803 0.963474i \(-0.413702\pi\)
0.267803 + 0.963474i \(0.413702\pi\)
\(440\) 1733.72 0.187845
\(441\) −9573.30 −1.03372
\(442\) 4177.40 0.449544
\(443\) −6588.02 −0.706561 −0.353280 0.935517i \(-0.614934\pi\)
−0.353280 + 0.935517i \(0.614934\pi\)
\(444\) −2902.17 −0.310205
\(445\) −5654.93 −0.602403
\(446\) −2074.40 −0.220237
\(447\) −17761.5 −1.87939
\(448\) 172.810 0.0182243
\(449\) 1244.84 0.130841 0.0654206 0.997858i \(-0.479161\pi\)
0.0654206 + 0.997858i \(0.479161\pi\)
\(450\) 3635.52 0.380844
\(451\) −1917.64 −0.200218
\(452\) 2173.51 0.226180
\(453\) 6464.77 0.670511
\(454\) 9060.68 0.936649
\(455\) −419.258 −0.0431980
\(456\) −7145.68 −0.733832
\(457\) −6434.37 −0.658615 −0.329307 0.944223i \(-0.606815\pi\)
−0.329307 + 0.944223i \(0.606815\pi\)
\(458\) −9497.53 −0.968975
\(459\) −1189.76 −0.120987
\(460\) 2425.31 0.245828
\(461\) −11626.6 −1.17463 −0.587316 0.809358i \(-0.699816\pi\)
−0.587316 + 0.809358i \(0.699816\pi\)
\(462\) −1114.15 −0.112197
\(463\) 1438.84 0.144424 0.0722122 0.997389i \(-0.476994\pi\)
0.0722122 + 0.997389i \(0.476994\pi\)
\(464\) 0 0
\(465\) 17199.6 1.71529
\(466\) 8708.42 0.865686
\(467\) 13557.6 1.34341 0.671704 0.740820i \(-0.265563\pi\)
0.671704 + 0.740820i \(0.265563\pi\)
\(468\) 2262.95 0.223515
\(469\) 772.369 0.0760441
\(470\) 2643.18 0.259406
\(471\) −8701.25 −0.851237
\(472\) −3328.59 −0.324599
\(473\) −14880.5 −1.44652
\(474\) 3076.24 0.298093
\(475\) −7641.51 −0.738140
\(476\) −1137.12 −0.109496
\(477\) −3113.83 −0.298894
\(478\) 2558.76 0.244843
\(479\) 15103.6 1.44071 0.720355 0.693605i \(-0.243979\pi\)
0.720355 + 0.693605i \(0.243979\pi\)
\(480\) 1866.11 0.177450
\(481\) −1931.83 −0.183126
\(482\) 7935.75 0.749924
\(483\) −1558.59 −0.146829
\(484\) −2257.20 −0.211984
\(485\) 5065.02 0.474207
\(486\) 10829.2 1.01075
\(487\) 12514.7 1.16447 0.582235 0.813021i \(-0.302178\pi\)
0.582235 + 0.813021i \(0.302178\pi\)
\(488\) −5009.29 −0.464672
\(489\) −1533.31 −0.141797
\(490\) −5254.95 −0.484478
\(491\) 331.462 0.0304657 0.0152328 0.999884i \(-0.495151\pi\)
0.0152328 + 0.999884i \(0.495151\pi\)
\(492\) −2064.08 −0.189138
\(493\) 0 0
\(494\) −4756.52 −0.433210
\(495\) −6179.97 −0.561150
\(496\) −4719.00 −0.427196
\(497\) 2879.67 0.259901
\(498\) −11368.0 −1.02292
\(499\) 352.716 0.0316427 0.0158214 0.999875i \(-0.494964\pi\)
0.0158214 + 0.999875i \(0.494964\pi\)
\(500\) 5908.92 0.528510
\(501\) −8521.11 −0.759870
\(502\) 3638.58 0.323502
\(503\) −15380.5 −1.36338 −0.681692 0.731639i \(-0.738756\pi\)
−0.681692 + 0.731639i \(0.738756\pi\)
\(504\) −615.995 −0.0544417
\(505\) 4932.16 0.434610
\(506\) 4290.18 0.376920
\(507\) −13437.2 −1.17705
\(508\) −5640.71 −0.492650
\(509\) −17668.3 −1.53857 −0.769286 0.638905i \(-0.779388\pi\)
−0.769286 + 0.638905i \(0.779388\pi\)
\(510\) −12279.4 −1.06616
\(511\) 356.962 0.0309023
\(512\) −512.000 −0.0441942
\(513\) 1354.70 0.116591
\(514\) −5178.36 −0.444373
\(515\) 15565.0 1.33179
\(516\) −16016.8 −1.36648
\(517\) 4675.56 0.397738
\(518\) 525.860 0.0446042
\(519\) −6057.38 −0.512311
\(520\) 1242.17 0.104756
\(521\) 16812.2 1.41373 0.706867 0.707346i \(-0.250108\pi\)
0.706867 + 0.707346i \(0.250108\pi\)
\(522\) 0 0
\(523\) 14123.2 1.18081 0.590407 0.807106i \(-0.298967\pi\)
0.590407 + 0.807106i \(0.298967\pi\)
\(524\) 9595.28 0.799946
\(525\) −1282.44 −0.106610
\(526\) 10171.8 0.843182
\(527\) 31052.0 2.56669
\(528\) 3300.99 0.272078
\(529\) −6165.42 −0.506733
\(530\) −1709.23 −0.140084
\(531\) 11865.0 0.969677
\(532\) 1294.76 0.105517
\(533\) −1373.95 −0.111656
\(534\) −10767.0 −0.872533
\(535\) 16006.4 1.29349
\(536\) −2288.37 −0.184408
\(537\) −15880.8 −1.27618
\(538\) −11006.6 −0.882022
\(539\) −9295.56 −0.742835
\(540\) −353.782 −0.0281933
\(541\) −10361.2 −0.823405 −0.411703 0.911318i \(-0.635066\pi\)
−0.411703 + 0.911318i \(0.635066\pi\)
\(542\) −8580.22 −0.679985
\(543\) −26008.6 −2.05550
\(544\) 3369.06 0.265528
\(545\) 17084.5 1.34279
\(546\) −798.265 −0.0625689
\(547\) −2753.45 −0.215227 −0.107613 0.994193i \(-0.534321\pi\)
−0.107613 + 0.994193i \(0.534321\pi\)
\(548\) 4986.80 0.388733
\(549\) 17856.0 1.38812
\(550\) 3530.04 0.273675
\(551\) 0 0
\(552\) 4617.79 0.356062
\(553\) −557.400 −0.0428626
\(554\) 5716.31 0.438380
\(555\) 5678.56 0.434309
\(556\) 3674.65 0.280288
\(557\) −2444.50 −0.185955 −0.0929773 0.995668i \(-0.529638\pi\)
−0.0929773 + 0.995668i \(0.529638\pi\)
\(558\) 16821.3 1.27617
\(559\) −10661.6 −0.806685
\(560\) −338.130 −0.0255154
\(561\) −21721.2 −1.63470
\(562\) −7195.12 −0.540050
\(563\) 16269.4 1.21789 0.608944 0.793213i \(-0.291593\pi\)
0.608944 + 0.793213i \(0.291593\pi\)
\(564\) 5032.60 0.375728
\(565\) −4252.82 −0.316668
\(566\) −11828.9 −0.878458
\(567\) −1851.63 −0.137145
\(568\) −8531.86 −0.630262
\(569\) 3904.41 0.287665 0.143832 0.989602i \(-0.454057\pi\)
0.143832 + 0.989602i \(0.454057\pi\)
\(570\) 13981.7 1.02742
\(571\) 20389.6 1.49436 0.747180 0.664622i \(-0.231407\pi\)
0.747180 + 0.664622i \(0.231407\pi\)
\(572\) 2197.30 0.160618
\(573\) −9393.38 −0.684841
\(574\) 374.002 0.0271961
\(575\) 4938.21 0.358153
\(576\) 1825.07 0.132022
\(577\) −18371.0 −1.32547 −0.662734 0.748855i \(-0.730604\pi\)
−0.662734 + 0.748855i \(0.730604\pi\)
\(578\) −12343.1 −0.888242
\(579\) −37050.2 −2.65933
\(580\) 0 0
\(581\) 2059.83 0.147084
\(582\) 9643.78 0.686851
\(583\) −3023.49 −0.214786
\(584\) −1057.61 −0.0749384
\(585\) −4427.83 −0.312937
\(586\) −3956.19 −0.278888
\(587\) −18033.3 −1.26799 −0.633997 0.773336i \(-0.718587\pi\)
−0.633997 + 0.773336i \(0.718587\pi\)
\(588\) −10005.4 −0.701728
\(589\) −35356.7 −2.47343
\(590\) 6512.92 0.454462
\(591\) 9355.17 0.651134
\(592\) −1558.01 −0.108165
\(593\) 20415.1 1.41374 0.706870 0.707343i \(-0.250107\pi\)
0.706870 + 0.707343i \(0.250107\pi\)
\(594\) −625.811 −0.0432278
\(595\) 2224.96 0.153302
\(596\) −9535.15 −0.655327
\(597\) 2370.26 0.162493
\(598\) 3073.83 0.210198
\(599\) 15554.6 1.06101 0.530505 0.847682i \(-0.322002\pi\)
0.530505 + 0.847682i \(0.322002\pi\)
\(600\) 3799.61 0.258531
\(601\) 14493.0 0.983667 0.491833 0.870689i \(-0.336327\pi\)
0.491833 + 0.870689i \(0.336327\pi\)
\(602\) 2902.18 0.196485
\(603\) 8157.08 0.550882
\(604\) 3470.58 0.233801
\(605\) 4416.58 0.296793
\(606\) 9390.82 0.629498
\(607\) 6646.81 0.444457 0.222229 0.974995i \(-0.428667\pi\)
0.222229 + 0.974995i \(0.428667\pi\)
\(608\) −3836.12 −0.255880
\(609\) 0 0
\(610\) 9801.48 0.650574
\(611\) 3349.95 0.221807
\(612\) −12009.3 −0.793214
\(613\) −1306.48 −0.0860819 −0.0430409 0.999073i \(-0.513705\pi\)
−0.0430409 + 0.999073i \(0.513705\pi\)
\(614\) −3072.64 −0.201957
\(615\) 4038.70 0.264807
\(616\) −598.124 −0.0391219
\(617\) 21689.4 1.41521 0.707604 0.706609i \(-0.249776\pi\)
0.707604 + 0.706609i \(0.249776\pi\)
\(618\) 29635.6 1.92900
\(619\) 25914.9 1.68272 0.841362 0.540472i \(-0.181754\pi\)
0.841362 + 0.540472i \(0.181754\pi\)
\(620\) 9233.48 0.598106
\(621\) −875.454 −0.0565713
\(622\) −11020.3 −0.710409
\(623\) 1950.93 0.125461
\(624\) 2365.09 0.151730
\(625\) −3593.78 −0.230002
\(626\) 4366.45 0.278783
\(627\) 24732.4 1.57531
\(628\) −4671.22 −0.296818
\(629\) 10252.0 0.649881
\(630\) 1205.29 0.0762223
\(631\) −7391.94 −0.466353 −0.233176 0.972434i \(-0.574912\pi\)
−0.233176 + 0.972434i \(0.574912\pi\)
\(632\) 1651.46 0.103942
\(633\) 29850.2 1.87431
\(634\) 9966.45 0.624319
\(635\) 11037.0 0.689745
\(636\) −3254.38 −0.202900
\(637\) −6660.09 −0.414258
\(638\) 0 0
\(639\) 30412.5 1.88279
\(640\) 1001.81 0.0618750
\(641\) −15884.7 −0.978796 −0.489398 0.872060i \(-0.662783\pi\)
−0.489398 + 0.872060i \(0.662783\pi\)
\(642\) 30476.2 1.87352
\(643\) 20569.7 1.26157 0.630786 0.775957i \(-0.282733\pi\)
0.630786 + 0.775957i \(0.282733\pi\)
\(644\) −836.722 −0.0511980
\(645\) 31339.5 1.91316
\(646\) 25242.4 1.53738
\(647\) 31285.7 1.90103 0.950515 0.310679i \(-0.100557\pi\)
0.950515 + 0.310679i \(0.100557\pi\)
\(648\) 5486.00 0.332578
\(649\) 11520.8 0.696812
\(650\) 2529.21 0.152621
\(651\) −5933.77 −0.357239
\(652\) −823.148 −0.0494432
\(653\) −1670.67 −0.100120 −0.0500601 0.998746i \(-0.515941\pi\)
−0.0500601 + 0.998746i \(0.515941\pi\)
\(654\) 32528.9 1.94492
\(655\) −18774.7 −1.11998
\(656\) −1108.09 −0.0659507
\(657\) 3769.92 0.223864
\(658\) −911.884 −0.0540257
\(659\) 23871.6 1.41109 0.705543 0.708667i \(-0.250703\pi\)
0.705543 + 0.708667i \(0.250703\pi\)
\(660\) −6458.91 −0.380929
\(661\) −22952.4 −1.35060 −0.675298 0.737545i \(-0.735985\pi\)
−0.675298 + 0.737545i \(0.735985\pi\)
\(662\) −15414.9 −0.905010
\(663\) −15562.8 −0.911627
\(664\) −6102.84 −0.356681
\(665\) −2533.41 −0.147732
\(666\) 5553.67 0.323124
\(667\) 0 0
\(668\) −4574.51 −0.264960
\(669\) 7728.14 0.446618
\(670\) 4477.56 0.258184
\(671\) 17338.0 0.997505
\(672\) −643.799 −0.0369570
\(673\) 8493.54 0.486481 0.243241 0.969966i \(-0.421790\pi\)
0.243241 + 0.969966i \(0.421790\pi\)
\(674\) 2157.07 0.123275
\(675\) −720.341 −0.0410754
\(676\) −7213.68 −0.410428
\(677\) −11636.2 −0.660583 −0.330291 0.943879i \(-0.607147\pi\)
−0.330291 + 0.943879i \(0.607147\pi\)
\(678\) −8097.36 −0.458668
\(679\) −1747.41 −0.0987620
\(680\) −6592.11 −0.371758
\(681\) −33755.3 −1.89942
\(682\) 16333.2 0.917056
\(683\) −1137.88 −0.0637476 −0.0318738 0.999492i \(-0.510147\pi\)
−0.0318738 + 0.999492i \(0.510147\pi\)
\(684\) 13674.2 0.764393
\(685\) −9757.47 −0.544254
\(686\) 3665.24 0.203993
\(687\) 35382.8 1.96498
\(688\) −8598.54 −0.476477
\(689\) −2166.27 −0.119780
\(690\) −9035.45 −0.498513
\(691\) 22693.1 1.24933 0.624664 0.780893i \(-0.285236\pi\)
0.624664 + 0.780893i \(0.285236\pi\)
\(692\) −3251.87 −0.178638
\(693\) 2132.06 0.116869
\(694\) −1158.98 −0.0633922
\(695\) −7190.05 −0.392423
\(696\) 0 0
\(697\) 7291.45 0.396246
\(698\) 12303.7 0.667196
\(699\) −32443.0 −1.75552
\(700\) −688.472 −0.0371740
\(701\) −36528.2 −1.96812 −0.984058 0.177847i \(-0.943087\pi\)
−0.984058 + 0.177847i \(0.943087\pi\)
\(702\) −448.381 −0.0241069
\(703\) −11673.3 −0.626268
\(704\) 1772.12 0.0948710
\(705\) −9847.09 −0.526047
\(706\) 907.224 0.0483623
\(707\) −1701.57 −0.0905152
\(708\) 12400.6 0.658252
\(709\) −31880.9 −1.68873 −0.844367 0.535765i \(-0.820023\pi\)
−0.844367 + 0.535765i \(0.820023\pi\)
\(710\) 16693.9 0.882412
\(711\) −5886.76 −0.310508
\(712\) −5780.19 −0.304244
\(713\) 22848.8 1.20013
\(714\) 4236.32 0.222045
\(715\) −4299.37 −0.224877
\(716\) −8525.51 −0.444991
\(717\) −9532.61 −0.496516
\(718\) 13086.4 0.680193
\(719\) −16242.8 −0.842495 −0.421247 0.906946i \(-0.638408\pi\)
−0.421247 + 0.906946i \(0.638408\pi\)
\(720\) −3571.03 −0.184840
\(721\) −5369.84 −0.277369
\(722\) −15023.8 −0.774417
\(723\) −29564.4 −1.52077
\(724\) −13962.6 −0.716732
\(725\) 0 0
\(726\) 8409.16 0.429880
\(727\) 26846.7 1.36959 0.684793 0.728738i \(-0.259893\pi\)
0.684793 + 0.728738i \(0.259893\pi\)
\(728\) −428.544 −0.0218172
\(729\) −21828.7 −1.10901
\(730\) 2069.37 0.104919
\(731\) 56580.1 2.86278
\(732\) 18662.0 0.942305
\(733\) 14320.2 0.721595 0.360797 0.932644i \(-0.382505\pi\)
0.360797 + 0.932644i \(0.382505\pi\)
\(734\) −8756.18 −0.440322
\(735\) 19577.2 0.982470
\(736\) 2479.04 0.124155
\(737\) 7920.42 0.395865
\(738\) 3949.88 0.197015
\(739\) 12378.3 0.616162 0.308081 0.951360i \(-0.400313\pi\)
0.308081 + 0.951360i \(0.400313\pi\)
\(740\) 3048.50 0.151439
\(741\) 17720.3 0.878503
\(742\) 589.678 0.0291749
\(743\) 28092.1 1.38708 0.693539 0.720419i \(-0.256050\pi\)
0.693539 + 0.720419i \(0.256050\pi\)
\(744\) 17580.5 0.866308
\(745\) 18657.0 0.917505
\(746\) 20927.2 1.02708
\(747\) 21754.1 1.06552
\(748\) −11660.9 −0.570005
\(749\) −5522.15 −0.269392
\(750\) −22013.5 −1.07176
\(751\) −38866.6 −1.88850 −0.944249 0.329232i \(-0.893210\pi\)
−0.944249 + 0.329232i \(0.893210\pi\)
\(752\) 2701.72 0.131013
\(753\) −13555.4 −0.656026
\(754\) 0 0
\(755\) −6790.74 −0.327338
\(756\) 122.053 0.00587174
\(757\) 27780.9 1.33384 0.666918 0.745131i \(-0.267613\pi\)
0.666918 + 0.745131i \(0.267613\pi\)
\(758\) −707.275 −0.0338910
\(759\) −15982.9 −0.764353
\(760\) 7505.98 0.358251
\(761\) 32674.1 1.55642 0.778209 0.628006i \(-0.216129\pi\)
0.778209 + 0.628006i \(0.216129\pi\)
\(762\) 21014.3 0.999040
\(763\) −5894.08 −0.279659
\(764\) −5042.78 −0.238798
\(765\) 23498.1 1.11056
\(766\) −8499.33 −0.400905
\(767\) 8254.43 0.388592
\(768\) 1907.44 0.0896210
\(769\) −27268.7 −1.27872 −0.639359 0.768908i \(-0.720800\pi\)
−0.639359 + 0.768908i \(0.720800\pi\)
\(770\) 1170.33 0.0547735
\(771\) 19291.9 0.901141
\(772\) −19890.2 −0.927283
\(773\) −19081.8 −0.887871 −0.443936 0.896059i \(-0.646418\pi\)
−0.443936 + 0.896059i \(0.646418\pi\)
\(774\) 30650.2 1.42338
\(775\) 18800.4 0.871395
\(776\) 5177.21 0.239499
\(777\) −1959.08 −0.0904524
\(778\) 27584.2 1.27114
\(779\) −8302.28 −0.381848
\(780\) −4627.69 −0.212433
\(781\) 29530.2 1.35297
\(782\) −16312.5 −0.745953
\(783\) 0 0
\(784\) −5371.35 −0.244686
\(785\) 9139.98 0.415567
\(786\) −35747.0 −1.62220
\(787\) −26279.8 −1.19031 −0.595155 0.803611i \(-0.702909\pi\)
−0.595155 + 0.803611i \(0.702909\pi\)
\(788\) 5022.27 0.227044
\(789\) −37895.0 −1.70988
\(790\) −3231.34 −0.145527
\(791\) 1467.20 0.0659516
\(792\) −6316.86 −0.283409
\(793\) 12422.3 0.556280
\(794\) 26659.3 1.19156
\(795\) 6367.71 0.284075
\(796\) 1272.46 0.0566596
\(797\) 26431.8 1.17473 0.587367 0.809320i \(-0.300164\pi\)
0.587367 + 0.809320i \(0.300164\pi\)
\(798\) −4823.61 −0.213978
\(799\) −17777.9 −0.787153
\(800\) 2039.80 0.0901472
\(801\) 20604.0 0.908870
\(802\) −28369.6 −1.24908
\(803\) 3660.55 0.160869
\(804\) 8525.26 0.373959
\(805\) 1637.18 0.0716808
\(806\) 11702.5 0.511416
\(807\) 41004.8 1.78865
\(808\) 5041.41 0.219500
\(809\) −25378.2 −1.10290 −0.551452 0.834207i \(-0.685926\pi\)
−0.551452 + 0.834207i \(0.685926\pi\)
\(810\) −10734.2 −0.465633
\(811\) −495.143 −0.0214387 −0.0107194 0.999943i \(-0.503412\pi\)
−0.0107194 + 0.999943i \(0.503412\pi\)
\(812\) 0 0
\(813\) 31965.4 1.37894
\(814\) 5392.54 0.232197
\(815\) 1610.62 0.0692240
\(816\) −12551.3 −0.538462
\(817\) −64423.9 −2.75876
\(818\) −9727.80 −0.415800
\(819\) 1527.58 0.0651746
\(820\) 2168.16 0.0923357
\(821\) 34011.8 1.44582 0.722912 0.690940i \(-0.242803\pi\)
0.722912 + 0.690940i \(0.242803\pi\)
\(822\) −18578.2 −0.788308
\(823\) −27126.3 −1.14892 −0.574462 0.818531i \(-0.694789\pi\)
−0.574462 + 0.818531i \(0.694789\pi\)
\(824\) 15909.7 0.672623
\(825\) −13151.1 −0.554984
\(826\) −2246.93 −0.0946496
\(827\) −15540.8 −0.653455 −0.326727 0.945119i \(-0.605946\pi\)
−0.326727 + 0.945119i \(0.605946\pi\)
\(828\) −8836.73 −0.370891
\(829\) 3273.46 0.137144 0.0685718 0.997646i \(-0.478156\pi\)
0.0685718 + 0.997646i \(0.478156\pi\)
\(830\) 11941.2 0.499379
\(831\) −21296.0 −0.888988
\(832\) 1269.69 0.0529068
\(833\) 35344.5 1.47013
\(834\) −13689.8 −0.568393
\(835\) 8950.76 0.370963
\(836\) 13277.4 0.549294
\(837\) −3332.97 −0.137639
\(838\) 13658.9 0.563052
\(839\) 6745.29 0.277561 0.138780 0.990323i \(-0.455682\pi\)
0.138780 + 0.990323i \(0.455682\pi\)
\(840\) 1259.70 0.0517424
\(841\) 0 0
\(842\) 3296.11 0.134907
\(843\) 26805.3 1.09516
\(844\) 16024.9 0.653555
\(845\) 14114.7 0.574628
\(846\) −9630.52 −0.391376
\(847\) −1523.70 −0.0618122
\(848\) −1747.09 −0.0707494
\(849\) 44068.4 1.78142
\(850\) −13422.3 −0.541624
\(851\) 7543.69 0.303871
\(852\) 31785.2 1.27810
\(853\) 19431.9 0.779993 0.389996 0.920816i \(-0.372476\pi\)
0.389996 + 0.920816i \(0.372476\pi\)
\(854\) −3381.47 −0.135493
\(855\) −26755.7 −1.07021
\(856\) 16361.0 0.653279
\(857\) −19332.2 −0.770564 −0.385282 0.922799i \(-0.625896\pi\)
−0.385282 + 0.922799i \(0.625896\pi\)
\(858\) −8185.99 −0.325717
\(859\) −39352.8 −1.56310 −0.781549 0.623844i \(-0.785570\pi\)
−0.781549 + 0.623844i \(0.785570\pi\)
\(860\) 16824.4 0.667103
\(861\) −1393.33 −0.0551507
\(862\) −17558.9 −0.693802
\(863\) 24745.8 0.976082 0.488041 0.872821i \(-0.337712\pi\)
0.488041 + 0.872821i \(0.337712\pi\)
\(864\) −361.619 −0.0142390
\(865\) 6362.81 0.250106
\(866\) 3787.16 0.148606
\(867\) 45983.8 1.80126
\(868\) −3185.51 −0.124566
\(869\) −5715.97 −0.223131
\(870\) 0 0
\(871\) 5674.83 0.220763
\(872\) 17462.9 0.678176
\(873\) −18454.6 −0.715456
\(874\) 18574.0 0.718849
\(875\) 3988.75 0.154108
\(876\) 3940.08 0.151967
\(877\) 4421.63 0.170248 0.0851241 0.996370i \(-0.472871\pi\)
0.0851241 + 0.996370i \(0.472871\pi\)
\(878\) −9853.07 −0.378730
\(879\) 14738.7 0.565555
\(880\) −3467.43 −0.132826
\(881\) 4152.92 0.158814 0.0794072 0.996842i \(-0.474697\pi\)
0.0794072 + 0.996842i \(0.474697\pi\)
\(882\) 19146.6 0.730952
\(883\) −18620.4 −0.709654 −0.354827 0.934932i \(-0.615460\pi\)
−0.354827 + 0.934932i \(0.615460\pi\)
\(884\) −8354.79 −0.317876
\(885\) −24263.7 −0.921600
\(886\) 13176.0 0.499614
\(887\) 21286.9 0.805798 0.402899 0.915244i \(-0.368003\pi\)
0.402899 + 0.915244i \(0.368003\pi\)
\(888\) 5804.34 0.219348
\(889\) −3807.70 −0.143651
\(890\) 11309.9 0.425963
\(891\) −18988.0 −0.713940
\(892\) 4148.81 0.155731
\(893\) 20242.4 0.758553
\(894\) 35523.0 1.32893
\(895\) 16681.5 0.623019
\(896\) −345.620 −0.0128866
\(897\) −11451.5 −0.426258
\(898\) −2489.68 −0.0925186
\(899\) 0 0
\(900\) −7271.03 −0.269297
\(901\) 11496.2 0.425077
\(902\) 3835.28 0.141575
\(903\) −10812.0 −0.398450
\(904\) −4347.02 −0.159933
\(905\) 27320.0 1.00348
\(906\) −12929.5 −0.474123
\(907\) 14695.2 0.537977 0.268989 0.963143i \(-0.413311\pi\)
0.268989 + 0.963143i \(0.413311\pi\)
\(908\) −18121.4 −0.662311
\(909\) −17970.5 −0.655714
\(910\) 838.515 0.0305456
\(911\) −7441.79 −0.270645 −0.135322 0.990802i \(-0.543207\pi\)
−0.135322 + 0.990802i \(0.543207\pi\)
\(912\) 14291.4 0.518897
\(913\) 21122.9 0.765682
\(914\) 12868.7 0.465711
\(915\) −36515.2 −1.31929
\(916\) 18995.1 0.685169
\(917\) 6477.19 0.233256
\(918\) 2379.52 0.0855511
\(919\) −2936.26 −0.105395 −0.0526976 0.998611i \(-0.516782\pi\)
−0.0526976 + 0.998611i \(0.516782\pi\)
\(920\) −4850.63 −0.173827
\(921\) 11447.0 0.409547
\(922\) 23253.2 0.830591
\(923\) 21157.8 0.754515
\(924\) 2228.30 0.0793350
\(925\) 6207.10 0.220636
\(926\) −2877.68 −0.102123
\(927\) −56711.5 −2.00933
\(928\) 0 0
\(929\) −883.298 −0.0311949 −0.0155974 0.999878i \(-0.504965\pi\)
−0.0155974 + 0.999878i \(0.504965\pi\)
\(930\) −34399.1 −1.21289
\(931\) −40244.4 −1.41671
\(932\) −17416.8 −0.612133
\(933\) 41055.9 1.44063
\(934\) −27115.2 −0.949932
\(935\) 22816.4 0.798048
\(936\) −4525.91 −0.158049
\(937\) −9935.94 −0.346417 −0.173209 0.984885i \(-0.555414\pi\)
−0.173209 + 0.984885i \(0.555414\pi\)
\(938\) −1544.74 −0.0537713
\(939\) −16267.1 −0.565342
\(940\) −5286.35 −0.183427
\(941\) 25025.2 0.866948 0.433474 0.901166i \(-0.357288\pi\)
0.433474 + 0.901166i \(0.357288\pi\)
\(942\) 17402.5 0.601915
\(943\) 5365.22 0.185276
\(944\) 6657.18 0.229526
\(945\) −238.817 −0.00822086
\(946\) 29761.0 1.02285
\(947\) −24752.3 −0.849359 −0.424679 0.905344i \(-0.639613\pi\)
−0.424679 + 0.905344i \(0.639613\pi\)
\(948\) −6152.47 −0.210784
\(949\) 2622.71 0.0897122
\(950\) 15283.0 0.521944
\(951\) −37129.8 −1.26605
\(952\) 2274.25 0.0774252
\(953\) −12603.7 −0.428410 −0.214205 0.976789i \(-0.568716\pi\)
−0.214205 + 0.976789i \(0.568716\pi\)
\(954\) 6227.66 0.211350
\(955\) 9867.01 0.334334
\(956\) −5117.53 −0.173130
\(957\) 0 0
\(958\) −30207.2 −1.01874
\(959\) 3366.28 0.113350
\(960\) −3732.22 −0.125476
\(961\) 57197.2 1.91995
\(962\) 3863.65 0.129490
\(963\) −58320.1 −1.95154
\(964\) −15871.5 −0.530276
\(965\) 38918.3 1.29826
\(966\) 3117.19 0.103824
\(967\) −19128.6 −0.636127 −0.318064 0.948069i \(-0.603033\pi\)
−0.318064 + 0.948069i \(0.603033\pi\)
\(968\) 4514.41 0.149895
\(969\) −94040.0 −3.11765
\(970\) −10130.0 −0.335315
\(971\) 9196.54 0.303945 0.151973 0.988385i \(-0.451437\pi\)
0.151973 + 0.988385i \(0.451437\pi\)
\(972\) −21658.4 −0.714706
\(973\) 2480.53 0.0817290
\(974\) −25029.5 −0.823404
\(975\) −9422.49 −0.309499
\(976\) 10018.6 0.328573
\(977\) −39845.4 −1.30478 −0.652389 0.757884i \(-0.726233\pi\)
−0.652389 + 0.757884i \(0.726233\pi\)
\(978\) 3066.62 0.100265
\(979\) 20006.2 0.653116
\(980\) 10509.9 0.342578
\(981\) −62248.1 −2.02592
\(982\) −662.923 −0.0215425
\(983\) −20134.4 −0.653294 −0.326647 0.945146i \(-0.605919\pi\)
−0.326647 + 0.945146i \(0.605919\pi\)
\(984\) 4128.16 0.133741
\(985\) −9826.87 −0.317878
\(986\) 0 0
\(987\) 3397.20 0.109558
\(988\) 9513.03 0.306326
\(989\) 41633.0 1.33858
\(990\) 12359.9 0.396793
\(991\) 10908.3 0.349662 0.174831 0.984598i \(-0.444062\pi\)
0.174831 + 0.984598i \(0.444062\pi\)
\(992\) 9438.00 0.302073
\(993\) 57427.8 1.83526
\(994\) −5759.33 −0.183778
\(995\) −2489.77 −0.0793276
\(996\) 22736.0 0.723310
\(997\) 26941.1 0.855799 0.427900 0.903826i \(-0.359254\pi\)
0.427900 + 0.903826i \(0.359254\pi\)
\(998\) −705.432 −0.0223748
\(999\) −1100.40 −0.0348501
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.4.a.k.1.6 6
29.28 even 2 1682.4.a.l.1.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1682.4.a.k.1.6 6 1.1 even 1 trivial
1682.4.a.l.1.1 yes 6 29.28 even 2